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Abstract. The control state reachability problem is decidable for well-
structured infinite-state systems like unbounded Petri Nets, Vector Ad-
dition Systems, Lossy Petri Nets, and Broadcast Protocols. An abstract
algorithm that solves the problem is given in [ACJT96,FS99]. The al-
gorithm computes the closure of the predecessor operator w.r.t. a given
upward-closed set of target states. When applied to this class of verifica-
tion problems, traditional (infinite-state) symbolic model checkers suffer
from the state explosion problem even for very small examples. We pro-
vide BDD-like data structures to represent in a compact way collections
of upwards closed sets over numerical domains. This way, we turn the ab-
stract algorithm of [ACJ'I‘!)(J‘,I’SW] into a practical method. Preliminary
experimental results indicate the potential usefulness of our method.

1 Introduction

In the last years many efforts have been made to extend the theoretical re-
sults and practical methods developed for finite-state systems [BCB™90] to sys-
tems with infinite state space (see e.g. [ACJIT9I6,BM9I9,BWIS,EFNMI,FS9I]).
This class of systems comprises well-known examples like Vector Addition Sys-
tems [Min67], extensions of Petri Nets [Cia94,Ter04], Integral Relational Au-
tomata [Cer94], and more recent examples like Broadcast Protocols [[EN98] and
Lossy Petri Nets [BM99]. The control state reachability problem is decidable
for all previous systems [ACJT96,BMV99,EFNV99,Fin90,FS99]. The abstract algo-
rithm of [ACJT96,17599] computes the closure of the predecessor operator w.r.t.
a given upward-closed set of states. The algorithm can be used to check, e.g.,
invariant properties like mutual exclusion [DEP99] and coverability for markings
of Petri Nets [AJKPOg].

As in the finite-state case, the success of symbolic model checking for this
class of problems depends on the data structures used as implicit representation
of sets of states. Over numerical domains, upward-closed sets can be represented
via a sub-class of integer arithmetic constraints (see e.g. [ACJT96,DEP99]). In
this setting, the state-space generated by the algorithm of [A(NVT,JT!)G,I*‘SW] can
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be represented as a large disjunction of arithmetic constraints. In [DEP99], the
authors tested constraint-based model checking methods over integers (based
on a solver for Presburger arithmetic [BGP97]) and reals (based on polyhe-
dra [HITW97]) on verification problems that can be expressed via upward-closed
sets. Though the examples in [DEP99] would be considered of negligible size in
finite-state model checking (e.g. 6 transitions and 10 variables, cf. [BCB90]),
the methods taken into consideration suffer from the state explosion problem®.
Some of the experiments required (when terminating) execution times in the or-
der of days. Based on these observations, it seems natural to look for BDD-like
data structures to represent ‘compactly’ the generalization of boolean formulas
we are interested in.

In this paper we propose a new symbolic representation for upward-closed
sets based on the sharing trees of Zampuniéris and Le Charlier [Z1.94]. Sharing
trees are acyclic graphs used to represent large sets of tuples, e.g., of integer
numbers. The intuition behind the choice of this data structure is the following.
An upward-closed set U is determined by its finite set of generators (tuples of
integers). Thus, we can represent the set U via a sharing tree whose paths cor-
respond to its generators. This way, we managed to turn the abstract algorithm
of [A(wf.l'l‘!)('i,l*‘SE)E)} into a ‘practical method’ working on the examples studied
in [DEP99,Ter94] in acceptable time cost.

Technically, our contributions are as follows. We introduce a logic (the logic
U) where collections of upward-closed sets can be represented as disjunctive for-
mulas. U-formulas are used for verification problems of infinite-state systems as
boolean formulas are used for the finite-state case. We show that sharing trees
can be used to obtain compact representations of U-formulas (there exist a U-
formula that can be represented using a sharing tree whose size is logarithmic in
the size of the formula). We show how basic operations on U-formulas (e.g. con-
junction and disjunction) can be implemented symbolically on the corresponding
sharing trees. Sharing trees can be viewed as the BDDs for U/-formulas.

In practical cases (e.g., during the symbolic computation of the closure of the
predecessor operator), sharing trees may still become very large. For this reason,
we propose polynomial time algorithms that can be used to eliminate redundant
paths. As we prove in the paper, the problem of removing all redundancies
from a sharing tree representing a U-formula is co-NP hard (in the size of the
sharing tree). The same techniques can be used to give sufficient conditions
for the subsumption test of sharing trees representing U-formulas (i.e. for the
termination test of the algorithm of [AC.JT96]). The complete test is co-NP hard
in the size of the sharing trees.

As an application of our method, we have implemented the algorithm
of [ACJTO6] in the case of Vector Addition Systems. The implementation makes
use of the sharing tree library of [Zam97]. First experimental results indicate the
potential usefulness of our method.

! One would say ‘symbolic state explosion problem’, in fact, the above cited methods
operate on implicit representations of infinite sets of states.
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Plan of the Paper. In Section 2, we define the logic . In Section 3, we intro-
duce the symbolic representation of U-formulas via sharing trees. In Section 4,
we define simulation relations for nodes of sharing trees and discuss their ap-
plication in the operations for U-formulas. In Section 5, we define a symbolic
model checking procedure for Vector Addition Systems. In Section 6, we present
related work. In Section 7, we address some conclusions and future perspectives
for our work.

The extended version of the paper (containing all proofs) is available as
technical report MPI-1999-2-07 of Max-Planck-Institut fiir Informatik [DR99].

2 The Logic of Upward-Closed Sets

In this section we introduce the logic U that we use to define collections of
upward-closed sets. Let V = {z1,..., 2} be a finite set of variables. The set of
U-formulas is defined by the following grammar.

O = 2, >c|PAD|DPVD| Dlx; +c/xy,

where ¢ € ZU{—oco}. U-formulas are interpreted over Z*. We use ¢ to denote the
valuation (t1,...,tx), where t; € Z is the valuation for variable x;. We consider
the following order over tuples: ¢t < ¢/ iff t; < ¢} for i : 1,...,k (—o0 < ¢ for
any ¢ € Z). When restricted to positive values, < is a well-quasi ordering (see
e.g. [ACITI6,F°599]). Given a tuple ¢, we define ¢! as the upward-closed set
generated by t, namely, t' = { #/ | t < ' }. Satisfaction of a formula wrt. a
valuation ¢ is defined as follows:

—tkEx, >ciff t; > ¢

- t':¢)1/\(b2 lﬂ‘t':(bl andt|:¢>2;

t'zcbl\/q)g iﬂ't':q)l or t':(DQ;

t = Oz +c/z;] iff t' = ® and ¢’ is obtained from ¢ replacing ¢; with ¢, + c.

The denotation of a formula ®, namely [®], is defined as the set of all evaluations
t such that t = ®. A formula ®4 is subsumed by a formula ®o, written &1 = P,
if [®1] C [®2]. Two formulas are equivalent if their denotations coincide.

Note that, whenever we restrict the domain of interpretation of our formulas
to positive integers (say Z. ), the class of U-formulas denotes all upward-closed
sets, i.e., all sets I C Z’i such that if ¢ € I then ¢! C I.

All formulas can be reduced to disjunctive formulas, i.e., to formulas having
the following form?:

\/($1 R R WA P Ci,k)~
iel
Notation. In the rest of the paper we use ®,V, etc. to denote arbitrary U-
formulas, and ¢,, etc. to denote disjunctive formulas.
The set of generators of a disjunctive formula ¢ are defined as

2 Adding formulas of the form z; > —oo when necessary.
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gen(p) ={ (c1,...,ck) | (k1 >c1 A... Az > ¢x) is a disjunct in ¢ }.

Thus, disjunctive formulas are in one-to-one correspondence with their set of
generators modulo logical equivalences. The minimal elements (wrt. <) of gen(p)
are denoted by min(y). Note that [¢] = Usemin(y) . We say that a disjunctive
formula is in normal form whenever gen(¢) = min(p). As an example, consider
the formula ¢ = (z > 1Ay >2)V(z >3Ay > 1)V (z >2Ay > 0). Then,
gen(p) = {(1,2),(3,1),(2,0)}, and min(p) = {(1,2),(2,0)}, i.e., ¢ is not in
normal form.

2.1 Operations on Formulas in Disjunctive Form

Disjunction and Conjunction. Formulas in disjunctive form are closed under V.
Furthermore, given the disjunctive formulas ¢ and v, the disjunctive formula
for ¢ A1 is defined as follows: Ve on(o) t/egen(y) (@1 = maz(ti, 1) Ao A
x> max(ty,t},)), ie., gen(p AY) = {s | It € gen(p),t’ € gen(¢) and s; =
max(t;,t;)}. Note that the resulting formula may not be in normal form.

Substitution. The formula p[x; + ¢/x;] is equivalent to the formula ¢’ obtained
from ¢ by replacing every atom x; > d with x; > d — ¢ (—00 — ¢ = —o0 for any
c€Z),ie., gen(plr; +c/z]) ={t' |t; +c=1t;, t)=1t; j#1i, t € gen(p)}.

Satisfaction wrt. a tuple. Given a valuation ¢, we first note that ¢ = ¢ iff there
exists t' € gen(y) such that ¢’ < ¢. Thus, checking ¢ = ¢ can be done in time
linear in the size of ¢.

Subsumption. Let ¢ and ¢ be in disjunctive form. We can check ¢ = 9 in time
quadratic in the size of the formulas. In fact, ¢ = 1 holds iff for all £ € gen(y)
there exists ¢ € gen() such that ¢’ < t.

It is important to remark that the subsumption test is much harder for
arbitrary U-formulas, as stated in the following theorem.

Theorem 1. Given two arbitrary U-formulas ® and ¥, checking that ® = U is
co-NP complete in the size of the formulas.

Reduction in normal form. Given a disjunctive formula ¢ we can reduce it
in normal form by eliminating all ‘redundant’ generators from gen(yp), i.e., all
t € gen(p) such that there exists ' € gen(p), t # t’, t' < t. The reduction can
be done in time quadratic in the size of ¢.

All previous operations depend on the set of ‘generators’ of disjunctive formu-
las. In the following section we introduce a special data structure, called sharing
tree [ZL94], for handling large sets of generators. We show how to use this data
structure to represent and manipulate symbolically formulas of the logic U.
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3 Sharing Trees

In this paper we specialize the original definition of [Z1.94] as follows. We call
a k-sharing tree a rooted directed acyclic graph (N, V, root, end, val, succ) where
N = {root} UN;...U Ny U {end} is the finite set of nodes, (N; is the set of
nodes of layer ¢ and, by convention, Ny = {root} and Nii1 = {end}), val :
N ~ ZU{T, L} is a labeling function for the nodes, and succ : N ~ 2~ defines
the successors of a node. Furthermore,

val(n) = T if and only if n = root;

val(n) = L if and only if n = end;

succe(end)=0;

fori:0,...,k, forall n € N;, suce(n) C N1 and succ(n) # 0;

forall n € N, forall ny,ns € suce(n), if ny # ny then val(ny) # val(ng).

for i : 0,...,k, forall ny,ne € N; s.t. ny # na, if val(ni) = val(ng) then
suce(ny) # suce(ng).

RN

In other words, a k-sharing tree is an acyclic graph with root and terminal node
such that: all nodes of layer i have successors in the layer i + 1 (cond. 4); a node
cannot have two successors with the same label (cond. 5); finally, two nodes with
the same label in the same layer do not have the same set of successors (cond. 6).
We say that S is a pre-sharing tree if it respects conditions (1)-(4) but possibly
not (5) and (6).

Notation. In the rest of the paper we use root®, N°, succ® etc. to refer to the
root, set of nodes, successor relation etc. of the sharing-tree S.

A path of a k-sharing tree is a sequence of nodes (ni,...,n,,) such that n; 1 €
suce(n;) ©:1,...,m-1. Paths will represent tuples of size k of integer numbers.
Formally, we use elem(S) to denote the set of elements represented by the k-
sharing tree S:

elem(S) ={ (val(ny),...,val(ng)) | (T,n1,...,n, L) is a path of S }.

Condition 5 and 6 ensure the maximal sharing of prefixes and suffixes among
the paths (elements) of the sharing tree. We define the ‘size’ of a sharing tree as
the number of its nodes and edges. Note that the number of tuples in elem(S)
can be exponentially larger than the size of S. Given a node n of the i-th layer
of a k-sharing tree S, the sub-(sharing)tree S,, rooted at n is the k — i + 1-
sharing tree obtained as follows. We first isolate the graph rooted at n and
consisting of all nodes reachable from n (this subgraph has k — i + 1 layers and
a terminal node). Then, we add a layer with the single node root and we set
succ(root) = {n}. From the previous definition, elem(S,) consists of all tuples
(val(n), miy1,...,my) obtained from tuples (mq,...,val(n),m;t1,...,my) of
elem(S).

As shown in [Z1.94], given a set of tuples F' of size k, there exists a unique
(modulo isomorphisms of graphs) sharing tree such that elem(S) = F. In the
same paper the authors give algorithms for the basic set-operations on the set of
elements represented by the sharing trees. The table in Fig. 1 gives the specifi-
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Operation Complexity

elem(union(S, T)) = elem(S) U elem(T) O(max(edges(S),edges(T)) + Red)
elem(intersection(S, T)) = elem(S) N elem(T)| O(min(edges(S), edges(T)) + Red)
member(t,S) iff t € elem(S) O(size(t))

contained (S, T') iff elem(S) C elem(T) O(edges(S))

is_empty(S) iff elem(S) =10 O(const)

Fig. 1. Operations on the sharing trees S and T": edges(S)=No.edges of S

cation and the complexity in terms of the size of sharing trees, for the operation
we will consider in the rest of the paper: union, intersection, emptiness, contain-
ment, and equality test. In [Z1.94], the authors show that the operations in Fig. 1
can be safely applied to pre-sharing trees that satisfy condition 5 only. The cost
for intersection and union depends also on the cost Red in Fig. 1, of re-arranging
condition 6. This task can be achieved using the algorithm presented in [ZL94]
with cost quadratic in the number of nodes of the resulting sharing trees.

3.1 Symbolic Representation of U-Formulas

We first show how to represent U-formulas in disjunctive form, and then show
how to define disjunction, conjunction, subsumption and reduction in normal
form over the resulting data structure.

Let ¢ be a U-formula in disjunctive form over zi,...,z,. We define S, as
the k-sharing tree such that elem(S,) = gen(y). The denotation of a k-sharing
tree S is then defined as [S] = Uyc jem(s) t!. Clearly, [¢] = [S,]. We say that S,
is irredundant if ¢ is in normal form, i.e., there exists no t € elem(S,,) such that
t' g tfor t’ € elem(S,) distinct from ¢t. The following proposition explains the
advantages of using sharing trees for representing U-formulas.

Proposition 1. There exist a disjunctive formula in normal form ¢ such that
the corresponding sharing tree S, has size (no. of nodes and arcs) logarithmic
in the size of .

As an example, consider the U-formula @ = \/I (v; > 1 Aw; > 0)V (v; >
0 Aw; > 1). The corresponding disjunctive formulas ¢ (obtained by distributing
A) 18 Verast Aty (vi > ¢ Nw; > d;) for ¢,d € Z'. This formula has O(2™)
disjuncts. Also note that ¢ is in normal form. In contrast, the sharing tree S,
shown in Fig. 2 has size logarithmic in ¢ and polynomial in @ (each layer has
two nodes and at most four arcs).

3.2 Symbolic Operations for U-Formulas

In this section we show how operations on the disjunctive formulas ¢ and v
can be defined symbolically on their representations S, and Sy. We use the
term symbolically because the algorithms that we propose work directly on the
graphs S, and Sy and not by enumerating the elements that they represent.
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1 0
Un Wn
any(p1) ' any(p2) " any(ps) any(pn)

Fig. 2. Sharing tree for an exponential formula in DNF

Disjunction. Let S, and Sy be the k-sharing trees representing the formulas
(in disjunctive form) ¢ and . To build a sharing tree with elem(Sy,vy) =
gen(p)Ugen(y), we define S,y as union(Sy, Sy ), where union is the operation
in Fig. 1. In [Z1.94], it has been show that the size of the sharing-tree S,y is at
most quadratic in the size of S, and Sy, and can be computed in time quadratic
in the size of the input sharing-trees.

Congunction. Given S, and Sy, we build Syay as follows. We first define a pre-
sharing tree P with the following components: (i) N¥ = {root}UN;U...UN,U
{end} with N; = {(n,m) | n € Nis“",m € Nisw} (i.e. a node in P correspond
to a pair consisting of a node of S, and a node of S, (at the same layer);
(i) val®((n,m)) = maz(val®s(n),val®*(m)), and (iii) for all (n,m) € N; U
... UN,, we set succ”((n,m)) = {(n',m’) | n' € succ(n),m’ € succ>*(m)},
succl (root) = Ny, and for all (n,m) € Ny we set succt’ ((n,m)) = {end}. We
obtain the sharing-tree S,y from P by enforcing conditions (5-6) of Section 3
with the algorithms proposed in [Z1.94].

Substitution. Given the sharing tree S, we build a new sharing tree S [z, 4+c/a:)
such that elem(Sy(z,+c/z,]) = gen(elr; + c/x;]) as follows. Sy, 4c/z,) has the
same components as S, except from the valuation function: for every node n €
Nisw[wﬁc/z” val¥¢lzi+e/=il (n) = val®s(n) — ¢, and for every node n € Ng‘sw[wﬁc/wi],
with j # i, val%eite/=i)(n) = val® (n). This way, we obtain a well-formed
sharing tree. The complexity of the construction is linear in the number of nodes

of S,, i.e., potentially logarithmic in the number of its elements.

Satisfaction wrt. o tuple. Checking that ¢ = ¢ on the sharing tree S, has cost
linear in the size of ¢, i.e., following from Remark 1, possibly logarithmic in the
size of . In fact, the following theorem holds.

Theorem 2. Let S be a k-sharing tree and ¢ be a vector of length k. We can
check if ¢ is subsumed by S in time linear in the number of edges of S.

Subsumption. The subsumption problem is harder: the best possible algorithm
for subsumption is exponential in the size of the trees, as shown by the following
theorem.
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Theorem 3. The subsumption problem for two (irredundant) k-sharing trees
is co-NP complete in the size of the sharing trees.

Following from the previous result, the cost of checking subsumption may be
exponential in the number of edges of the input sharing trees. The result follows
from the fact that U-formulas in disjunctive form can be represented compactly
via sharing-tress.

Reduction in normal form. Let S, be the sharing tree associated to a disjunctive
formula ¢. We consider now the following problem: what is the complexity of
computing the sharing-tree for the normal form of ¢ (i.e. the sharing-tree S
such that elem(S) = min(y))? The following theorem shows that it is as hard
as checking subsumption.

Theorem 4. Given a k-sharing tree S, computing the irredundant k-sharing
tree S’ such that [S] = [S’] is co-NP hard.

Let S; and S2 be two k-sharing trees. Note that, if elem(S;) C elem(Sz2) then
[S1] C [S2]. Besides giving a sufficient condition for checking subsumption, the
previous fact suggests a possible strategy to reduce the cost of the ‘complete’
test. We first compute T' = minus(S1, S2) (polynomial in the size of S, .53) and
then test T' |= Sy on the (possibly) smaller sharing tree T'.

In the next section we give more interesting polynomial-time sufficient con-
ditions for the subsumption test, based on a notion of simulation between nodes
of k-sharing trees. We will see that this notion of simulation is also useful to
reduce sharing-trees and ”approximate” the reduction in normal form.

4 Simulations for Nodes of a k-Sharing Tree

In the previous section we have proved that the subsumption problem for two
U-formulas represented as sharing-trees and the computations of generators of
the normal form of a U-formula represented as a sharing-tree, are co-NP hard.
In this section we will introduce ‘approximations’ of the subsumption relation
that can be tested more efficiently. More precisely, given two nodes n and m
of a sharing tree S we are looking for a relation ™% such that: n™"m ‘implies’
[Sn] € [Sm]-

Definition 1 (Forward Simulation). Given two sharing tree S and T, let n
be a node of the i-th layer of S, and m be a node of the i-th layer of T. We
say that n is simulated by m, written n~Fm, if val®(n) > val® (m) and for all
s € succ® (n) there exists t € succ” (m) such that s™F¢.

Note that, if S = T then the simulation relation is reflexive and transitive.
Let father(n) be the set of fathers of a node n at layer i (fathers(n) C N;_1).
We define the backward simulation as follows:

Definition 2 (Backward simulation). Given two sharing tree S and T, let n
be a node of the i-th layer of S, and m be a node of the i-th layer of T. We say
that n is backwards simulated by m, written n™2m, if val®(n) > val” (m) and
for all s € fathers®(n) there exists t € fathers™ (m) such that s™2t.
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The following result (taken from [[HHI<95]) shows that the previous simulations
can be computed efficiently.

Theorem 5 (From [HHIK95]). The forward and backward simulation rela-
tions between the nodes of the sharing tree S and the nodes of the sharing
tree T' can be computed in O(m -n) where m is the sum of the number of nodes
in S and in T, and n is the sum of the number of edges in S and in T'.

In the rest of this section we will focus on properties and algorithms for
the forward simulation. The results and algorithms can be reformulated for the
backward simulations by replacing the successor relation with the father relation.

4.1 Properties of the Simulation

The following propositions relate subsumption and the simulation 7.

Lemma 1. Given the sharing trees S and T, let S,, and T}, be the sub-sharing
trees rooted at nodes n and m, respectively. If n™"m then [S,] C [Sm].

The converse does not hold (in accord with the co-NP hardness result for sub-
sumption). As a counterexample, take the two trees in Fig. 3. The curly arrows
represent the simulation relation between nodes of .S and T'. Note that none of the
nodes of layer 2 in T simulates the single node of S at the same layer. However,
the denotation of S are contained in that of T'. In fact, (1,1,2,0) < (1,2,2,1)
and (1,0,0,2) < (1,2,1,2). The following theorem follows from Lemma 1.

Fig. 3. The forward simulation is incomplete wrt. subsumption

Theorem 6. Let rootg, ends and rootr,endr be the root and terminal nodes
of S and T, respectively. If roots™Frooty then [S] C [T]. Symmetrically, if
ends™Pendr then [S] C [T].

The previous theorem gives us sufficient conditions for testing subsumption.
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4.2 Use of Simulations to Remove Redundancies

As for the subsumption test, the simulations we introduced in Section 4 can be
used to ‘approximate’ the exact normalization procedure. For this purpose, we
introduce a rule that allows us to exploit the information given from (one of)
the simulation relation(s) in order to ‘locally’ remove edges of a sharing tree.

Definition 3 (Edge Removal). Given a sharing tree S with node N and suc-
cessors suce, let us assume that for n € N there exist s,t € suce(n)
(s # t) such that s™¥t. Then, we define remove(S,n) as the pre-sharing tree
with successor relation succ’ obtained from S by setting succ’(n) = succ(n)\{s}.

The following proposition states the ‘correctness’ of the previous rule.

Proposition 2. (1) S and remove(S, n) have the same denotations, i.e., [S] =
[remove(S,n)]; (2) the simulation relation ™ for S and remove(S, n) coincides.

A possible strategy to apply Def. 3 consists of the ‘on-the-fly’ removal of edges
during the computation of the simulation relation. Specifically, during a bottom-
up traversal of the sharing tree, we first apply Rule 3 to every node of a layer,
then compute the simulation relation for the nodes of the same layer, move to the
next layer, and so on. The rule to remove edges is applied exhaustively at each
step. In fact, given s € succ(n), let us assume that there exists u,t € succ(n)
such that u™"s, and s t. By transitivity, «"*¢ holds, as well, i.e., we can
still remove w after having removed s. The pre-sharing tree remove(S,n) may
violate the condition 6 of the definition of sharing trees (Section 3). However,
as already mentioned in the course of the paper, condition 6 can be restored
using an algorithm proposed in [Z1.94]. Similar algorithms can be defined for
the backward simulation. It is important to note that, though an application of
Rule 3 does not change the forward simulation (Fact (2) of Prop. 2), it may
change the backward simulation (and, vice versa, the removal of edges according
to the backward relation may change the forward simulation). As a consequence,
we get better and better results iterating the application of the algorithm for
removing edges for the backward-forward simulations. A simplified version of
Rule 3 that requires only a local test for every node of a sharing tree is given as
follows.

Definition 4 (Local Edge Removal). Given a sharing S tree with node N
and successors succ, let assume that for n € N there exist s,t € succ(n)
(s # t) such that val(s) > wal(t) and succ(s) C succ(t). Then, we define
local _remove(S,n) as the pre-sharing tree with successor relation succ’ obtained
from S by setting succ’(n) = succ(n) \ {s}.

Though less effective than Rule 3, Rule 4 can be paired with it in order to
simplify the computation of the simulation. In the following section we show
how to incorporate the previous ideas in a model checking procedure for an
example of integer system.
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5 Invariant Checking for Vector Addition Systems

A Vector Addition System (VAS) consists of n variables 1, ..., z, ranging over
positive integers, and m transition rules given as guarded command over the
data variables. For every j, transition 4 contains a guard x; > ¢; ; and an as-
signment x; := x; +d; ;; if d; ; < 0 then ¢; ; > d; ;. States are tuples of positive
numbers and executions are sequences of tuples tot; ...¢; ... where t;;1 is ob-
tained from ¢; by applying (non-deterministically) one of the transition rules.
The predecessor operator pre takes as input a set of states (tuples) F' and re-
turns the set of predecessors of F'. Properties like mutual exclusion and coverabil-
ity can be represented through upward-closed sets [ACJT96,DEP99]. Checking
safety properties expressed as upward-closed set for Petri Nets is decidable using
the following algorithm taken from [ACJT96]. Let F be an upward-closed set
(denoting unsafe states). To test the safety property ‘always —(F')’ we compute
symbolically the closure of the relation pre, say pre*(F'), and then we check that
the initial configuration is not part of the resulting set. From [ACJTI6], pre*(F)
is still an upward-closed set. The termination test is based on the containment
relation, namely we stop the computation whenever pre"™(F) C |, pre!(F).

U-Logic based Model Checking. Let oy a U-formula representing a collection of
upward-closed set U. The predecessor relation for VAS can be represented as the
following U-formula:

pre(pr) = \/ (o A pulzy+dia/a]. . [k + dig/a)

i=1,....m

where p; = 21 > ¢;1 A ... ATy > ¢ . In other words, by using the results in
the previous sections, starting from S, we can compute the sharing tree S,,..:
that represents \/;_, pre®(U). The termination test is implemented by the sub-
sumption test for sharing trees. The algorithms based on the simulations that
we described in this paper can be used for a weaker termination test and for re-
moving redundancies from the intermediate results. We have define a prototype
implementation for the algorithm using the library of [Zam97]. We discuss next
some preliminary experimental results.

5.1 A Case-Study: The Table Manufacturing System

The table manufacturing system of Teruel [Ter94] is a production system mod-
eled via a weighted Petri Net with 7 places and 6 transitions. The values of the
weights on the transitions vary from 2 to 4. This Petri Net can be modeled using
a VAS with 13 variables, 7 for the places and 6 extra variables, say T, ..., g,
to keep track of the number of firings of each transition. As shown in [Ter94],
all deadlock-free initial markings are exactly the predecessors of the set of states
where the first transition is fired at least 3 times, and all the others are fired
at least twice (le. U=T1 >3 AN A\;o;T; = 2). In [DEP9Y], different general
purpose constraint-based checkers have been used to compute the set of prede-
cessors via backward reachability. While other tools fail from terminate within
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Example INVINR|NS|LR|FSR|ET| NE [Nodes|Ratio
Man. Sys.| 13| 6 |24|no| _- |39s|7563| 4420 | 4%
Man. Sys.| 13| 6 |24 |yes| 5 |68s| 727 | 1772 | 12%

Fig. 4. Flags: NV=No. Variable; NR=No. Rules; ET=Execution Time; LR=Use
of local reduction; FSR=Frequency in the use of sim. reduction (._=not
used); NS=No Steps; NE=No. of Elem. of the result sharing tree; Ra-
tio=Nodes/(NV*NE)

1 day of execution, the tool based on the Omega library of Bultan, Gerber and
Pugh’s [BGP97] terminates after 19 hours and 50 minutes on a Sun Ultra Sparc,
and the ‘specialized’ checker proposed in [DEP99] (see Sect. 6) terminates after
1090 seconds. Sharing trees allows us to dramatically speed up the computation.
Our prototype implementation (based on the library of [Zam97]) terminates af-
ter 39 seconds on a Sun Ultra Sparc (see Fig. 4). In a first experiment we have
not removed the redundancies from S),.:, whereas in a second experiment we
have applied the reduction based on the forward simulation (every 5 steps) (see
Fig 4). Simulation-based reduction (every 5 steps) allows us to reduce the set of
states of a factor of ten (note: removing all redundancies yields 450 elements).
Other examples are considered in the extended version of this paper [DR99].

6 Related Work

In [ACJT96], the authors introduce a symbolic representation (constraint sys-
tem) for collections of upward-closed sets. Their representation corresponds to
disjunctive U-formulas. Traditional symbolic methods for handling linear con-
straints (e.g. polyhedra or Presburger arithmetics) suffer however from the state-
explosion problem when applied to this type of ‘constraints’. In [DEP99], a more
efficient representation based on sequences of pairs bitvector-constant is proposed
for representing the state-space of broadcast protocols, and, as special case, of
VAS. In this paper we have shown how to obtain more compact and efficient
representations via sharing trees.

In [Zam97,GGZ95], the authors apply sharing trees to represent the state-
space of concurrent systems: a state is a tuple of values and a set of states
is represented as a sharing tree. Note the difference with our approach. We
represent a set of states via a tuple, and collections of sets of states via a sharing
tree. The complexity issues are different when lifting the denotation to collections
of sets of states (see Section 3). In [Zam97], Zampuniéris makes an accurate
comparison between sharing trees and binary decision diagrams (BDDs) [Bry86].
When the aim is to represent tuples of (unbounded) integers (as in our case), the
layered structure of sharing trees allows optimizations that seem more difficult
using BDDs (or extensions like multi-valued DDs [SKMT90] or multi-terminal
DDs [CFZ96]).
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Our approach shares some similarities with recent works on interval deci-
sion diagrams (IDDs) [ST99] and clock decision diagrams (CDDs) for timed
automata [BLP 799]: all approaches make use of acyclic graphs to represent dis-
junctions of interval constraints. However, the use of simulations as abstractions
for handling efficiently large disjunctions has not been considered in the other ap-
proaches. More experimentations are needed for a better comparison of all those
methods. Finally, the PEP tool [Gra97] provides a BDD-based model checking
method for Petri Nets (with a fixed-a-priori number of tokens) [Wim97]. We
are not aware of BDDs-based representations for the ‘constraints’ we are inter-
ested in, e.g., for verification problems of Petri Nets with a possibly unbounded
number of tokens.

7 Conclusions and Future Work

We have proposed a new symbolic representation for ‘constraints’, we called U-
formulas, that can be used in verification problems for infinite-state integer sys-
tems (e.g., coverability of Petri Nets). The representation is based on the sharing
trees of Zampuniéris and Le Charlier. For our purposes, we lift the denotation
of a sharing tree to the upward-closed set ‘generated’ by the tuples contained in
the sharing tree. We have studied the theoretical complexity of the operations
for sharing trees wrt. this denotation. Furthermore, we have given sufficient con-
ditions for testing subsumption (co-NP hard for U-formulas) we discover thanks
to the view of U-formulas as acyclic graphs. In fact, the conditions are based on
simulations relations for nodes of sharing trees.

Though the termination test for the algorithm of [A C JT96] applied to collec-
tions of upward-closed sets (~ U-formulas ~ sharing trees) may be very costly®,
testing for membership of the initial configuration (when it can be expressed
with a conjunctive formula) can be done efficiently (Theorem 2). This gives us
an effienct method to detect wviolations of safety properties.

The implementation is currently being optimized, but the preliminary experi-
mental results are already promising. The type of optimizations we are interested
in are: heuristics for finding ‘good’ orderings of variables; symbolic representa-
tion of the transition system (e.g. PADs [ST99]); partial order reductions (see
e.g. [AJKPIg] for an application to the coverability problem of Petri Nets). Fi-
nally, it would be interesting to extend our techniques to more general classes of
constraints.

Acknowledgments. The authors would like to thank Jean-Marc Talbot, Andreas
Podelski, and Witold Charatonik for fruitful discussions, and Denis Zampuniéris
for having made the sharing tree library available for our experiments.

3 Quadratic for disjunctive formulas, but disjunctive formulas suffers from the state
explosion; exponential for sharing trees or arbitrary U-formulas.
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