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Abstract. The introduction of symbolic model checking using Binary
Decision Diagrams (BDDs) has led to a substantial extension of the
class of systems that can be algorithmically verified. Although BDDs
have played a crucial role in this success, they have some well-known
drawbacks, such as requiring an externally supplied variable ordering
and causing space blowups in certain applications. In a parallel develop-
ment, SAT-solving procedures, such as St̊almarck’s method or the Davis-
Putnam procedure, have been used successfully in verifying very large
industrial systems. These efforts have recently attracted the attention of
the model checking community resulting in the notion of bounded model
checking. In this paper, we show how to adapt standard algorithms for
symbolic reachability analysis to work with SAT-solvers. The key ele-
ment of our contribution is the combination of an algorithm that removes
quantifiers over propositional variables and a simple representation that
allows reuse of subformulas. The result will in principle allow many ex-
isting BDD-based algorithms to work with SAT-solvers. We show that
even with our relatively simple techniques it is possible to verify systems
that are known to be hard for BDD-based model checkers.

1 Introduction

In recent years model checking [CES86,QS82] has been widely used for algorith-
mic verification of finite-state systems such as hardware circuits and communi-
cation protocols. In model checking, the specification of the system is formulated
as a temporal logical formula, while the implementation is described as a finite-
state transition system. Early model-checking algorithms suffered from state
explosion, as the size of the state space grows exponentially with the number
of components in the system. One way to reduce state explosion is to use sym-
bolic model checking [BCMD92,McM93], where the transition relation is coded
symbolically as a boolean expression, rather than explicitly as the edges of a
graph. Symbolic model checking achieved its major breakthrough after the in-
troduction of Binary Decision Diagrams (BDDs) [Bry86] as a data structure for
representing boolean expressions in the model checking procedure. An impor-
tant property of BDDs is that they are canonical. This allows for substantial
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sub-expression sharing, often resulting in a compact representation. In addition,
canonicity implies that satisfiability and validity of boolean expressions can be
checked in constant time. However, the restrictions imposed by canonicity can
in some cases lead to a space blowup, making memory a bottleneck in the appli-
cation of BDD-based algorithms. There are examples of functions, for example
multiplication, which do not allow sub-exponential BDD representations. Fur-
thermore, the size of a BDD is dependent on the variable ordering which in many
cases is hard to optimize, both automatically and by hand. BDD-based methods
can typically handle systems with hundreds of boolean variables.
A related approach is to use satisfiability solvers, such as implementations

of St̊almarck’s method [St̊a] and the Davis-Putnam procedure [Zha97]. These
methods have already been used successfully for verifying industrial systems
[SS00,Bor97,Bor98,SS90,GvVK95]. SAT-solvers enjoy several properties which
make them attractive as a complement to BDDs in symbolic model checking.
For instance, their performance is less sensitive to the size of the formulas, and
they can in some cases handle propositional formulas with thousands of vari-
ables. Furthermore, SAT-solvers do not suffer from space explosion, and do not
require an external variable ordering to be supplied. Finally, satisfiability solving
is an NP-complete problem, whereas BDD-construction solves a #P-complete
problem [Pap94] as it is possible to determine the number of models of a BDD in
polynomial time. #P-complete problems are widely believed to be harder than
NP-complete problems.
The aim of this work is to exploit the strength of SAT-solving procedures in

order to increase the class of systems amenable to verification via the traditional
symbolic methods. We consider modifications of two standard algorithms—
forward and backward reachability analysis—where formulas are used to char-
acterize sets of reachable states [Bje99]. In these algorithms we replace BDDs
by satisfiability checkers such as the PROVER implementation of St̊almarck’s
method [St̊a] or SATO [Zha97]. We also use a data structure which we call Re-
duced Boolean Circuits (RBCs) to represent formulas. RBCs avoid unnecessarily
large representations through the reuse of subformulas, and allow for efficient
storage and manipulation of formulas. The only operation of the reachability
algorithms that does not carry over straightforwardly to this representation is
quantification over propositional variables. Therefore, we provide a simple pro-
cedure for the removal of quantifiers, which gives adequate performance for the
examples we have tried so far.
We have implemented a tool FIXIT [Eén99] based on our approach, and car-

ried out a number of experiments. The performance of the tool indicates that
even though we use simple techniques, our method can perform well in compar-
ison to existing ones.

Related Work. Bounded Model Checking (BMC) [BCC+99,BCCZ99,BCRZ99]
is the first approach in the literature to perform model checking using SAT-
solvers. To check reachability, the BMC procedure searches for counterexamples
(paths to undesirable states) by “unrolling” the transition relation k steps. The
unrolling is described by a (quantifier-free) formula which characterizes the set
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of feasible paths through the transition relation with lengths smaller than or
equal to k. The search can be terminated when the value of k is equal to the
diameter of the system—the maximum length of all shortest path between states
in the system. Although the diameter can be specified by a logical formula,
its satisfiability is usually hard to check, making BMC incomplete in practice.
Furthermore, for “deep” transition systems, formulas characterizing the set of
reachable states may be much smaller than those characterizing witness paths.
Since our method is based on encodings of sets of states, it may in some cases
cope with systems which BMC fails to analyze as it generates formulas that are
too large.
Our representation of formulas is closely related to Binary Expression Di-

agrams (BEDs) [AH97,HWA97]. In fact there are straightforward linear space
translations back and forth between the representations. Consequently, RBCs
share the good properties of BEDs, such as being exponentially more succinct
than BDDs [AH97]. The main difference between our approach and the use of
BEDs is the way in which satisfiability checking and existential quantification
is handled. In [AH97], satisfiability of BEDs is checked through a translation
to equivalent BDDs. Although many simplifications are performed at the BED
level, converting to BDDs during a fixpoint iteration could cause degeneration
into a standard BDD-based fixpoint iteration. In contrast, we check satisfiability
by mapping RBCs back to formulas which are then fed to external SAT-solvers.
In fact, the use of SAT-solvers can also be applied to BEDs, but this does not
seem to have been explored so far. Furthermore, in the BED approach, existential
quantification is either handled by introducing explicit quantification vertices, or
by a special transformation that rewrites the representation into a form where
naive expansion can be applied. We use a similar algorithm that also applies an
extra inlining rule. The inlining rule is particularly effective in the case of back-
ward reachability analysis, as it is always applicable to the generated formulas.
To our knowledge, no results have been reported in the literature on applica-
tions of BEDs in symbolic model checking. We would like to emphasize that we
view RBCs as a relatively simple representation of formulas, and not as a major
contribution of this work.

2 Preliminaries

We verify systems described as synchronous circuits constructed from elementary
combinational gates and unit delays—a simple, yet popular, model of computa-
tion. The unit delays are controlled by a global clock, and we place no restriction
on the inputs to a circuit. The environment is free to behave in any fashion.
We define the state-holding elements of a circuit to be the primary inputs and

the contents of the delays, and define a valuation to be an assignment of boolean
values to the state-holding elements. The behaviour of a circuit is modelled as a
state-transition graph where (1) each valuation is a state; (2) the initial states
comprise all states that agree with the initial values of the delays; and (3) there



414 Parosh Aziz Abdulla et al.

D &

D
0

1

≥1

v

v
v

v

0

2

1

3

Fig. 1. A simple circuit built from combinational gates and delays

is a transition between two states if the circuit can move between the source
state and the destination state in one clock cycle.
We construct a symbolic encoding of the transition graph in the standard

manner. We assign every state-holding element a propositional state variable vi,
and make two copies of the set of state variables, s = {v0, v1, . . . , vk} and
s′ = {v′0, v′1, . . . , v′k}. Given a circuit we can now generate two characteristic
formulas. The first of the characteristic formulas, Init(s) =

∧
i vi ↔ φi, defines

the initial values of the state-holding elements. The second characteristic for-
mula, Tr(s, s′) =

∧
i v

′
i ↔ ψi(s), defines the next-state values of state-holding

elements in terms of the current-state values.

Example 1. The following formulas characterize the circuit in Figure 1:

Init = (v0 ↔ �) ∧ (v3 ↔ ⊥)
Tr = (v′0 ↔ (v0 ∧ v1)) ∧ (v′3 ↔ (v2 ∨ v3))

We investigate the underlying state-transition graph by applying operations at
the formula level. In doing so we make use of the following three facts. First,
the relation between any points in a given circuit can be expressed as a propo-
sitional formula over the state-holding variables. Second, we can represent any
set S of transition-graph states by a formula that is satisfied exactly by the
states in S. Third, we can lift all standard set-level operations to operations on
formulas (for example, set inclusion corresponds to formula-level implication and
set nonemptiness checking to satisfiability solving, respectively).

3 Reachability Analysis

Given the characteristic formulas of a circuit and a formula Bad(s), we define
the reachability problem as that of checking whether it is possible to reach a
state that satisfies Bad(s) from an initial state. As an example, in the case of
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Fig. 2. The intuition behind the reachability algorithms

the circuit in Figure 1, we might be interested in whether the circuit could reach
a state where the two delay elements output the same value (or equivalently,
where the formula v0 ↔ v3 is satisfiable). We adapt two standard algorithms for
performing reachability analysis. In forward reachability we compute a sequence
of formulas Fi(s) that characterize the set of states that the initial states can
reach in i steps:

F0(s) = Init

Fi+1(s′) = toProp(∃s. T r(s, s′) ∧ Fi(s)))

Each computation of Fi+1 gives rise to a Quantified Boolean Formula (QBF),
which we translate back to a pure propositional formula using an operation
toProp (defined in in Section 5). We terminate the sequence generation if either
(1) Fn(s)∧Bad(s) is satisfiable: this means that a bad state is reachable; hence
we answer the reachability problem positively; or (2)

∨n
k=0 Fk(s)→

∨n−1
k=0 Fk(s)

holds: this implies that we have reached a fixpoint without encountering a bad
state; consequently the answer to the reachability question is negative.
In backward reachability we instead compute a sequence of formulas Bi(s)

that characterize the set of states that can reach a bad state in i steps:

B0(s) = Bad

Bi+1(s) = toProp(∃s′. T r(s, s′) ∧Bi(s′)))

In a similar manner to forward reachability, we terminate the sequence genera-
tion if either (1) Bn(s) ∧ Init(s) is satisfiable, or (2)

∨n
k=0 Bk(s)→

∨n−1
k=0 Bk(s)

holds.
Figure 2 shows the intuition behind the algorithms. We remark that the two

reachability methods can be combined by alternating between the computation
of Fi+1 and Bi+1. The generation can be terminated when either a fixpoint is
reached in some direction, or when Fn and Bn intersect. However, we do not
make use of hybrid analyses in this paper.

We need to address three nontrivial issues in an implementation of the adapted
reachability algorithms. First, we must avoid the generation of unnecessarily
large formula characterizations of the sets Fi and Bi—formulas are not a canon-
ical representation. Second, we must define the operation toProp in such a way
that it translates quantified boolean formulas to propositional logic without
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Fig. 3. A non-reduced Boolean Circuit and its reduced form

needlessly generating exponential results. Third, we must interface efficiently to
external satisfiability solvers. The remainder of the paper explains our solutions,
and evaluates the resulting reachability checker.

4 Representation of Formulas

Let Bool denote the set of booleans; Vars denote the set of propositional vari-
ables, including a special variable � for the constant true; and Op denote the
set {↔,∧}.
We introduce the representation Boolean Circuit (BC) for propositional for-

mulas. A BC is a directed acyclic graph, (V,E). The vertices V are partitioned
into internal nodes, VI, and leaves, VL. The vertices and edges are given at-
tributes as follows:

– Each internal vertex v ∈ VI has three attributes: A binary operator op(v) ∈
Op, and two edges left(v), right(v) ∈ E.

– Each leaf v ∈ VL has one attribute: var(v) ∈ Vars.
– Each edge e ∈ E has two attributes: sign(e) ∈ Bool and target(e) ∈ V.

We observe that negation is coded into the edges of the graph, by the sign
attribute. Furthermore, we identify edges with subformulas. In particular, the
whole formula is identified with a special top-edge having no source vertex. The
interpretation of an edge as a formula is given by the standard semantics of ∧,↔
and ¬ by viewing the graph as a parse tree (with some common sub-expressions
shared). Although ∧ and ¬ are functionally complete, we choose to include ↔
in the representation as it would otherwise require three binary connectives to
express. Figure 3 shows an example of a BC.

A Reduced Boolean Circuit (RBC) is a BC satisfying the following properties:
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reduce(And, left ∈ RBC, right ∈ RBC)
if (left = right) return left
elif (left = ¬right) return ⊥
elif (left = �) return right
elif (right = �) return left
elif (left = ⊥) return ⊥
elif (right = ⊥) return ⊥
else return nil

reduce(Equiv, left ∈ RBC, right ∈ RBC)
if (left = right) return �
elif (left = ¬right) return ⊥
elif (left = �) return right
elif (left = ⊥) return ¬right
elif (right = �) return left
elif (right = ⊥) return ¬left
else return nil

mk Comp(op ∈ Op, left ∈ RBC, right ∈ RBC, sign ∈ Bool)
result := reduce(op, left, right)
if (result �= nil)

return id(result, sign) – id returns result or ¬result depending on sign

if (right < left)
(left, right) := (right, left) – Swap the values of left and right

if (op = Equiv)
sign := sign xor sign(left) xor sign(right)
left := unsigned(left)
right := unsigned(right)

result := lookup(RBC env, (op, left, right)) – Look for vertex in environment
if (result = nil)

result := insert(RBC env, (op, left, right))
return id(result, sign)

Fig. 4. Pseudo-code for creating a composite RBC from two existing RBCs

1. All common subformulas are shared so that no two vertices have identical
attributes.

2. The constant � never occurs in an RBC, except for the single-vertex RBCs
representing true or false.

3. The children of an internal vertex are syntactically distinct, left(v) �=
right(v).

4. If op(v) = ↔ then the edges to the children of v are unsigned.
5. For all vertices v, left(v) < right(v), for some total order < on BCs.

The purpose of these constraints is to identify as many equivalent formulas as
possible, and thereby increase the amount of subformula sharing. For this reason
we allow only one representation of ¬(φ↔ ψ) ⇐⇒ (¬φ↔ ψ) (in 4 above), and
(φ ∧ ψ) ⇐⇒ (ψ ∧ φ) (in 5 above).
The RBCs are created in an implicit environment, where all existing subfor-

mulas are tabulated. We use the environment to assure property (1). Figure 4
shows the only non-trivial constructor for RBCs, mk Comp, which creates a com-
posite RBC from two existing RBCs (we use x ∈ Vars(φ) to denote that x is a
variable occurring in the formula φ). It should be noted that the above properties
only takes constant time to maintain in mk Comp.
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5 Quantification

In the reachability algorithms we make use of the operation toProp to translate
QBF formulas into equivalent propositional formulas. We reduce the translation
of a set of existential quantifiers to the iterated removal of a single quantifier
after we have chosen a quantification order. In the current implementation an
arbitrary order is used, but we are evaluating more refined approaches.
Figure 5 presents the quantification algorithm of our implementation. By

definition we have:

∃x . φ(x) ⇐⇒ φ(⊥) ∨ φ(�) (∗)

The definition can be used to naively resolve the quantifiers, but this may yield
an exponential blowup in representation size. To try to avoid this, we use the
following well-known identities (applied from left to right) whenever possible:

Inlining:
∃x . (x↔ ψ) ∧ φ(x) ⇐⇒ φ(ψ) (where x �∈ Vars(ψ))

Scope Reduction:
∃x . φ(x) ∧ ψ ⇐⇒ (∃x.φ(x)) ∧ ψ (where x �∈ Vars(ψ))
∃x . φ(x) ∨ ψ(x) ⇐⇒ (∃x.φ(x)) ∨ (∃x.ψ(x))

When applicable, inlining is an effective method of resolving quantifiers as it im-
mediately removes all occurrences of the quantified variable x. The applicability
of the transformation relies on the fact that the formulas occurring in reacha-
bility often have a structure that matches the rule. This is particularly true for
backward reachability as the transition relation is a conjunction of next state
variables defined in terms of current state variables

∧
i v

′
i ↔ ψi(s).

The first step of the inlining algorithm temporarily changes the represen-
tation of the top-level conjunction. From the binary encoding of the RBC, we
extract an equivalent set representation

∧{φ0, φ1, . . . , φn}. If the set contains
one or more elements of the form x ↔ ψ, the smallest such element is removed
from the set and its right-hand side ψ is substituted for x in the remaining
elements. The set is then re-encoded as an RBC.
If inlining is not applicable to the formula (and variable) at hand, the trans-

lator tries to apply the scope reduction rules as far as possible. This may result
in a quantifier being pushed through an Or (represented as negated And), in
which case inlining may again be possible.
For subformulas where the scope can no longer be reduced, and where inlining

is not applicable, we resort to naive quantification (*). Reducing the scope as
much as possible before doing this will help prevent blowups. Sometimes the
quantifiers can be pushed all the way to the leaves of the RBC, where they can
be eliminated.
Throughout the quantification procedure, we may encounter the same sub-

problem more than once due to shared subformulas. For this reason we keep a
table of the results obtained from all previously processed subformulas.
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– Global variable processed tabulates the results of the performed quantifications.

quant naive(φ ∈ RBC, x ∈ Vars)
result = subst(φ, x, ⊥) ∨ subst(φ, x, �)
insert(processed, φ, x, result)
return result

quant reduceScope(φ ∈ RBC, x ∈ Vars)

if (x �∈ Vars(φ)) return φ
if (φ = x) return �
result := lookup(processed, φ, x)
if (result �= nil)

return result

– In the following φ must be composite and contain x:
if (φop = Equiv)

result := quant naive(φ, x)
elif (not φsign ) – Operator And, unsigned

if (x �∈ Vars(φleft )) result := φleft ∧ quant reduceScope(φright , x)
elif (x �∈ Vars(φright )) result := quant reduceScope(φleft , x) ∧ φright

else result := quant naive(φ, x)
else – Operator And, signed (“Or”)

result := quant inline(¬φleft , x) ∨ quant inline(¬φright , x)

insert(processed, φ, x, result)
return result

quant inline(φ ∈ RBC, x ∈ Vars) – “Main”

C := collectConjuncts(φ) – Merge all binary Ands at the top of φ into a
“big” conceptual conjunction (returned as a set).

ψ := findDef (C, x) –Return the smallest formula ψ such that (x↔ ψ)
is a member of C.

if (ψ �= nil)
C′ := C \ (x↔ ψ) – Remove definition from C.
return subst(makeConj (C′), x, ψ) – makeConj builds an RBC.

else
return quant reduceScope(φ, x)

Fig. 5. Pseudo-code for performing existential quantification over one variable.
By φleft we denote left(target(φ)) etc. We use ∧, ∨ as abbreviations for calls to
mk Comp

6 Satisfiability

Given an RBC, we want to decide whether there exists a satisfying assignment
for the corresponding formula by applying an external SAT-solver. The naive
translation—unfold the graph to a tree and encode the tree as a formula—
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has the drawback of removing sharing. We therefore use a mapping where each
internal node in the representation is allocated a fresh variable. This variable
is used in place of the subformula that corresponds to the internal node. The
generated formula is the conjunction of all the definitions of internal nodes and
the literal that defines the top edge.

Example 2. The right-hand RBC in Figure 3 is mapped to the following formula
in which the ik variables define internal RBC nodes:

(i0 ↔ ¬i1 ∧ i2)
∧ (i1 ↔ i3 ↔ i4)
∧ (i2 ↔ i3 ∧ i4)
∧ (i3 ↔ x ∧ z)
∧ (i4 ↔ z ∧ y)
∧ ¬i0

A formula resulting from the outlined translation is not equivalent to the original
formula without sharing, but it will be satisfiable if and only if the original
formula is satisfiable. Models for the original formula are obtained by discarding
the values of internal variables.

7 Experimental Results

We have implemented a tool FIXIT [Eén99] for performing symbolic reachability
analysis based on the ideas presented in this paper. The tool has a fixpoint
mode in which it can perform both forward and backward reachability analysis,
and an unroll mode where it searches for counterexamples in a similar manner
to the BMC procedure. We have carried out preliminary experiments on three
benchmarks: a multiplier and a barrel shifter (both from the BMC distribution),
and a swapper (defined by the authors). The first two benchmarks are known to
be hard for BDD-based methods.
In all the experiments, PROVER outperforms SATO, so we only present mea-

surements made using PROVER. Furthermore, we only present time consumption.
Memory consumption is much smaller than for BDD-based systems. Garbage
collection has not yet been implemented in FIXIT, but the amount of simulta-
neously referenced memory peaks at about 5-6 MB in our experiments. We also
know that the memory requirements of PROVER are relatively low (worst case
quadratic in the formula size). The test results for FIXIT are compared with
results obtained from VIS release 1.3, BMC version 1.0f and CADENCE SMV
release 09-01-99.

The Multiplier. The example models a standard 16×16 bit shift-and-add mul-
tiplier, with an output result of 32 bits. Each output bit is individually verified
against the C6288 combinational multiplier of the ISCAS’85 benchmarks by
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Table 1. Experimental results for the multiplier

Bit FIXITFwd FIXITBwd FIXITUnroll BMC VIS SMV
sec sec sec sec sec sec

0 0.8 2.0 0.7 1.0 5.3 41.4
1 0.9 2.3 0.7 1.4 5.4 41.3
2 1.1 3.0 0.8 2.0 5.3 42.5
3 1.8 3.9 0.9 4.0 5.5 42.6
4 3.0 6.1 1.2 8.2 6.2 [>450 MB]

5 7.2 9.9 1.8 19.9 10.2 –
6 24.3 21.5 3.8 66.7 32.9 –
7 100.0 61.9 11.8 304.6 153.5 –
8 492.8 224.7 45.2 1733.7 [>450 MB] –
9 2350.6 862.6 197.8 9970.8 – –

10 11927.5 3271.0 862.8 54096.8 – –
11 60824.6 13494.3 3838.0 – – –
12 – 50000.0 16425.8 – – –

checking that we cannot reach a state where the computation of the shift-and-
add multiplier is completed, but where the selected result bit is not consistent
with the corresponding output bit of the combinational circuit.
Table 1 presents the results for the multiplier. The SAT-based methods out-

perform both VIS and SMV. The unroll mode is a constant factor more efficient
than the fixpoint mode. However, we were unable to prove the diameter of the
system by the diameter formula generated by BMC, which means that the verifi-
cation performed by the unroll method (and BMC) should be considered partial.

The Barrel Shifter. The barrel shifter rotates the contents of a register file R
with one position in each step. The system also contains a fixed register file R0,
related to R in the following way: if two registers from R and R0 have the same
contents, then their neighbours also have the same contents. We constrain the
initial states to have this property, and the objective is to prove that it holds
throughout the reachable part of the state space. The width of the registers is
log |R| bits, and we let the BMC tool prove that the diameter of the circuit is
|R|.
Table 2 presents the results for the barrel shifter. No results are presented

for VIS due to difficulties in describing the extra constraint on the initial state
in the VIS input format.
The backward reachability mode of FIXIT outperforms SMV and BMC on

this example. The reason for this is that the set of bad states is closed under
the pre-image function, and hence FIXIT terminates after only one iteration.
SMV is unable to build the BDDs characterising the circuits for larger problem
instances. The BMC tool has to unfold the system all the way up to the diameter,
producing very large formulas; in fact, the version of BMC that we used could
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Table 2. Experimental results for the barrel shifter

|R| FIXITFwd FIXITBwd FIXITUnroll BMC Diam SMV
sec sec sec sec sec sec

2 1.7 0.1 0.1 0.0 0.0 0.0
3 2.3 0.1 0.1 0.0 0.0 0.1
4 3.0 0.1 0.2 0.0 0.0 0.1
5 42.4 0.2 0.3 0.1 0.1 44.2
6 848.9 0.2 0.5 0.3 0.1 [>450 MB]

7 5506.6 0.4 0.5 0.4 0.2 –
8 [>3 h] 0.5 1.0 1.2 0.3 –
9 – 0.8 1.6 2.4 0.6 –

10 – 1.1 2.3 8.6 0.8 –
11 – 1.5 2.3 3.3 1.1 –
12 – 2.3 4.1 25.6 1.5 –
13 – 2.6 3.9 7.1 2.0 –
14 – 3.2 7.8 80.1 2.6 –
15 – 3.7 8.6 75.1 3.5 –
16 – 4.3 12.1 150.0 4.4 –
17 – 6.7 11.0 34.6 7.9 –
18 – 8.7 30.5 ? ? –
19 – 9.2 15.6 ? ? –
20 – 13.5 49.1 ? ? –
...
30 – 51.4 452.1 ? ? –
...
40 – 230.5 2294.7 ? ? –
...
50 – 501.5 8763.3 ? ? –

not generate formulas for larger instances than size 17 (a size 17 formula is
2.2 MB large). The oscillating timing data for the SAT-based tools reflects the
heuristic nature of the underlying SAT-solver.

The Swapper. N nodes, each capable of storing a single bit, are connected
linearly:

1 — 2 — 3 — 4 — · · · — N

At each clock-cycle (at most) one pair of adjacent nodes may swap their values.
From this setting we ask whether the single final state in which exactly the
first �N/2� nodes are set to 1 is reachable from the single initial state in which
exactly the last �N/2� nodes are set to 1. Table 3 shows the result of verifying
this property.
Both VIS and SMV handle the example easily. FIXIT can handle sizes up to

14, but does not scale up as well as VIS and SMV, as the representations get
too large. This illustrates the importance of maintaining a compact represen-
tation during deep reachability problems; something that is currently not done
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Table 3. Experimental results for the swapper

N FIXITFwd FIXITBwd FIXITUnroll BMC VIS SMV
sec sec sec sec sec sec

3 0.2 0.2 0.2 0.0 0.3 0.0
4 0.3 0.3 0.2 0.0 0.3 0.0
5 0.6 0.5 0.3 0.1 0.3 0.0
6 0.9 1.5 1.8 7.2 0.4 0.1
7 1.7 3.7 131.2 989.5 0.4 0.1
8 3.8 10.4 [>2 h] [>2 h] 0.4 0.1
9 9.7 58.9 – – 0.4 0.1

10 27.7 187.1 – – 0.4 0.1
11 74.1 779.2 – – 0.5 0.2
12 238.8 4643.2 – – 0.6 0.2
13 726.8 [>2 h] – – 0.7 0.3
14 2685.7 – – – 0.7 0.4
15 [>2 h] – – – 0.7 0.6
...
20 – – – – 1.6 7.9
...
25 – – – – 3.3 53.0
...
30 – – – – 15.1 263.0
...
35 – – – – 39.1 929.6
...
40 – – – – 89.9 2944.3

by FIXIT. However, BMC does even worse, even though the problem is a strict
search for an existing counterexample—something BMC is generally good at.
This shows that fixpoint methods can be superior both for proving unreachabil-
ity and detecting counterexamples for certain classes of systems.

8 Conclusions and Future Work

We have described an alternative approach to standard BDD-based symbolic
model checking which we think can serve as a useful complement to existing
techniques. We view our main contribution as showing that with relatively simple
means it is possible to modify traditional algorithms for symbolic reachability
analysis so that they work with SAT-procedures instead of BDDs. The resulting
method gives surprisingly good results on some known hard problems.
SAT-solvers have several properties which make us believe that SAT-based

model checking will become an interesting complement to BDD-based tech-
niques. For example, in a proof system like St̊almarck’s method, formula size
does not play a decisive role in the hardness of satisfiability checking. This is
particularly interesting since industrial applications often give rise to formulas
which are extremely large in size, but not necessarily hard to prove.
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There are several directions for future work. We are currently surveying sim-
plification methods that can be used to maintain compact representations. One
promising approach [AH97] is to improve the local reduction rules to span over
multiple levels of the RBC graphs. We are also interested in exploiting the struc-
ture of big conjunctions and disjunctions, and in simplifying formulas using
algorithms based on St̊almarck’s notion of formula saturation [Bje99]. As for
the representation itself, we are considering adding if-then-else and substitution
nodes [HWA97]. Other ongoing work includes experiments with heuristics for
choosing good quantification orderings.
In the longer term, we will continue to work on conversions of BDD-based al-

gorithms. For example, we have already implemented a prototype model checker
for general (fair) CTL formulas. Also, employing traditional BDD-based model
checking techniques such as front simplification and approximate analysis are
very likely to improve the efficiency of SAT-based model checking significantly.
Many important questions related to SAT-based model checking remain to

be answered. For example, how should the user choose between bounded and
fixpoint-based model checking? How can SAT-based approaches be combined
with standard approaches to model checking?
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