A Program Refinement Framework Supporting
Reasoning about Knowledge and Time
(Preliminary Report)

Kai Engelhardt!, Ron van der Meyden'®, and Yoram Moses?

1 School of Computer Science and Engineering
The University of New South Wales, Sydney 2052, Australia
[kaie|meyden] @cse.unsw.edu.au
2 Department of Electrical Engineering
Technion, Haifa, Israel
moses@ee.technion.ac.il

Abstract. This paper develops a highly expressive semantic framework
for program refinement that supports both temporal reasoning and rea-
soning about the knowledge of a single agent. The framework generalizes
a previously developed temporal refinement framework by amalgamat-
ing it with a logic of quantified local propositions, a generalization of
the logic of knowledge. The combined framework provides a formal set-
ting for development of knowledge-based programs, and addresses two
problems of existing theories of such programs: lack of compositionality
and the fact that such programs often have only implementations of high
computational complexity. Use of the framework is illustrated by a con-
trol theoretic example concerning a robot operating with an imprecise
position sensor.

1 Introduction

The knowledge-based approach to the design and analysis of distributed sys-
tems, introduced by Halpern and Moses [6] involves the use of modal logics of
knowledge. One of the key contributions of this approach is the notion of knowl-
edge-based programs [5l[4], which generalize standard programs by allowing the
tests in conditional constructs to be formulas in the logic of knowledge. Such
programs contain statements of the form “if you know that X then do A else
B”. This provides a high level abstraction of distributed programs that allows
for perspicuous descriptions of how an agent’s actions are related to its state of
information (which, in a distributed system, is typically incomplete) about its
environment.

In its current state of development, the knowledge-based approach has a
number of limitations, among them that:

1. The formal methodology for developing and reasoning about knowledge-
based programs is at present only weakly developed.

J. Tiuryn (Ed.): FOSSACS 2000, LNCS 1784, pp. 114129, 2000.
© Springer-Verlag Berlin Heidelberg 2000

A Program Refinement Framework 115

2. The existing semantics for knowledge-based programs is based on a par-
ticular interpretation of knowledge that requires a complete description of
the implementing program. This prevents the compositional development of
program fragments.

3. Knowledge-based programs often have only implementations of unacceptably
high computational complexity.

This paper is a step in the direction of the formulation of the knowledge-based
approach that addresses these limitations.

One of the starting points for our work is the observation that knowledge-
based programs are in one respect more like specifications than like standard
programs. They cannot be directly executed — instead, their meaning is defined
by a relation of “implementation” between knowledge based programs and stan-
dard programs: a given knowledge-based program may have no, one, or many
concrete programs as its implementations. As a specification formalism, however,
knowledge-based programs are unbalanced, abstracting only the tests performed
by agents, but providing no abstraction mechanism for their actions [I1].

Action abstraction is handled much better in refinement calculi [TJQII0], also
known as “broad spectrum” languages. Such calculi view programs and speci-
fications as having the same semantic type, and support a formal methodology
for the development of programs that are “correct by design”, where one be-
gins with a specification and transforms it to an implementation by means of a
sequence of correctness preserving refinement steps. The focus in this area has
been on sequential programs and atemporal assertions but recently some ap-
proaches to refinement admitting the expressive power of temporal logics have
been developed [14]7].

A first step in the direction of a refinement calculus suited to the knowledge-
based development of programs was taken in van der Meyden and Moses [T7/16],
where it is shown how to develop a refinement approach capturing certain types
of temporal reasoning that will be critical in knowledge-based program develop-
ment. We further develop these ideas in the present paper, by showing how they
may be extended to accommodate knowledge-based reasoning. Significantly, the
framework we define admits compositional program development.

In developing the extension, we also seek to address the final limitation of
knowledge-based programs alluded to above. To implement the statement “if
you know that X then do A else B”, a concrete program must do A exactly
when it is in a local state (captured by the values of the variables and storage it
maintains locally) that carries the information that X is true. The difficulty with
this is that computing whether a local state bears the information that X may
have very high computational complexity [I2ITH/18]. As argued by Sanders [13]
and us [3], in practice, it may often be sufficient to use conditions on the agent’s
state of information that are sound, but not complete, tests of its knowledge.
Such tests may be expressed in the Logic of Local Propositions (LLP) [3].

The present paper integrates the temporal refinement framework of van der
Meyden and Moses [16] with the logic of local propositions. Although our ulti-
mate aim is a framework for the development of distributed systems, we deal

116 Kai Engelhardt, Ron van der Meyden, and Yoram Moses

in this paper with a single agent operating synchronously with its environment:
asynchrony and multiple agents introduce complexities that we plan to address
in the future. The main novelty is the introduction of a programming/speci-
fication construct that resembles a quantification over local propositions. This
construct makes it possible to write specifications stating that the agent condi-
tions its behaviour on a local test for some property of interest, without stating
explicitly what test is used. The introduction of this construct necessitates an
adaptation of the semantics of the temporal refinement of [16].

The paper is structured as follows. Section [2 defines an assertion language
that adapts the LLP semantics to the richer temporal setting required for rea-
soning about programs. Section Bl defines the syntax and semantics of our broad
spectrum programming and specification language that incorporates the asser-
tion language from Sect. P} Section[4] defines the semantic refinement relation we
use for this class of programs and develops a number of refinement rules valid
for this relation. Section [l illustrates the use of the framework by presenting a
formal development of a control theoretic example previously treated informally
in the literature on knowledge-based programs.

2 A Semantics for Reasoning about Knowledge and Time

We begin by presenting a semantic framework for a single agent and its environ-
ment, inspired by [4], to which we refer the reader for motivation.

Let L. be a set of possible states for the environment and let L; be a set of
possible local states for agent 1. We take § = L. x L1 to be the set of global states.
Let A; and A, be nonvoid sets of actions for agent 1 and for the environment,
respectively. (These sets usually contain a special null action A.) A joint action
is a pair (ae,a1) € A = Ae X A1. A run over G and A is a pair r = (h,«) of
infinite sequences: a state history h : N — G, and an action history o : N — A.
Intuitively, for ¢ € N, h(c) is the global state of the system at time ¢ and a(c) is
the joint action occurring at time ¢. (We say more about the transition relation
connecting states and actions later.) A system over G and A is a set of runs over
G and A, intuitively representing all possible histories. A pair (r,c¢) consisting
of a run r (in system S) and a time ¢ € N is called a point (in S). We write
Points(.S) for the set of points of S. Let Prop be a set of propositional variables.
An interpretation of a system S is a mapping 7 : Prop — 2F°ts(5) agsociating
a set of points with each propositional variable. Intuitively, proposition p € Prop
is true exactly at the points contained in w(p). An interpreted system (over G
and A) is a pair J = (S,7) where S is a system over § and A and 7 is an
interpretation of S.

The structure in the above definitions supports the following notions used to
define the agent’s knowledge. We say two points (r, ¢), (7', ¢') in a system S are 1-
indistinguishable, denoted (r,c) ~1 (r', '), if the local components of the global
states at these points are equal, i.e., if there exists a local state s; € L; and
states of the environment s, s/, such that h(c) = (s, s1) and h'(¢') = (s, s1),
where r = (h,a) and 7’ = (h/,a’). A set P of points of S is 1-local if it is closed

A Program Refinement Framework 117

under ~1, in other words, when for all points (r,¢), (7',) of S, if (r,¢) € P and
(r,c) ~1 (1',¢) then (r,¢") € P. Intuitively, 1-local 5etb of points correspond to
properties that the agent is able to determine entirely on the basis of its local
state. If m and 7’ are interpretations and p € Prop, then 7’ is said to be a 1-local
p-variant of 7, denoted 7 :11) 7', if # and 7’ differ at most in the value of p and
7' (p) is 1-local. If 3 = (S, 7) and J = (S’,7’) are two interpreted systems over
G and A, then J’ is said to be 1-local p-variant of J, denoted J 211, 3, ifS=9
and 7 N;, 7.

The logical language £ we use in this paper resembles a restricted monadic
second order logic with two additions: (a) an S5-modality for necessity and (b)

operators from the linear time temporal logic LTL [8]. Its syntax is given by:

Lo¢u=p| ¢ | ¢Ng | Necp | Vip(¢) | O¢ | U | O9 | 5S¢

where p € Prop. Intuitively, Nec¢ says that ¢ is true at all points in the in-
terpreted system, and its dual Poss¢ = — Nec —¢ states that ¢ is true at some
point. The formula Vip (¢) says that ¢ is true for all assignments of a 1-local
proposition (set of points) to the propositional variable p. We write 31p (¢) for its
dual —V1p (—¢). The remaining connectives have their standard interpretations
from linear time temporal logic: O (“next”), U (“until”), © (“previously”) and
S (“since”). We employ parenthesis to indicate aggregation and use standard
abbreviations such as true, false, V, and definable future time operators like]
(“henceforth”) and & (“eventually”), as well as their past time counterparts [
(“until now”) and & (“once”).

Formulae of L are interpreted at a point (r,c) of an interpreted system J =
(S,) by means of the satisfaction relation |=, defined inductively by:

r,c) = p iff (r,c) € m(p);

) E o it 3, (r,c) = ¢

) ':QS/\IL/) inD’,(r,c) ':¢and 3,(7‘,0) ':11)7

r,c) = Neco ift 3, (', ') = ¢, for all (r', ') € Points(S);
)
)
)

3
)

r,c) |EVip (@) iff 3, (r,¢) = ¢ for all 3’ such that J ~% ¥';

p

NN N S S
3
)

FO¢ it T, (r,c+1) = ¢

— J,(r,¢) = ¢U% iff there exists a d > csuch that J, (r,d) =y and J, (r,e) = ¢
for all e with ¢ < e < d;

-3, (rc)=E0¢iff c>0and J,(r,c—1) = ¢;

— J,(r,¢) E ¢Sv iff there exists a d < csuch that 3, (r,d) = ¢ and J, (r,e) E ¢
for all e with d < e <ec.

3
)

|
L

Given these constructs, it is possible to express many operators from the
literature on reasoning about knowledge. For example, consider the standard
knowledge operator K7, defined by J, (r,¢) E K16 if J, (',) |E ¢ for all points
(r', ") of I such that (r,c) ~1 (r',¢’). This is expressible as 31p (p A Nec(p — ¢)).
We refer to [3] for further examples and discussion.

118 Kai Engelhardt, Ron van der Meyden, and Yoram Moses

3 Sequential Programs with Quantification over Local
Propositions

In this section we define our wide spectrum programming language, and discuss
its semantics. We also define a refinement relation on programs.

3.1 Syntax

The programming language describes the structure of segments of runs. Let C'V
be a set of constraint variables and PV a set of program wvariables. Define the
syntactic category Prg of programs by

Prg>Pu=e|Z|a| PP |P+P|P°|3p(P) | o, 0" | 8] | {6}

where Z € PV, a € Ay, p € Prop, ¢, € L, X € CV, and C C CV. The intu-
itive meaning of these constructs is as follows. The symbol € denotes the empty
program, which takes no time to execute, and has no effects. Program variables
Z are placeholders used to allow substitution of programs. Note that a program
may refer directly to actions a of the agent, but the actions of the environment
are left implicit. The operation * represents sequential composition. The symbol
+ denotes nondeterministic choice, while P“ denotes zero or more (possibly in-
finitely many) repetitions of P. The construct 3;p (P) can also be understood
as a kind of nondeterministic choice: it states that P runs with respect to some
assignment of a 1-local proposition to the propositional variable p. The last three
constructs are like certain constructs found in refinement calculi. Intuitively, the
specification [¢, 1]~ states that some program runs in this location that has the
property that, if started at a point satisfying ¢, eventually terminates at a point
satisfying w The coercion [¢]~ is a program that takes no time to execute, but
expresses a constraint on the surrounding program context: this must guarantee
that ¢ holds at this location. The constraint variable X in specifications and
coercions acts as a label that allows references by other pieces of program text.
Specifically, this is done in the assertions {¢}c, which act like program annota-
tions: such a statement takes no time to execute, and, intuitively, asserts that ¢
can be proved to hold at this program location, with the proof depending only on
concrete program fragments and on specification and coercion statements whose
labels are in C. We may omit the constraint variables when it is not necessary
to make such references.

In programs “«” binds tighter than “+”. We employ parentheses to indicate
aggregation wherever necessary and tend to omit * near coercions and asser-
tions. Moreover, we use the following abbreviations: if ¥ ¢ then P else Q fi =
[¢]* P+[-¢]* Q and while™X ¢ do P od = ([¢]* P)* [~¢]". Our programming

! In refinement calculi, such statements are typically associated with frame variables,
representing the variables allowed to change during the execution — we could add
these, but omit them for brevity.

A Program Refinement Framework 119

language can express some programs closely related to the knowledge-based pro-
grams of [4]. These are program such as:

case of
if Kl(b do aq
if —\K1¢ do as
end case

A program closely related to this is ([Ki¢lar + [-Kiy]as +
[-(K1¢V K1) A)¥. The precise relationship is subtle and deferred to
the full version of this paper.

3.2 Semantics

Our semantics will treat programs like specifications of certain sets of run seg-
ments in a system, intuitively, the sets of run segments that can be viewed as
having been generated by executing the program. We note that the semantics
presented in this section treats assertions {¢}¢ as equivalent to the null program
€ — the role of assertions in the framework will be explained later.

We first define execution trees, which represent unfoldings of the nondeter-
minism in a program. It is convenient to represent these trees as follows. A binary
tree domain is a prefix-closed subset of the set {0,1}*U{0,1}*. So, each nonvoid
tree domain contains the empty sequence \. Let A be a set. An A-labelled binary
tree is a function 7" from a binary tree domain D to A. The nodes of T are the
elements of D. The node A is called the root of T. If n € D we call T'(n) the
label at node n. If n € D then the children of n in T are the nodes of T (if any)
of the form n - i where ¢ € {0,1}. Finite maxima in the prefix order on D are
called leaves of T.

An execution tree is a Prg-labelled binary tree, subject to the following con-
straints on the nodes n:

1. If n is labelled by €, a program variable Z € PV, a basic action a, a specifi-
cation [¢,9]X, a coercion [¢]X, or an assertion {¢}., then n is a leaf.
. If n is labelled by 31p (P) then n has exactly one child n - 0, labelled by P.
3. If n is labelled by P * @ or P+ @ then n has exactly two children n-0, n-1,
labelled by P and @ respectively.
4. If n is labelled by P“ then n has exactly two children, n -0, n - 1, labelled
by € and P * (P¥), respectively.

[\

With each program P we associate a particular execution tree, Tp, namely the
unique execution tree labelled with P at the root .

We now define the semantic constructs specified by programs. An interval in
a system S is a triple r[c, d] consisting of a run r of S and two elements ¢ and d
of N = NU {oo} such that ¢ < d. We say that the interval is finite if d < oo.
A set I of intervals is run-unique if r[c,d],r[¢',d'] € I implies ¢ = ¢ and d = d'.
An interpreted interval set over S (or iis for short) is a pair (m,) consisting of
an interpretation 7 of S and a run-unique set I of intervals over S.

120 Kai Engelhardt, Ron van der Meyden, and Yoram Moses

We will view programs as specifying, or executing over, interpreted interval
sets, by means of certain mappings from execution trees to interpreted inter-
val sets. To facilitate the definition in the case of sequential composition, we
introduce a shorthand for the two sets obtained by splitting each interval in a
given set [of intervals of S in two. Say that f: I — Ny divides I whenever
¢ < f(rle,d]) < d holds for all r[e,d] € I. Given some f dividing I, we write
f«(I) for the set of intervals r[f(r[c, d]), d] such that r[c,d] € I. Analogously, we
write fy (I) for { rle, f(r[e,d])] | rle,d] €I }.

Let S be a system, let (w,I) be an iis w.r.t. S, and let P be a program.
A function # mapping each node n of Tp to an iis (mwg(n), Is(n)), respectively,
is an embedding of Tp in (m,I) w.r.t. S whenever the following conditions are
satisfied:

1. 6(A) = (m, D).

2. If n is labelled € or {¢}¢, then ¢ = d for all r[c,d] € Iy(n).

3. If n is labelled a then, for all (h, &)[c,d] € Is(n), if ¢ < oo then both d = 1+¢
and a = a1, where a(c) = (ae,a1).

4. If n is labelled [¢,)], then, for all r[e,d] € Ig(n), whenever ¢ < oo and
(S,mo(n)), (r,¢) = ¢, then both d < oo and (S, mp(n)), (r,d) = .

5. If n is labelled [¢], then ¢ < oo implies that ¢ = d and (S, mg(n)), (r,¢) E ¢,
for all rlc, d] € Ig(n).

6. If n is labelled 3;p (Q) then mp(n) ~, mg(n - 0) and Iy(n - 0) = Ip(n).

7. If n is labelled Q1 + Q2, then my(n - 0) = mp(n - 1) = mp(n) and Iy(n) is the
disjoint union of Iy(n - 0) and Is(n - 1).

8. If n is labelled Q1 * Q2, then mg(n - 0) = mp(n - 1) = mp(n) and there is an f
dividing Iy(n) such that Ig(n-0) = fp(Io(n)) and Iy(n - 1) = fq(Is(n)).

9. If n is labelled Q¥ then mp(n-0) = mp(n-1) = mp(n) and Ip(n) is the disjoint
union of Ip(n - 0) and Ip(n - 1) (as in case[d) and, for all r[c,d] € Iy(n):
d=]{d | r[d,d] € Is(n-m) for some leaf n-m of Tp below n }.

We write S, (7, I) kg P whenever 6 is an embedding of Tp in (7, I) w.r.t. S. Say
that P occurs over (w,I) w.r.t. S if there exists a 6 such that S, (w,I) Ikg P.

Clauses [1] to Blformalize the intuitive understanding given above for each of
the program constructs. Concerning clause [9] of this definition, we remark that,
by run-uniqueness and the other clauses, if n-mg,n-m; ... are the leaves n-m
below n for which Iy(n - m) contains an interval on 7, in left to right order, and
these intervals are r[cg, dg], r[c1,d1], . . ., respectively, then we have d; = ¢; 41 for
each index ¢ in the sequence. (We may have ¢; = d;.) Intuitively, if d were not
the least upper bound d’ of the d;, then this sequence of intervals would amount
to an execution of Q¥ over r[c, d’] rather than over rlc,d]. (See [16] for further
motivation.)

3.3 Refinement

The semantics just presented can be shown to be a generalization of the semantics
of [I6] for a similar language without the local propositional quantifier. That

A Program Refinement Framework 121

semantics, however, dealt with single intervals where we have used a set of
intervals. The motivation for the change is that certain undesirable refinement
rules involving the local propositional quantifier would be valid under the earlier
semantic approach. We now present two definitions of refinement and an example
that motivates the richer semantics.

Intuitively, a program P refines @ if, whenever P executes, so does Q. A
refinement relation of this type, when transitive and preserved under program
composition, allows us to start with a high level specification and derive a con-
crete implementation through a sequence of refinement steps.

One refinement relation definable using our semantics as is follows: P re-
fines @, denoted P C @ when for all systems S, and interpreted interval sets
(m,I) over S, if S, (m,I) Ik P then S, (m,I) IF Q. For the semantics using single
intervals, the corresponding relation would be defined by P C* @ when for all
systems S, interpretations 7 and intervals r[e, d] of S, if S, (w, {r[c,d]}) IF P then
S, (m,{rlc,d]}) IF Q. Clearly, if P C @Q then P C* Q. As the following example
demonstrates, the converse is false.

Example 1. Let ¢ € L be any formula and consider the following two programs.
P =if ¢ thena else a xa fi Q = J1p (if p then a else a x a fi)

We shall first show that P C* @ and then argue that this is not desirable.
Suppose S, (m, {r[c,d]}) IF P. Recall that an if statement abbreviates a nonde-
terministic choice. Thus, there are two cases to be considered:

Case 1: S, (m, {r[c,d]}) Ik [¢]a. Define the 1-local p-variant 7’ of m by
7' (p) = Points(S), that is, p is everywhere true under #'. It follows that
S, (7", {rlc,d]}) IF [p] a, and thus, S, (7', {r[c,d]}) IF if p then a else a * a fi.
By definition, S, (7, {r[c,d]}) IF Q.

Case 2: S, (m,{r[c,d]}) IF [-¢] a * a. This is handled analogously by defining
™' (p) = 0.

To see that it is not the case that P C @, take ¢ to be a propositional vari-
able ¢. It is straightforward to construct a system S, finite intervals i = r[e, d]
and ¢/ = 7/[¢/,d'], and interpretation 7 such that S, (m, {i}) IF [¢]e and
S, (m,{i'}) IF [~q]a * a. Hence S, (m,{i,i'}) I+ if ¢ then a else a x a fi),
but (r,c¢) and (1, ¢') are 1-indistinguishable. If we were to have S, (m, {i,¢'}) IF
J1p (if p then a else a * a fi), then we would have a 1-local p-variant 7’ of 7 such
that S, (7', {i,4'}) IF if p then a else a*a fi. But by assumption (r,c) € 7'(p) iff
(r',) € ©'(p), so we have either S, (7', {i,i'}) Ik a or S, (7', {4,4'}) IF a * a. But
neither of these is possible, since one or the other interval has the wrong length.

Our intuition in writing @ is that it specifies a program that chooses to do
either a or a * a on the basis of some locally computable test p. The refinement
P C* @ is contrary to this intuition: it states that) may be implemented
by using in place of p any test, even one not locally computable. Intuitively,
this result is obtained by using a different 1-local test in different executions of
the program. Our semantics has been designed so as to avoid this: it ensures

122 Kai Engelhardt, Ron van der Meyden, and Yoram Moses

that a uniform test p is used in every execution of the program. Thereby, the
undesirable refinement is blocked.

We remark that a slight variant of the example is a valid, and desired re-
finement: [J1p (Nec(p = ¢))] P C Q. Here, the coercion states that ¢ is in fact
equivalent to a 1-local proposition. We will use this rule below. O

4 Validity and Valid Refinement

We now briefly discuss the role of assertions {¢}. in the framework and define
the associated semantic notions. The reader is referred to [16] for a more detailed
explanation of these ideas in a simpler setting.

Intuitively, an assertion {¢} is like an annotation at a program location
stating that ¢ is guaranteed to hold whenever the program execution reaches
this location. Moreover, such an assertion states that this fact “depends” only on
constraints in the program (specifications and coercions) labelled with constraint
variables in the set C, as well as on concrete program fragments. (We do not
include labels for these because they cannot be “refined away”.) The reason we
include the justification C' for the assertion is that it proves to be necessary to
track such information in order to be able to formulate a number of desirable
refinement rules. These rules refine a program fragment in ways that depend
upon the larger program context within which the fragment occurs.

One typical example of this is a rule concerning the elimination of coercions.
Suppose a coercion [¢] occurs at a program location where ¢ is guaranteed
to hold. Intuitively, we would like to say that the coercion can be eliminated
(replaced by €) in such circumstances. However, the attempt to formulate this
by the refinement rule € < {¢} [¢] is not quite correct, for the reason the assertion
holds could be the very coercion we seek to eliminate. (It may seem a little odd
at first to say that the justification for the assertion is some part of the program
text that follows, but consider the case of ¢ = b, See [16] for an example that
makes essential use of assertions justified by later pieces of program text.) The
use of justifications enables us to formulate the rule as € < {¢} (6], provided
X isnot in C| i.e., provided the assertion does not rely upon the coercion. This
blocks the circular reasoning.

The semantics of assertions is formalized as follows. In order to capture con-
straint dependencies, we first define for each program P and constraint set
C C CV a program relax(P,C) that is like P, except that only constraints
whose labels are in C' are enforced: all other constraints are relaxed. Formally,
we obtain relax(P,C) from P by replacing each occurrence of a coercion [¢]
where X ¢ C by e, and also replacing each occurrence of a specification [¢, 1]
where X ¢ C by [false, true]X in PC.

We may now define a program P to be wvalid with respect to a set of in-
terpreted systems 8 when for all assertions {¢}, in P, all interpreted systems
(S,m) € 8 and all intervals sets I over S, all embeddings 6 of Tciax(p,c) into
S, (I,7) have the property that for all nodes n of Tyejax(p,c) labelled with {¢} .,
we have S,0(n) IF [¢]. Intuitively, the embedding represents an execution of P

A Program Refinement Framework 123

in which only constraints in C' are enforced, and we check that the associated
assertions hold at the appropriate points in the execution. Note that when n is
labelled by an assertion, Ip(n) must be a set of intervals of length 0. Moreover,
the semantics of S, (I,m) I [¢] checks ¢ only at finite points in this set. Thus,
validity can be understood as a kind of generalized partial correctness. We de-
fine validity with respect to a set of interpreted systems 8 to allow assumptions
concerning the environment to be modelled: e.g., § might be the set of all inter-
preted systems in which actions have specific intended interpretations. We give
an example of this in the next section.

Clearly, we want to avoid programs that are not valid (such as [p]* {-p} (x})-
Thus, we would now like a notion of refinement that preserves validity, so that we
derive only valid programs from valid programs by refinement. The refinement
relation C defined above does not have this property. However, we may use it to
define a notion that does. In order to do so, we first need to define a technical
notion. A justification transformation is a mapping n : 2¢V — 2¢V that is
increasing, i.e., satisfies C' C n(C) for all C C CV. The result of applying a
justification transformation n to a program P is the program P obtained by
replacing each instance of an assertion {¢} - in P by the assertion {¢},). When
R(Z) is a program containing a program variable Z and P is a program, we write
Rn(P) for the result of first applying n to R(Z) and then substituting P for Z.
We need such transformations for refinements such as replacing {¢}c[¢]* by €
when X ¢ C within some large program context. Intuitively, when we do this,
any assertion in the larger context that depended on the coercion labelled X is
still valid, but its justification should now include C' in place of X.

The identity justification transformation is denoted by ¢. We will also repre-
sent justification transformations using expressions of the form X < D, where
X € CV and D C C'V. Such an expression denotes the justification transforma-
tion n such that n(C) = CU D if X € C and n(C) = C otherwise.

Let 8 be a set of interpreted systems, let 17 be a justification transformation
and let P and @ be programs. Say that P wvalidly refines Q@ in & under n, and
write P §§] Q, if for all programs R(Z) with Z a program variable, if R(Q)
is valid with respect to 8 then Rn(P) is valid with respect to 8, and for all
(S,m) € 8 and interval sets I over S, if S, (I, x) IF Rn(P) then S, (I,) IF R(Q).

We remark that other definitions of valid refinement are possible. While in-
tuitive, the definition above is very sensitive to the syntax of the programming
language. We will consider some closely related semantic alternatives elsewhere.

4.1 Valid Refinement Rules

We now present a number of rules concerning valid refinement that are sound
with respect to the semantics just presented, making no attempt at completeness.
We focus on rules concerning the existential quantifiers, and refer to [16] for
additional rules concerning the other constructs, which are also sound in the
framework of the present paper.

The following rules make it possible for refinement to broken down into a
sequence of steps that operate on small program fragments. (Only justification

124 Kai Engelhardt, Ron van der Meyden, and Yoram Moses

transformation operate globally, but this can also be managed locally by means
of appropriate data structures.)

8 8
P<8Q,Q<5 R P<5Q
P<S 'R Rn(P) <8 R(Q)

—nen

Reducing the amount of nondeterminism and introducing a coercion are sound
refinement steps.

P<PP+Q [6] <P e

Quantification over local propositional variables can be introduced, extracted
from a coercion, and lifted to contexts.

31p(P) <8 P if p not free in P i-1q
Jip ([0]) <8 Bip (9)] ext-1q
J1p (R(P)) <8 R(31p(P)) if p not free in R(Z) lift-1q

Let P, denote the program obtained from P by substituting formula ¢ for all
free occurrences of p in P, while taking the usual care of free variables in ¢ by
renaming clashing bound variables in P.

[31p (Nec(¢ = p))] Py <P J1p (P) inst-1p

4.2 Single-Stepping Programs and Loops

Reasoning about termination of a loop, say, while ¢ do P od becomes easier
when strict bounds on the running time of P are known. We present here a
simple example of this phenomenon that is useful for the example we present in
Sect. Bl More general rules can be formulated than the one we develop here.

Say that program P is single-stepping, if S, (m,I) I P and r[e,d] € I and
c < oo imply that d = 1 + ¢, for all S, w, and I. In a slightly broader syntax
with existential quantification over arbitrary propositions, not just local ones,
the fact that P is single-stepping could be expressed by:

P §§ Ip ([O first p] [true, first p])

where first ¢ is an abbreviation for ¢ A = © ¢, which holds exactly at the first
point in a run that makes ¢ true. This notion can be combined with the usual
pre/post-condition style of specifying P’s behaviour to specify that P is single-
stepping and terminates in points satisfying ¢ when started in points satisfying

¢:

P Sf} dp ([O firstp]X [true, firstp A (O¢ — w)]X)

A Program Refinement Framework 125

Denote the RHS of the above by ss[¢,1]*. So S, (7, I) I+ ss[¢,]X if for all
rle,d] € I, whenever ¢ < oo and (S,7),(r,c) = ¢, then both d = ¢+ 1 and
(S,7), (r,d) = 1. Observe that ss[¢,)] X takes a single step regardless of whether
¢ holds initially. Consequently, ss[@,1]¥ is indeed single-stepping. Adding the
single-stepping requirement yields a valid refinement: ss[¢, ¥]¥ <8 [¢,¢]¥. The
following rule for single-stepping loop bodies will be used in Section [5

[— Opl™ +
[— ¢]* 31p | whileX —p do ss[t) A —p,] odx | <5 [¢, ¢ i-ss-loop

[pAp—¢*

To apply this rule, one has to invent a (not necessarily local) loop invariant .
Finding a concrete local guard is postponed via use of the existential quantifi-
cation. Just as for ordinary sequential programs, the first and last coercion link
the invariant to the pre- and postcondition of the specification that is to be
implemented. The second coercion, [¢) — <>p]X ensures termination of the loop.

5 Example: Autonomous Robot

In this section we discuss an example that closely resembles Example 7.2.2 in [4]
which in turn has been inspired by the 1994 conference version of [2].

A robot travels along an endless corridor, which in this example is identified
with the natural numbers. The robot starts at 0 and has the goal of stopping
in the goal region {2,3,4}. To judge when to stop the robot has a sensor that
reads the current position. (See Fig. [[1) Unfortunately, this sensor is inaccurate;

& - . goal region

0 1 2 3 4 5 6

Fig. 1. Autonomous Robot

the readings may be wrong by at most 1. The only action the robot can actively
take is halting, the effect of which is instantaneous stopping. Unless this action
is taken, the robot may move by steps of length 1 to higher numbers. Unless it
has taken its halting action, it is beyond its control whether it moves in a step.
Our task is now to design a control program for the robot such that:

(safety) The robot only stops in the goal region.

(liveness) The robot is guaranteed to stop eventually.

A modest assumption about the environment is needed for the latter to be
achievable. We insist that it is not the case that the robot sits still forever
without moving forward or taking the halting action.

126 Kai Engelhardt, Ron van der Meyden, and Yoram Moses

To model these assumptions we introduce a system constraint reflecting the
following conditions. Strictly speaking, our specification language L only con-
tains variables that are interpreted as Boolean values but none for natural num-
bers. It is possible to present this example only using propositions by sacrificing
legibility. An extension of our framework to typed variables is straightforward
and omitted here for brevity. Let § be the set of interpreted systems satisfying
the following constraints.

1. Imitially, the robot’s position z is zero: init — x = 0, where init abbreviates
the formula =©true, which holds exactly in the initial points of runs.

2. Proposition A is initially false and it is becomes true once the robot has
halted. Halting is an irreversible action (h — Oh) and means that the robot
does not move anymore: h — x = Q.

3. Proposition m is true iff the robot moves in the current step. Moving means
that the robot’s position is increased by one, otherwise it is unchanged:
(m—2+4+1=0x)AN—-m—z=_Qxz.

4. If the robot has not halted it should move eventually: (=h) U (h V m).

5. The robot’s sensor reading is s (an integer) and off by at most one from x,
the actual position: x — 1 < s <x + 1.

6. Only the robot’s basic action halt immediately halts the robot.

The variables and propositions mentioned in the constraints are reserved in the
sense that quantification over them is is not allowed. Thus they essentially “be-
have” the same in each (S,7) € 8. In the full paper we introduce a syntactic
representation for such system constraints, give a formal semantics, and intro-
duce valid refinement rules that exploit these constraints. These rules fall into
two classes: assertion introduction rules and rules for specification implementa-
tion by basic actions. A typical assertion introduction rule for this particular §
is

{init -z =0A-h}, <5 ¢ (1)

allowing one to assert a property of initial states in interpreted systems contained
in 8. For the halting action we would have

halt <3 ss[true, h Az = Q] . (2)

For lack of space we have simplified and pruned the set-up to the above. We
refer to “use 8” instead of formal refinement rules at points of our derivation
that refer to the rules omitted.

In [4] a run-based specification of the system is given by a temporal logic
formula equivalent to [J(h — ¢) A $h, where g abbreviates being in the goal
region, i.e., 2 < x < 4. The two conjuncts respectively formalize the safety and
liveness property from above. The main problem in finding the robot’s protocol
is to derive a suitable local condition for halting.

We formally derive a protocol for the robot from as abstract as possible
a specification of the protocol. The point of departure of our derivation below

A Program Refinement Framework 127

merely states that the robot must eventually halt in the goal region when started
in an initial state.

[init, g A h]X

>8 (sequential composition [16])
[init, 9] * [g,9 A B]*

>8 (use § to establish halt <% [g,g A h], cf. @)
[init, g A —~h]~ * halt

>8 with loop invariant x < 4 to prevent exiting the goal region)
&

[init — x < 4]~ %
Tip ([a:§4—><>p]X while X —pdoss[z<4Ap,z<4]¥od[zr <4 Ap— g]X) *
halt

>8 (use 8 as in (I to assert init — x < 4, eliminate coercion)
dip ([m§4—><>p]X while X ~pdoss[z<4Ap,z<4]¥od[z <4Ap— g]X> *
halt

At this point we select the local test p. The need to satisfy coercion x < 4Ap — g
together with the fact that the sensor reading differs from the position = by at
most 1, leads naturally to the choice p = s > 2.

>} (instIp)

[Fp (Nec(p = (s > 2))]" * [z <4 — Os > 21 «

whileX s <2doss[zr <4As< 2,2 <4]X od*[x§4/\s>2—>g]x*halt
ZLS (eliminate two coercions using 8)

<4 — s> 2]X>|<WhileX s<2dosslzx <4As<2x §4]X od * halt
ZLS (useSfor/le,ss[x§4/\s§2,x§4]x)

[z <4— Os> 2 «whileX s < 2do A od * halt
>8 (introduce coercion and strengthen coercion [16])

[init]" * [Os > 2]~ « whileX s < 2 do A od x halt

The coercion <>s > 2 can be eliminated by reasoning about both the program
and 8. From the initial state predicate it follows that the loop begins in a state
satisfying —h. The only action executed in the loop is A, which in 8§ preserves
the value of h. On termination of the loop the guard must be false, i.e., s > 2.
In (the purely hypothetical) case the loop diverges the run satisfies []—h, which
together with point @, (=h) U (hVm), allows us to conclude that the robot moves
infinitely often. But this also implies that eventually s > 2.

128 Kai Engelhardt, Ron van der Meyden, and Yoram Moses

>8 (use 8 and the loop)
[init]" = {(s > 2}y * [O(s > 2)]* while™ s < 2 do A od * halt
Zi_){y} (eliminate coercion)
]

[init Y whileX s < 2do A od # halt
Finally, the rule

[¢] P <8 [, 9]*
P <3 [, y]¥

proves whileX s <2 do A od * halt §§(;}{Y} [init, g A h]X, yielding a concrete
implementation.

An alternative derivation from point || onwards indicates how the knowledge-
based approach could be modeled in our framework. Firstly we would choose just
true as loop invariant. Secondly, instead of guessing the appropriate local exit
condition s > 2 we would let the robot execute the loop until it knows that it
is in the goal region, i.e., instantiate p with K;g. The derivation then proceeds
as before till reaching the stage before eliminating the last coercion concerning
completeness of the test:

[init]" = [O(K1g)]” whileX ~K1g do A od * halt

To develop this to an implementation, that is, eliminate [Q(Klg)}y, requires
additional features to be introduced into the framework, so we will not pursue
this here.

6 Conclusion and Future Work

We have sketched the main features of the first compositional refinement cal-
culus incorporating an assertion language strong enough to express temporal
and epistemic notions. While, as we have noted, some further features are re-
quired to give a complete treatment of knowledge-based programs in the sense
of [], we already have enough expressiveness in the framework to be able to
view knowledge-based programs as special cases of our more general programs
using quantified local propositions. Moreover, the derivation we have presented
at length is very much in the spirit of the knowledge-based approach. (Indeed,
precisely the same implementation is derived in [2].) In contrast to tests for
knowledge, tests for local predicates satisfying some extra conditions are more
likely, in general, to admit efficient implementations. In future work, we plan
to extend the framework of this paper to multiple agents and asynchrony. Ulti-
mately, we hope to achieve a highly expressive, flexible and abstract framework
supporting the knowledge-based development of distributed systems.

A Program Refinement Framework 129

References

11.

12.

13.

14.

15.

16.

17.

18.

. R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.

Graduate Texts in Computer Science. Springer-Verlag, 1998.

R. I. Brafman, J.-C. Latombe, Y. Moses, and Y. Shoham. Applications of a logic of
knowledge to motion planning under uncertainty. Journal of the ACM, 44(5):633—
668, Sept. 1997.

K. Engelhardt, R. van der Meyden, and Y. Moses. Knowledge and the logic of
local propositions. In I. Gilboa, editor, Theoretical Aspects of Rationality and
Knowledge, Proceedings of the Seventh Conference (TARK 1998), pages 29-41.
Morgan Kaufmann, July 1998.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge.
MIT-Press, 1995.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Knowledge-based programs.
Distributed Computing, 10(4):199-225, 1997.

J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37(3):549-587, July 1990.

I. Hayes. Separating timing and calculation in real-time refinement. In J. Grundy,
M. Schwenke, and T. Vickers, editors, International Refinement Workshop and
Formal Methods Pacific 1998, Discrete Mathematics and Theoretical Computer
Science, pages 1-16. Springer-Verlag, 1998.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, 1992.

C. C. Morgan. Programming from Specifications. Prentice Hall, 1990.

. J. M. Morris. A theoretical basis for stepwise refinement and the programming

calculus. Science of Computer Programming, 9(3):287-306, Dec. 1987.

Y. Moses and O. Kislev. Knowledge-oriented programming. In Proceeding of the
12th Annual ACM Symposium on Principles of Distributed Computing (PODC
93), pages 261-270, New York, USA, Aug. 1993. ACM Press.

Y. Moses and M. R. Tuttle. Programming simultaneous actions using common
knowledge. Algorithmica, 3:121-169, 1988.

B. Sanders. A predicate transformer approach to knowledge and knowledge-based
protocols. In Proceeding of the 10th Annual ACM Symposium on Principles of
Distributed Computing (PODC 91), pages 217-230, 19-21 Aug. 1991.

M. Utting and C. Fidge. A real-time refinement calculus that changes only time.
In H. Jifeng, J. Cooke, and P. Wallis, editors, BCS-FACS Seventh Refinement
Workshop. Springer-Verlag, 1996.

R. van der Meyden. Knowledge based programs: On the complexity of perfect
recall in finite environments. In Y. Shoham, editor, Proceedings of the Sizth Con-
ference on Theoretical Aspects of Rationality and Knowledge, pages 31-50. Morgan
Kaufmann, Mar. 17-20 1996.

R. van der Meyden and Y. Moses. On refinement and temporal annotations.
http://www.cse.unsw.edu.au/ {}meyden/research/temprefine.ps.

R. van der Meyden and Y. Moses. Top-down considerations on distributed systems.
In Proceedings 12th International Symposium on Distributed Computing, DISC’98,
volume 1499 of LNCS, pages 16-19, Sept. 1998. Springer-Verlag.

M. Y. Vardi. Implementing knowledge-basd programs. In Y. Shoham, editor, Pro-
ceedings of the Sizth Conference on Theoretical Aspects of Rationality and Knowl-
edge, pages 15-30. Morgan Kaufmann, Mar. 17-20 1996.

http://www.cse.unsw.edu.au/~{ }meyden/research/temprefine.ps

	Introduction
	A Semantics for Reasoning about Knowledge and Time
	Sequential Programs with Quantification over Local Propositions
	Syntax
	Semantics
	Refinement

	Validity and Valid Refinement
	Valid Refinement Rules
	Single-Stepping Programs and Loops

	Example: Autonomous Robot
	Conclusion and Future Work

