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Abstract 

Our purpose is to describe elliptic curves with complex multiplication which in 
characteristic 2 have the following useful properties for constructing Diffie-HeUman 
type cryptosystems: (1) they are nonsupersingular (so that one cannot use the 
Menezes-Okamoto-Vanstone reduction of discrete log from elliptic curves to fi- 
nite fields); (2) the order of the group h a s  a large prime factor (so that discrete 
logs cannot be computed by giant-step/baby-step or the PolIard rho method); 
(3) doubling of points can be carried out almost as efficiently as in the case of 
the supersingular curves used by Vanstone; (4)  the curves are easy to find. 

1 Introduction 

In Atkin's version of the Goldwasser-Kilian primality test ([l], [9]) one starts with a 
quadratic imaginary field Ii' = Q(m) and then constructs an elliptic curve over a 
finite field which is the reduction of an elliptic curve with complex multiplication by K .  
This idea can also be applied to the search for elliptic curvea which are suitable for the 
type of cryptosystem described in [3], [8]. 4 s  in the primality test, we are looking for 
elliptic curves whose number of points is equal to a large prime number times a small 
factor. However, unlike in the prirnality test, where the curves are defined over very large 
prime fields. our curves will be defined over small fields. Morcover, we shall be interested 
in an additional property of the curves, the property of having a small trace of Frobenius. 
In particular, we shall stirdy curves over small fields of characteristic 2 for which the trace 
of the Frobenius map is kl, i.e., for which the complexmultiplicationfield is Q(m) for 
D = 2'+2 - 1 a Mersenne number. Such curves lend themselves to particularly efficient 
computation, since the doubling of points (more precisely, multiplying points by 2 k )  can 
be speeded up when this condition holds. 
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2 Anomalous curves 

An elliptic curve E defined over the field F, of p elements will be called “anomalous” if 
the trace of the Frobenius map (the map (2, y) w (I,, yq)) is equal to 1. Equivalently, an 
“anomalous” curve over F, is one for which the number of Fg-points is equal t o  p.’ On 
an anomalous elliptic curve E over F,, the Frobenius map ‘p satisfies the characteristic 
equation T2 - T + q = 0. 

We shall also be interested in the “twist” E of E ,  whose Frobenius satisfies T2+T+p = 
0 (the number of F,-points on is p + 2). By the %-twist” En of E we mean the twist 
of the curve E regarded as a curve over the extension field F,. (thus, = E). If Q is 
odd and E has equation 3 = z3 + bx -+ c, then En has equation /3y2 = x3 + bx + C ,  where 
p E Fgm is a nonsquare; if q is even, then the equations are a little different, as we shall see 
in the examples below. If n = 2r’no with no odd, then & can be defined over the smaller 
field extension F,P, and its Frobenius map (z, y) Y (zq”, yQar ) satisfies the equation 

T2 + aT + p2’ = 0, where a is the trace of the complex number ((1 + 4 3 ) / 2 )  
2‘ . 

The most important case for practical implementation is q = 2‘. In that case, the 
computation of ’p : (x,y) L. (xzk,gZk) on an Fp.-point is accomplished by a shift 
operation of negligible time. Thus, if we want to multiply a point P by 2k on an anoma- 
lous curve, the fastest way to  do this is to use the identity p2 - p + 2k = 0 ,  i.e., 
2‘P = cp(P) - cp2(P), since instead of k additions of points we need only perform one. 
(On the twisted curve E ,  one analogously has 2‘P = -cp(P) - ‘p’(P).) 

I 

The greater efficiency obtained if one can double points by taking squares in F2- 
was first realized by Menezes and Vanstone (61, who were working with curves defined 
over Fz whose Frobenius map has trace 0, i.e., satisfies the relation T2 + 2 = 0. In that 
case, since 2P = - p 2 ( P ) ,  no addition of points is required, i.e., doubling of points is 
“free.” However, curves with 0 trace of Frobenius are supersingular. In [7] i t  was shown 
that the discrete log problem on a supersingular elliptic curve reduces to the discrete 
log problem in the multiplicative group of a finite field of about the same size. That  is, 
supersingular elliptic curve cryptosystems are now known to be no more secure than the 
original Diffie-Hellman cryptosystem in a small extension of the underlying finite field. 
For this reason we shall keep away from curves whose Frobenius map cp has trace 0. The 
anomalous curves - those for which cp has trace 1 - are the “next best thing.” 

In general, for given q the equation of an anomalous elliptic curve over F, can be found 

‘The term “anomalous” was introduced by Barry Mazur in a different context: given an elliptic curve 
E over a number field, he calJs a prime “anomalous” for E if the Frobenius of E at that prime has trace 
1. 
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by finding F,-roots of the modular equation corresponding to the complex multiplication 
field Q(JW), as explained in [4]. However, in our examples we shall be concerned 
only with small q ,  for which an equation for E can be found quickly by trial and error. 

w 

Theorem. Let E be an anomalous elliptic curz,e defined over F,, and let E be its 
twist. 

- 
(a) If P is an Fqn -point on E [or E) ,  then the multiple qP can be computed with a 

single addition of points (together with shift operations for ihe computation of x H xq in 
a normal basis of F q m ) .  

(b) I n  the special case q = 2, a n y  of t h e  multiples 2‘P for  15 4 can be computed wiih 
a single addition of points. 

Proof. Part (a) follows from the above discussion. 

(b) In the case q = 2 ,  a t  first it might seem that an anomalous curve has no advantage, 
because computing 2P = P+ P takes only one addition of points anyway. However, if we 
use the relation T - T 2  = 2 satisfied by v, iterate and simplify, we obtain the following 
polynomial identities satisfied by the map cp (which is defined on the Fzn-points of E by 

%,Y) P(SX,Y4 

8 = 4 . 2  = (-T3 - T2)(T  - T 2 )  = -T3 + T 5  

= -T7 + (T -T2)T6 + T4 = T4 - T8 

(The analogous formulas on the twist E are obtained from these by replacing T by -T.) 
Thus, in computing t P ,  any string of 1 5 4 zeros can be handled with a single addition 
of points, as claimed. 

Roughly speaking, if one uses k ’ s  of small Hamming size, one gets doubling of points 
“almost 3/4 for free.” If E has equation y2 + z y  = f3(z) for f3(t) E F2[z] of degree 3 
(an explicit equation will be given below), and if P = P(z,y) is an F2--point1 then the 
above binomials in T lead to simple formulas for 2’P, 1 5 4, for example: 8 P(.,y) = 
P(z~,z8+y~) + P(Z33J32). 

Alternately, as Victor Miller pointed out to me, for k arbitrary it is efficient to write 
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L to the base 16 and precompute EoP for 1 5 Lo < 16. Then if one uses the last formula 
above to  compute lg P ,  it is easy to see that on the average the number of additions of 
points is less than 1/3 of the expected number of additions of points required with the 
repeated doubling method based on the binary expansion of k. 

3 Number of points 

Let E be an anomalous curve over F,, and let be its n-twist. Then there is a simple 
relationship between the number N,, (resp. G,,) of Fp.-points on E (resp. on En)  and 
the root cy = (1 + 4 7 ) / 2  of the characteristic polynomial T2 - T + q.  Namely, 
N ,  = IQ" - 11*, G n  = Ian + 1)'. This leads to a very simple algorithm for computing 
N ,  and Nn: first compute the Fibonacci-type sequence a,, given by a0 = 2, (11 = 1, 
ant1 = a, - qan-1 for n 2 1; then N,, = q" + 1 - a,, and N,, = q" + 1 + an- 

- 
I 

Once we have an anomalous curve E defined over F,, we want to find an extension 
field Fg= such that the number N,, of F,p-points on E or the number Nn of Fgn-points 
on En is divisible by a large prime (say, of at  least 30 digits). Because Nn = la" - 11' 
and Nn = IQ" + 112, i t  follows that  N,,,IN,, whenever nlln and Gnl1i?,, whenever n/nl 
is an odd integer. SO if N ,  (resp. En) is to be a product of a small factor and a large 
prime, we must take tz equal to a prime (resp. equal either to a prime or else to a prime 
times a very small power of 2). 

- 
I 

4 Examples defined over F 2  

Here we consider the anomalous curve E : y2 + zy = z3 + z2 + 1 over F:! and its twist 
: yz + xy = z3 + 1, which have complex multiplication by Q ( G ) .  For certain prime 

n one has Nn = 2.prime (or N,, = 4.prime). Here is a table of all values of Nn/2 and 
E,/4 for n < 200 which are prime (actually, probable prime, since I verified primality 
using Malhematica) and which are of at  least 30 digits: 

- 

N101/2 = 1 26765 06002 28230 88614 28085 08011 

N107/2 = 81 12963 84146 06692 18285 10322 12511 

Nlo9/2 = 324 51855 36584 26701 48744 86564 61467 

N113/2 = 5192 29685 85348 27627 89670 38334 67507 
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N163/2 = 5846 00654 93236 11672 81474 17535 98448 34832 91185 74063 

El0314 = 2 53530 12004 56459 53586 25300 67069 

Z1,37/4 = 40 56481 92073 03335 60436 34890 37809 

- 
N131/4 = 6805 64733 84187 69269 32320 12949 34099 85129 

Thus, for example, the number of points on the curve y2 + zy = z3 + 1 over F p i  (a  
field which according to the table in [Ill has an optimal normal basis) is divisible by a 

39-digit probable prime. (The field F z l ~  also has an optimal normal basis.) 

5 Examples defined over F 4 ,  F 8  and F 1 6  

I. We consider the curve E : y2 + zy = z3 + 7, where 7 E F4 satisfies 7’ = 7 + 1, and its 
twist E : y2 + z y  = t3 + 72’ + 7 .  The curves E and E have complex multiplication by 
Q ( a ) .  For certain prime n one has N,, = 4.prime or N,, = 6.prime. Here is a table 
of all probable prime values of a t  least 30 digits of N,/4 and fi,,/6 for n < 100: 

I - 
- 

Ntj7/4 = 54445 17870 73501 54153 44659 58609 44105 99059 

N7g/4 = 91 34385 23331 81432 38773 05730 45979 44745 23653 03319 

N S 9 / 6  = 55384 49982 43714 94566 50574 99908 87769 

Note that the fields F ~ B T  and Fq~9 have optimal normal bases [ll].  

11. We consider the curve E : y 2 + x y  = z3+7, where 7 E Fs satisfies r3 = y+ 1, and 
its twist have complex multiplication 
by Q ( m ) .  For certain prime n one has N, = 8.prime or N,, = 10Vprime. Here is a 
table of all probable prime values of at least 30 digits of Nn/8 and N/10 for n < 66: 

: y2 + z y  = z3 + x 2  + 7. The curves E and 
I 

N37/8 = 324 51855 36584 26723 11495 75723 35741 

- 
N47/10 = 27 87593 14981 63278 92689 03181 39617 36218 74561 

- 
N S g / l O  = 191 56194 26082 36107 29479 33791 57473 18375 04813 70807 01777 



111. Finally, we return to the curve E : y2 + zy = r3  + I’ + 1 in $4, and consider its 
4-twist E4 : yz + zy = z3 + yr’  + 1, where y E F16 is an element with absolute trace 
1. Since the 4-th power of D = (1 + n ) / 2  is (1 - 3 p ) / 2 ,  it  follows that E regarded 
over F 1 6  is also anomalous. (The fact that  the same curve is anomalous over both F 2  

and F 1 6  is to be expected, because the complex multiplication fields Q ( J m )  are 
the same when k = 1 and k = 4,  since a = 3 g . )  For certain n equal to 4 times a 
prime, one has N, = Ns.prime= 18.prime. There is one case for n < 200 when N,,j18 is 
a prime of more than 30 digits: 

- 

- - - 

fiI4*/l8 = 1982 28846 20916 10945 91407 67798 27981 11637 92081 

The field F Z t d a  happens to have an optimal normal basis [ l l ] .  

In summary, the above elliptic curves all give rise to Diffie-Hellman type cryptosys- 
terns which are secure at our present level of knowledge and technology. The examples 
in $4 have the additional feature that,  when computing a multiple kP, any string of 5 4 
zeros in the binary representation of k can be handled with only a single addition of 
points. In the case of the examples in $5.1 (respectively, $5.11, $5.111) a string of 2 (resp. 
3, 4) zeros in k can be handled with a single addition of points. 

6 Some aspects of efficient implementation 

Balanced binary expansion. As noted in [lo], one can take advantage of the fact 
that subtracting points on an elliptic curve is as easy as adding. For example, instead of 
computing 1 5 P  as P + 2 ( P + 2 ( P + 2 P ) ) ,  it is moreefficient to compute 2(2(2(2P)))-P.  
This is different from exponentiation in a finite field, where it would take longer to 

compute ( ( ( a 2 )  ’) ’) / a  than Q ( a  ( a  . a?) ’) 2 ,  because division takes much longer than 

multiplication. 

2 

Suppose YOU want t o  compute kP. The following algorithm, which is equivalent to 
the second algorithm in [lo], will give k as a sum of a minimal number of powers of 
2 with coefficients &l: move from right to left in the binary expansion of k, replacing 
eacn sequence of two or more 1-bits 11.. . I 1  by 100 . .  .0-1. We shall call the result the 
“balanced binary expansion” of k. For example, for k = 3895 we move from the binary 
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to the balanced binary expansion as follows: 

1 1 1  1 0 0 1 1  0 1 1  1 
1 1 1  1 0 0 1 1  1 0 0 - 1  
1 1 1  1 0 1 0 0 - 1 0 0 - 1  

1 0  0 0 -1 0 1 0  0 -1 0 0 -1 

The balanced binary expansion of an arbitrary k is likely to have more sequences of 
several 0’s than its binary expansion. In fact, it is simple to show that on the average 
2/3 of a number’s balanced binary digits are 0. Thus, when we are computing on the 
anomalous curves in $4, the easy step of converting k to balanced binary will generally 
enable US to compute kP faster, because of the circumstance that any string of 5 4 zeros 
can be handled with a single addition of points. For example, to compute 1 5 P  = 16P-  P 
requires only 2 additions of points. 

In a Diffie-Hellman type key exchange, where one multiplies points by randomly 
generated r-bit integers k, one could limit oneself to k of Hamming size 5 s, where 
s << r.  If the binary expansion is used, there are Cj,, (r) such k; whereas if we use the 
balanced binary expansion. then there are almost x j s8  21 (i) different k of Hamming 
size 5 s. (We say “almost” because not all sequences of digits can occur; but most do  
occur when s << r . )  

The following is an even more efficient key exchange procedure. I t  is based on a 
suggestion of Hendrik Lenstra. 

Base-cp expansion. Again suppose that we are working in the group of Fzn-points 
of the anomalous F2-curve E : yz + ey = z3 + I + 1 or its twist k : y2 + zy = t3 + 1. 
Then on E the Frobenius map ‘p : (I, y) - ( r 2 ,  y2)  is the element A = (1 + G ) / 2  of 
the endomorphism ring Z[(-1 + f l ) / 2 ]  (on E it  is K = (-1 + f l ) / 2 ) .  In the key 
exchange protocol, instead of choosing a random r-bit positive integer n whose balanced 
binary expansion has Hamming size 5 s, each player now chooses a linear combination 
n of the pJ! 0 5 j < r ,  with coefficients cj = 0 or +l, such that 5 s of the coefficients 
are nonzero. Then computing R P  = C cj ( P )  requires only 5 s - 1 additions of points, 
and we have recaptured the efficiency of working with supersingular curves. 

One could also compute arbitrary multiples n P ,  where now n E 2, by representing 
n “to the base 9.’’ Namely, since cp = ( f 1  + f l ) / 2  is an element of norm 2 in the 
Euclidean domain 2 [( 1 + &7)/2], any element of the ring - in particular, n - has a 
unique representation in the form C c j @ ,  where c j  E ( 0 , l ) .  

We can also obtain a “balanced cp-expansion” of n as follows. Recall that p satisfies 
~ ( l  -p) = 2 on E (it satisfies -cp(l+cp) = 2 on E). We shall work on E (the argument for 
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is analogous with the p-expansion replaced by the (-p)-expansion). Write n = no + 
2nl+2n2, where no E (0, l} and n2 is the part of the pexpansion of (n-n0)/2 consisting 
of all runs of >_ 2 consecutive l-bits. Note that 2(1+ p + 'p2 + . . . + #-I) = 'p - y9". 
Hence we replace each sequence of j 2 2 consecutive l-bits 11. +.  11 in the expansion of 
n2 by -1 000. .  . l o  in the expansion of 2n2. 

But unfortunately, expressing an arbitrary n as a balanced cpexpansion will not 
necessarily be more efficient than using its balanced binary expansion. This is because 
the p-expansion of n has approximately twice as many bits as the binary expansion. The 
following example illustrates why the base p does not generally have an advantage over 
the base 2. 

Example. Consider the group of Fe-points of E : y' + zy = r3 + z2 + 1, which has 
order 14. Suppose we want to compute 1OP. Using the binary expansion, we take 2 ( P +  
4P), which requires 3 additions. Since the base+ expansion of 5 is 100101, computing 
1OP = (p5 + p2 + 1)2P also requires 3 additions. Note that if we happen to know that 
'p acts as -3 on the Fa-points of E ,  and so 10 = p2 + I, then we can compute 1OP with 
a single addition of points. However, in the general case of Fan-points it is not clear 
how to obtain a cp-expansion of n that  is much shorter than the one that comes from the 
Euclidean algorithm in the ring Z[(1 + -)/2]. 
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