
Graph Clustering Using Distance-k Cliques
Software Demonstration

Jubin Edachery1, Arunabha Sen1?, and Franz J. Brandenburg2

1 Department of Computer Science
Arizona State University
Tempe 85287, AZ, USA

{jubin,Arunabha.Sen}@asu.edu
2 Lehrstuhl für Informatik

Universität Passau
94030 Passau, Germany

brandenb@informatik.uni-passau.de

Abstract. Identifying the natural clusters of nodes in a graph and trea-
ting them as supernodes or metanodes for a higher level graph (or an
abstract graph) is a technique used for the reduction of visual comple-
xity of graphs with a large number of nodes. In this paper we report
on the implementation of a clustering algorithm based on the idea of
distance-k cliques, a generalization of the idea of the cliques in graphs.
The performance of the clustering algorithm on some large graphs ob-
tained from the archives of Bell Laboratories is presented.

1 Introduction

Visualization tools can be of tremendous help to network planners and admi-
nistrators for management and control of large networks. For this purpose, a
hierarchical view of the network is most appropriate. This provides the network
administrators at different levels the ability to view their realm of the network
at an appropriate level of detail without being overwhelmed by unnecessary and
unimportant minutiae. This hierarchical view of the networks can be provided
in graphs by grouping the nodes into some supernodes or metanodes [3]. As a re-
sult, the higher level graph will have much fewer metanodes and thus the visual
complexity will be significantly reduced.

Identifying the natural clusters of nodes in a graph and treating them as
supernodes or metanodes for a higher level graph is a technique that can used
for the reduction of visual complexity of graphs with a large number of nodes.
An abstract graph is constructed in such a way that a node in the abstract
graph represents a set of nodes of the original graph and the edges represent the
relationship between these sets of nodes. Thus an abstract graph construction
? Corresponding author, Telephone: 480-965-6153, Fax: 480-965-2751; This research in

part was supported by a grant from the NATO Scientific and Environmental Affairs
Division and a grant from Tom Sawyer Software under NIST Advanced Technology
Program.

J. Kratochv́ıl (Ed.): GD’99, LNCS 1731, pp. 98–106, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Graph Clustering Using Distance-k Cliques 99

problem reduces to the problem of partitioning the node set of the original graph
G = (V, E), into a subset of nodes V1, V2, ..., Vk, such that ∪k

i=1Vi = V and
Vi ∩ Vj = Ø for i 6= j.

The subsets Vis (1 ≤ i ≤ k) are known as the clusters of the graph G = (V, E).
One problem with this approach is that there is no consensus among the resear-
chers as to what constitutes a natural cluster. There is some intuitive understan-
ding of what constitutes a cluster but there is no universally accepted formal
definition of a natural cluster. In case the nodes and edges of the graph have
some semantic information associated with them (in the form of labels), such
information can be used for the purpose of clustering (or grouping) the nodes.
An example of such information could be the IP addresses associated with the
nodes in a telecommunication network. In case the graph has no such infor-
mation, then the structural properties of the graph have to be utilized for the
purpose of generating the clusters. Several candidates for the structures to be
used as clusters have been proposed in the literature. These include biconnected
components, paths and triangles, circles of cliques and others [1, 2, 5, 6].

2 Clustering Using Distance-k Cliques

In spite of the differences of opinion as to what constitutes a cluster, one idea
is universally accepted: the nodes belonging to a cluster must have a strong
relationship between them in comparison with the nodes outside the cluster.
Now, we are confronted with another question and that is how to measure the
strength of a relationship ? In this paper we measure the strength of a relationship
between two nodes in a graph in terms of the distance between the nodes. The
distance between two nodes in a graph is the length of the shortest path length
between the two nodes. If dist(u, v) gives the distance between the nodes u and
v, and if dist(p, q) > dist(r, s), then we say that the strength of the relationship
between p and q is weaker than the strength of the relationship between r and
s. In other words, the strength of a relationship between two nodes is inversely
proportional to the distance between them.

A subset V ′ of the node set V of a graph G = (V, E) is defined to be a
Distance-k Clique if every pair of nodes in V ′ is connected in G by a path of
length at most k. The standard graph theoretic term, clique, is a special case
of a distance-k clique with k = 1. It may be noted that a distance-k clique of a
graph G = (V, E) is a subgraph of G with diameter k.

In our clustering problem, we would like to partition the node set V of the
graph G = (V, E) into fewest number of distance-k cliques. The decision problem
version of our clustering problem can be stated as follows:

Partition into Distance-k Cliques Problem
INSTANCE: Given a graph G=(V, E) and positive integers j and k, 1 ≤ j, k ≤
|V |.
QUESTION: Can the vertices of G be partitioned into i ≤ j disjoint sets
V1, V2, . . . , Vi such that, for 1 ≤ m ≤ i,the subgraph induced by Vm is a distance-
k clique ?

100 J. Edachery, A. Sen, and F.J. Brandenburg

It is not difficult to realize that the Partition into Distance-k Cliques pro-
blem is NP-Complete because if k = 1, it reduces to the Partition into Cliques
problem, which is known to be NP-Complete [4].

As Partition into Distance-k Clique problem turns out to be an NP-Complete
problem, we look for heuristic solutions to the problem that will produce a
good solution rather than an optimal solution. In the following paragraph we
describe a class of such algorithms. All these algorithms are variations of one
main algorithm which is referred to as the algorithm A1.

2.1 Description of the Algorithms

The clusters are are referred to as C1, C2, . . . , Cp for some integer p. Every node
v of the graph G = (V, E) belongs to one cluster Ci, 1 ≤ i ≤ p. This information
is stored in an array called C[1, .., n]. If for a node v ∈ V , C[v] = j, it implies
that the node v is an element of the cluster Cj .

A node v of the graph G = (V, E) is known as an bridge node if v ∈ Ci, (v, u) ∈
E and u 6∈ Ci, where Ci represent the cluster i.

The neighbors of a node v ∈ V is defined as the nodes that are adjacent to v
in the graph G = (V, E)), i.e., N(v) = {u|(v, u) ∈ E}.

Every bridge node v ∈ V will have a cluster-list associated with it. The
cluster-list associated with node v, is the set of all the clusters where the neigh-
bors of v, not in C[v], belong, i.e., CL(v) = {Ci|N(v) ∩ Ci 6= ∅ and i 6= C[v]}.

The estimated diameters of the clusters is an upper bound of the diameter of
the clusters. They are stored in an array called EstDia. EstDia(Ci) gives the
estimated diameter of the cluster Ci.

We first describe the Algorithm A1 and then its variations, algorithms A2
through A5. In all the algorithms, the user specifies the value of k for the algo-
rithms to create distance-k cliques.

Algorithm A1
As a first step, A1 constructs an initial clustering of the nodes. The algorithm

InitialCluster1 is used for this purpose. InitialCluster1 chooses high degree nodes
of the graph and forms clusters around those nodes. The set of initial clusters
called ClusSet and it contains the clusters C1, C2, . . . , Cp for some integer p.
This procedure also computes the estimated diameter of each cluster in ClusSet
and stores in array EstDia . The InitialCluster1 procedure also identifies the
bridge nodes at this stage of clustering and for each node v ∈ V determines the
cluster in which this node belongs. This information is stored in array C array,

A list of clusters is associated with each bridge node. The bridge node that
has the largest number of nodes in its cluster list is used to (tentatively) form a
larger cluster (ComClus), comprising of the cluster in which the bridge node be-
longs and all the clusters in its cluster list. If the estimated diameter of the new
cluster is less than or equal to k, then the new cluster is made permanent and
the cluster list of all the affected bridge nodes are updated. In case the diameter
of the new cluster is greater than k, then such a cluster cannot be formed. In this

Graph Clustering Using Distance-k Cliques 101

case, one cluster, (RemClus), is removed from the tentative cluster (ComClus)
so as to reduce the overall diameter and the cluster list of all the affected bridge
nodes are updated. The whole process is repeated till the cluster list associated
with each bridge node (CL(i)) becomes empty.

Algorithm InitialCluster1 (V, E)

begin
V ′ = V ;P = 0;
while(V ′ 6= ∅)

begin
P = P + 1;
m = the highest degree node in V ′;
Cluster(P) = {m};
V ′ = V ′ − {m}
∀(m, n) ∈ E do

begin
if n ∈ V ′ then;

begin
Cluster(P) = Cluster(P) ∪ {n}
V ′ = V ′ − {n};

end
end

end
end

Algorithm 1: Generation of Clusters using Distance-k Cliques

begin
(S1:) Form IntialClusters; (Suppose at this stage there are

q bridge nodes, u1, u2, . . . , uq.)
for i = 1 to q ;

begin
CL(i) = {Cj |N(ui) ∈ Cj and j 6= C[ui]};
|CL(i)| =

∑
Cj∈CL(i) |Cj |;

(|Cj | gives the number of nodes in the cluster Cj)
end

while(true);
begin

If ∀i, 1 ≤ i ≤ q, CL(i) = ∅ then EXIT;
(S2:) Find um such that the |CL(m)| is the largest among
all CL(i), 1 ≤ i ≤ q;
Clist = CL(m) ∪ {C(um)};
Create a new cluster ComClus
and set ComClus = {v|v ∈ Ci and Ci ∈ Clist};
Find the clusters with the largest and second largest estimated
diameter in the Clist and call them LC1 and LC2;

102 J. Edachery, A. Sen, and F.J. Brandenburg

(S3:) EstDia(ComClus) = EstDia(LC1) + EstDia(LC2) + d,
where d = 1
if LC1 = C(um) or LC2 = C(um), otherwise d = 2;
if EstDia(ComClus) ≤ K then

begin
ClusSet = ClusSet ∪ {ComClus} − {Ci|Ci ∈ Clist};
∀v ∈ ComClus set C[v] = ComClus;

for i = 1 to q;
begin

∀Cx ∈ Clist if Cx ∈ CL(i)
then remove Cx from CL(i);
If at least one Cx is removed from CL(i) and
if EstDia(ComClus) < K
then CL(i) = CL(i) ∪ ComClus;

end
if EstDia(ComClus) = K then

∀i such that ui ∈ ComClus set CL(i) = ∅ ;
end

else
begin

if (LC1 6= C(um)then set RemClus = LC1
else set RemClus = LC2;

if LC1 = C(um) or LC2 = C(um)then
begin

∀ui ∈ ComClus
set CL(i) = CL(i) − RemClus;
∀ui ∈ RemClus
set CL(i) = CL(i) − ComClus;

end
else

CL(m) = CL(m) − RemClus;
end

end
end

Algorithm A2
This is essentially same as algorithm A1, except that the step marked S2 in

A1, should be replaced by the following step:

(S2:) Find um such that the |CL(m)| is the smallest among all CL(i), 1 ≤
i ≤ q;

This step allows smaller clusters to grow in parallel, as opposed to the algo-
rithm A1 where one cluster grows to its maximum size before another cluster
gets an opportunity for growth in size.

Graph Clustering Using Distance-k Cliques 103

Algorithm A3
This again is essentially same as algorithm A2, except that in step marked

S1, the procedure InitialCluster2 should be used for initial clustering instead of
the procedure InitialCluster1. In InitialCluster2, each node forms its own cluster
and that is taken as the starting point of the algorithm A3. It may be noted
that in this case every node v ∈ V is a bridge node if degree(v) > 0.

Algorithm InitialCluster2 (V, E), (V = {v1, . . . , vn})

begin
for i = 1 to n do

Cluster(i) = {vi};
end

Algorithm A4
This again is essentially same as algorithm A2, except that in step marked

S3, instead of estimated diameter of ComClus, the exact diameter of ComClus
is computed. This modification gives a higher quality solution at an increased
computational cost.

Algorithm A5
This again is essentially same as algorithm A3, except as in algorithm A4,

instead of estimated diameter of ComClus, the exact diameter of ComClus is
computed. Just like in A4, this modification gives a higher quality solution at
an increased computational cost.

2.2 Analysis of Algorithms

We analyze the algorithm A1. The procedure InitialCluster1 can be carried out
in O(n2) time where n is the number of nodes in the graph. The procedure
InitialCluster2 can be carried out in O(n) time. The first for-loop can be carried
out in O(n2) time. The while-loop continues till the cluster list associated with
each bridge node becomes empty. A bridge node may become a non-bridge node
during execution of the algorithm. However, a non-bridge node will never become
a bridge node. The number of bridge nodes can be at most n. Inside the while-
loop all steps upto and including step marked S3 can be carried out in O(n). The
If-statement following S3 is either true or false. If it is true, the statements inside
the begin-end block can be carried out in O(n∆) time where ∆ is the maximum
node degree of the graph. If it is false, the statements within the begin-end
block can be carried out in O(n). If the begin-end block associated with the true
part is executed once, it reduces the number of bridge nodes by at least one.
If the begin-end block associated with the false part is executed ∆ times, it is
guaranteed that the number of bridge nodes will reduce by at least one. Suppose
during a particular run, the true part is executed y times and the false part is
executed z times. As a result of y time execution of the true part, at least y
bridge nodes will cease to be bridge nodes. The remaining q − y bridge nodes
must become non-bridge nodes before the while-loop exits. This might require at

104 J. Edachery, A. Sen, and F.J. Brandenburg

Table 1. Performance comparison between five algorithms.

Number of clusters generated by different algorithms
Graph No. of Nodes Diameter k A1 A2 A3 A4 A5

4 14 14 13 11 5
Bell Lab 1487 48 9 5 14 11 7 5 3

6 13 10 8 4 2
5 14 12 15 9 7

Bell Lab 1572 65 13 7 12 9 12 7 2
9 14 7 9 4 2

most (q−y)∆ executions of the false part of the If-statement. Therefore the total
computation in the while-loop will be O(n) + O(yn∆ + n(q − y)∆) = O(nq∆).
Since the nuber of bridge nodes q and the maximum node degree ∆ can be as
high as O(n), the worst case complexity of the algorithm will be O(n3).

3 Experimental Results and Discussions

We tested our implementation of the distance-k clique based clustering algorithm
with a wide range of graphs - small, medium and large. We extensively used
the Bell Laboratory graph library for testing purpose. This library has a large
collection of graphs of wide range of variation in terms of number of nodes,
edges and node degrees. The results of the output of our clustering algorithm
on Bell Lab graphs 1487 and 1572 with different values of k is presented in
table 1. Visualization of the clustering algorithm results is presented in figures
1 through 6. One way to measure the quality of our heuristic algorithm is to
find the proximity of the solution produced by it to the optimal solution. We
use the following strategy to compute the quality of our solutions: Suppose that
the number of clusters generated by heuristic algorithm Ai, 1 ≤ i ≤ 5 for a
given graph G = (V, E)) and a specified value of k, is NCi,k. Suppose for the
same graph and same specified k, the optimal number of clusters is OCk. If
we know OCk, we can easily find its proximity to NCi,k. However, OCk in
general is not known. However, we can make the following observation about
OCk: OCk ≥ diameter(G)/k. We evaluated the performance of our heuristic
algorithms using this criteria. The performance of A5 is much better than the
performance of A1 at the expense of higher computational time. The performance
of the algorithms A1, A2 and A3 is poor in comparison with A4 and A5 because
the error in estimated diameter keeps accumulating, resulting in a larger number
of clusters. It may be noted that as the objective of the distance-k clustering
algorithm is to cluster the nodes that have strong relationship between them,
unlike many other clustering algorithms, it does not necessarily minimize the
number of intercluster edges.

Graph Clustering Using Distance-k Cliques 105

Fig. 1. Bell Lab graph 1572 before
clustering

Fig. 2. Bell Lab graph 1572 A5k7

Fig. 3. Bell Lab graph 1572 A4k7 Fig. 4. Bell Lab graph 1487 before
clustering

Fig. 5. Bell Lab graph 1487 A5k6 Fig. 6. Bell Lab graph 1487 A4k6

106 J. Edachery, A. Sen, and F.J. Brandenburg

References

[1] F. J. Brandenburg, “Graph Clustering: Circles of Cliques,” Proceedings of Graph
Drawing Symposium, GD’97 Rome, September 1997. Lecture Notes in Computer
Science, Berlin: Springer-Verlag, 1353, pp. 158-168, 1998.

[2] J.S. Deogun, D. Kratsch and G. Steiner, “An approximation algorithm for cluste-
ring graphs with dominating diametral paths,” Information Processing Letters,
61, pp. 121-127, 1997.

[3] P. Eades, “Multilevel Visualization of Clustered Graphs,” Proceedings of Graph
Drawing’96, Berkeley, California, September,1996.

[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman Publishers, San Francisco, 1978.

[5] D.W. Matula and L.L. Beck, “Smallest-last ordering and clustering and graph
coloring algorithms,” Journal of the Association of Computing Machinery 30 pp.
417-427, 1983.

[6] T. Roxborough and A. Sen, “Graph clustering using multiway ratio cut,” Pro-
ceedings of Graph Drawing Symposium, GD’97 Rome, September 1997. Lecture
Notes in Computer Science, Berlin: Springer-Verlag, 1353, pp. 291-296, 1998.

	Introduction
	Clustering Using Distance-k Cliques
	Description of the Algorithms
	Analysis of Algorithms

	Experimental Results and Discussions

