
Abstracting WS1S Systems to Verify

Parameterized Networks�

Kai Baukus1��, Saddek Bensalem2, Yassine Lakhnech2��, and Karsten Stahl1

1 Institute of Computer Science and Applied Mathematics, University of Kiel
Preusserstr. 1–9, D-24105 Kiel, Germany.
{kba,kst}@informatik.uni-kiel.de

2 Verimag, Centre Equation
2 Av. de Vignate, 38610 Gières, France.

{bensalem,lakhnech}@imag.fr

Abstract. We present a method that allows to verify parameterized
networks of finite state processes. Our method is based on three main
ideas. The first one consists in modeling an infinite family of networks by
a single WS1S transition system, that is, a transition system whose vari-
ables are set (2nd-order) variables and whose transitions are described in
WS1S. Then, we present methods that allow to abstract a WS1S system
into a finite state system that can be model-checked. Finally, in order
to verify liveness properties, we present an algorithm that allows to en-
rich the abstract system with strong fairness conditions while preserving
safety of the abstraction. We implemented our method in a tool, called
pax, and applied it to several examples.

1 Introduction

Recently there has been much interest in the automatic and semi-automatic
verification of parameterized networks, i.e., verification of a family of systems
{Pi | i ∈ ω}, where each Pi is a network consisting of i finite-state processes.
Apt and Kozen show in [AK86] that the verification of parameterized networks
is undecidable. Nevertheless, automated and semi-automated methods for the
verification of restricted classes of parameterized networks have been developed.
The methods presented in [GS92,EN95,EN96] show that for classes of ring net-
works of arbitrary size and client-server systems, there exists k such that the
verification of the parameterized network can be reduced to the
verification of networks of size up to k. Alternative methods presented in
[KM89,WL89,BCG89,SG89,HLR92,LHR97] are based on induction on the num-
ber of processes. These methods require finding a network invariant that ab-
stracts any arbitrary number of processes with respect to a pre-order that pre-
serves the property to be verified. While this method has been originally pre-
sented for linear networks, it has been generalized in [CGJ95] to networks gen-
erated by context-free grammars. In [CGJ95], abstract transition systems were

� This work has been partially supported by the Esprit-LTR project Vires.
�� Contact Author.

S. Graf and M. Schwartzbach (Eds.): TACAS/ETAPS 2000, LNCS 1785, pp. 188–203, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Abstracting WS1S Systems to Verify Parameterized Networks 189

used to specify the invariant. An abstract transition system consists of abstract
states specified by regular expressions and transitions between abstract states.
The idea of representing sets of states of parameterized networks by regular
languages is applied in [KMM+97], where additionally finite-state transducers
are used to compute predecessors. These ideas are applied to linear networks as
well as to processes arranged in a tree architecture and semi-automatic symbolic
backward analysis methods for solving the reachability problem are given. The
work presented in [ABJN99] extends the ideas in [KMM+97] by considering the
effect of applying infinitely often a transition that satisfies certain restrictions.
These restrictions allow to characterize the effect of the repeated application
of the transition by finite-state transducers. Moreover, the method presented
in [ABJN99] allows to consider networks of processes guarded by both local and
global conditions that restrict the context in which a transition can be taken.
Global conditions are typically used in many mutual exclusion algorithms such
as Szymanski’s algorithm, the bakery and ticket algorithms by Lamport and
Dijkstra’s algorithm.

In this paper we present a method for the verification of parameterized net-
works that can deal with a larger class of networks than the methods presented
in [KMM+97,ABJN99] and that is applicable to verify communal liveness (also
referred to as weak liveness) properties [MP94].

To verify parameterized protocols we first transform a given infinite family of
networks of finite processes into a bisimilar single transition system whose vari-
ables are set variables and whose transitions are described in WS1S, the weak
monadic second order logic of one successor. We call such systems WS1S tran-
sition systems. Then, we abstract the obtained WS1S transition system into a
finite abstract system that can be analyzed using model-checking techniques. To
obtain such a finite abstraction, one needs to come up with an appropriate ab-
straction relation and to construct a correct abstract system, i.e., a system which
exhibits for every behavior of the WS1S system a corresponding abstract behav-
ior. We present a method to construct an abstraction relation from the given
WS1S transition system and three techniques that allow to automatically con-
struct either a correct abstract system, the reachability state graph of a correct
abstract system without constructing the system itself or, finally, an abstraction
of such a graph. Our experience shows that our method for constructing an ab-
straction relation is useful for many examples and that it is useful to have the
three techniques for constructing an abstract system.

It is well known that an obstacle to the verification of liveness properties us-
ing abstraction, e.g. [CGL94,LGS+95,DGG94], is that often the abstract system
contains cycles that do not correspond to paths in the concrete system. This
is not surprising since the main goal of an abstraction relation is to identify
and merge states together, which consequently introduces new cycles. A way to
overcome this difficulty is to enrich the abstract system with fairness conditions
or more generally ranking functions over well-founded sets that eliminate unde-
sirable cycles, that is, cycles that do not correspond to concrete computations.
The main problem is, however, to find such fairness conditions. To tackle this

190 Kai Baukus et al.

problem, we present an algorithm that given a reachability state graph of an
abstraction of a WS1S system enriches the graph with strong fairness conditions
while preserving the property that to each concrete computation corresponds an
abstract fair one. Hence, we can use the enriched graph to prove liveness prop-
erties of the WS1S systems, and consequently, of the parameterized network.

We implemented our method in a tool, we call pax, that uses the decision
procedures of Mona [KM98,HJJ+96] to check the satisfiability of WS1S for-
mulas. We then applied our method to several examples including Szymanski’s
mutual exclusion algorithm, a server-ring as well as a token passing protocol.
The first results obtained using our method and pax are very encouraging.

2 Preliminaries

In this, section, we briefly recall the definition of weak second order theory of
one successor (WS1S for short) [Büc60,Tho90] and introduce the logic we use to
describe the class of parameterized systems we are interested in.

Terms of WS1S are built up from the constant 0 and 1st-order variables by
applying the successor function succ(t) (“t + 1”). Atomic formulae are of the
form b, t = t′, t < t′, t ∈ X , where b is a boolean variable, t and t′ are terms,
and X is a set variable (2nd-order variable). WS1S-formulae are built up from
atomic formulae by applying the boolean connectives as well as quantification
over both 1st-order and 2nd-order variables. First-order monadic formulae are
WS1S-formulae in which no 2nd-order variables occur.

WS1S-formulae are interpreted in models that assign finite subsets of ω to
2nd-order variables and elements of ω to 1st-order variables. The interpretation
is defined in the usual way.

Given a WS1S formula f , we denote by [[f]] the set of models of f . The set of
free variables in f is denoted by free(f). We say that f is (1st-order) closed, if it
does not contain (1st-order) free variables. In addition to the usual abbreviations,
given a 2nd-order variable P , we write ∀P i : f instead of ∀i : i ∈ P → f and
∃P i :f instead of ∃i : i ∈ P ∧ f .

Finally, we recall that by Büchi [Büc60] and Elgot [Elg61] the satisfiability
problem for WS1S is decidable. Indeed, the set of all models of a WS1S-formula
is representable by a finite automaton (see, e.g., [Tho90]).

Let n be a variable. To define parameterized systems, we introduce the set
AF(n) of formulae f defined by:

f ::= b[x] | ¬f | f ∧ f | ∀n x :f | ∃n x :f ,

where x is a position variable, b is a boolean array variable. Let m ∈ ω. We denote
by Σm the set of evaluations s such that s(n) = m, s(x) ∈ {0, · · · ,m − 1} and
s(b) : {0, · · · ,m − 1} → {true, false}. Then, formulae in AF(n) are interpreted
over evaluations s ∈

⋃
m∈ω Σm in the usual way. In the sequel, we also assume

the usual notion of free variables, closed formulae, etc., as known.

Abstracting WS1S Systems to Verify Parameterized Networks 191

3 Parameterized Systems

We now introduce a class of parameterized systems for which we develop an
abstraction-based verification technique.

Definition 1 (Boolean Transition Systems). A boolean transition system
S(i, n), parameterized by n and i, where n and i are variables ranging over
natural numbers, is described by the triple (V,Θ, T), where

– V = {b1, . . . , bk} and each bj, 1 ≤ j ≤ k, is a boolean array of length n.
– Θ is a formula in AF(n) with free(Θ) ⊆ V ∪ {i} and which describes the set

of initial states.
– T is a finite set of transitions where each τ ∈ T is given by a formula
ρτ ∈ AF(n) such that free(ρτ) ⊆ V ∪ V ′ ∪ {i} and

We denote by Pm the parallel composition ‖m−1
l=0 S(l,m), where S(l,m) is

obtained from S(i, n) by substituting m for n and l for i and where ‖ de-
notes the interleaving-based parallel composition (asynchronous product). No-
tice, that if we identify the boolean array variables bj by the m boolean vari-
ables bj[1], · · · , bj[m], the formulae describing the initial states as well as the
transitions of ‖m−1

l=0 S(l,m) are first-order WS1S formulae whose free variables
are in V , respectively, V ∪V ′. Thus, Pm is a transition system in the usual sense,
i.e., it does not contain the parameters n and i. Hence, we assume the definition
of a computation of Pm as known and we denote by [[Pm]] the set of its compu-
tations. Then, a monadic parameterized system P (MPS for short) built from
S(i, n) is the set {Pm | m ≥ 1}.

To illustrate the above definitions we consider Szymanski’s mutual exclusion
algorithm [Szy88] as a boolean transition system.

Example 1 (Szymanski’s mutual exclusion algorithm). Consider the following
version of Szymanski’s mutual exclusion algorithm (cf. [ABJN99]), where each
process S(i, n) is described as follows:

�1: await ∀n j : at �1[j] ∨ at �2[j] ∨ at �4[j]
�2: skip
�3: if ∃n j : at �2[j] ∨ at �5[j] ∨ at �6[j] ∨ at �7[j]

then goto �4
else goto �5

�4: await ∃n j : at �5[j] ∨ at �6[j] ∨ at �7[j]
�5: await ∀n j : at �1[j] ∨ at �2[j] ∨ at �5[j] ∨ at �6[j] ∨ at �7[j]
�6: await ∀n j : j < i→ (at �1[j] ∨ at �2[j] ∨ at �4[j])
�7: 〈 critical section 〉; goto �1

For the sake of presentation, the example is given in the style of [MP95]. The
await statements express the guards for the transitions leading from one control
location to the next one, i.e., the processes have to wait until the guard becomes
true. In our formal model the control locations are modeled by a boolean array

192 Kai Baukus et al.

variable at �k for each location �k, 1 ≤ k ≤ 7. According to Definition 3 the
transition from �1 to �2 is given by the AF(n) formula:

(∀n j : at �1[j] ∨ at �2[j] ∨ at �4[j]) ∧ ∀n j : j �= i→
∧7

l=1 at �l[j] ↔ at �′l[j]
∧ at �1[i] ∧ ¬at �′1[i] ∧ at �′2[i] ∧

∧7
l=3 at �l[i] ↔ at �′l[i] .

The initial condition states that each process starts in �1.
Our aim is to prove that this algorithm satisfies the mutual exclusion prop-

erty, which can be expressed by ✷¬∃n i, j : i �= j ∧ at �7[i] ∧ at �7[j]. �

4 WS1S Transition Systems

In this section, we introduce WS1S transition systems which are transition sys-
tems with variables ranging over finite sub-sets of ω and show how they can be
used to represent infinite families of boolean transition systems.

Definition 2 (WS1S Transition Systems). A WS1S transition system S =
(V , Θ, T) is given by the following components:

– V = {X1, . . . , Xk}: A finite set of second order variables where each variable
is interpreted as a finite set of natural numbers.

– Θ: A WS1S formula with free(Θ) ⊆ V describing the initial condition of the
system.

– T : A finite set of transitions where each τ ∈ T is represented as a WS1S
formula ρτ (V ,V ′), i.e., free(ρτ) ⊆ V ∪ V ′. ✷

The computations of S are defined as usual. Moreover, let [[S]] denote the set of
computations of S.

Relating parameterized and WS1S transition systems. We define a translation
that maps an MPS to a bisimilar WS1S system.

We fix a 2nd-order variable P that is used to model the set of indices of the
processes up to n. The translation from MPS to WS1S systems uses a function
tr from AF(n) into WS1S. This function replaces in an AF(n)-formula all occur-
rences of atomic sub-formulae of the form b[i] by i ∈ B, all n by max(P) + 11,
and λn by λP where λ is one of the quantifiers ∀ or ∃.

Definition 3 (Translation of Boolean to WS1S Systems). Consider an
MPS system P built from S(i, n) where S(i, n) = (V,Θ, T). Define a WS1S
system (Ṽ , Θ̃, T̃) by constructing the variable set, the initial condition, and the
transitions as follows:

– For each boolean array bk in V , Ṽ contains the variable Bk. Additionally, Ṽ
contains the set variable P .

– Let Θ̃ be ∃n : P = {0, . . . , n− 1} ∧
⋃k

l=1Bl ⊆ P ∧ (∀P i : tr(Θ)).
– Let T̃ be the set {∃P i : tr(ρτ) ∧ P = P ′ ∧

⋃k
l=1B

′
l ⊆ P ′ | τ ∈ T }.

1 It is not difficult to check that max(P) can be expressed in WS1S.

Abstracting WS1S Systems to Verify Parameterized Networks 193

We denote the above transformation of an MPS system P by Tr(P). ✷

Example 2 (Szymanski cont’d). The translation of Example 1 into a WS1S sys-
tem introduces a set variable P and set variables At �1, . . . ,At �7. According to
the above definition of the translation we have as initial condition Θ̃

∃n : P = {0, . . . , n− 1} ∧
k⋃

l=1

Bl ⊆ P ∧ ∀P i : (i ∈ At �1 ∧
7∧

l=2

i /∈ At �l) .

The translation of the AF(n) formula characterizing the transition from �1 to �2
presented in Example 1 yields

(∀P j : j ∈ At �1 ∪ At �2 ∪ At �4) ∧ ∀P j : j �= i→
∧7

l=1 j ∈ At �l ↔ j ∈ At �′l
∧ i ∈ At �1 ∧ i /∈ At �′1 ∧ i ∈ At �′2 ∧

∧7
l=3 i ∈ At �l ↔ i ∈ At �′l

which, using the invariant
⋃k

l=1Bl ⊆ P , can be simplified to

(∀P j : j ∈ At �1 ∪ At �2 ∪ At �4) ∧
∧7

l=3 At �l = At �′l
∧ At �′1 = At �1 \ {i} ∧ At �′2 = At �2 ∪ {i} .

�

In order to state the relationship between an MPS P and its translation, we
introduce a function h relating the states of both systems. Let P be an MPS
built from S(i, n)=(V,Θ, T) with V = {b1, . . . , bk}. Let m be a natural number.
Let Σ̃ denote the set of interpretations s̃ of Ṽ such that s̃(X) ⊆ s̃(P), for
each X ∈ Ṽ . Then, define hm : Σm → Σ̃, s �→ s̃ by s̃(P) = {0, . . . ,m − 1}
and s̃(Bj) = {l < m | s(bj [l]) = true}, for every 1 ≤ j ≤ k. Then, we define
h =

⋃
m∈ω hm. Notice that h is a bijection.

The following lemma shows that h is consistent with the translation tr from
AF(n) into WS1S.

Lemma 1. Let f be a formula in AF(n) with free(f) ⊆ V ∪ V ′ ∪ {i} and let all
m ∈ ω, for all s, s′ ∈ Σm, we have:

(s, s′) |= f iff (h(s), h(s′)) |= tr(f) .

✷

Using this lemma we can prove the following theorem that justifies our veri-
fication method given in Section 5. The theorem states that Pm is bisimilar to
Tr(P) when we initialize P to {0, . . . ,m− 1}.

Theorem 1 (Relating Boolean and WS1S Systems). Let P be an MPS
built from S(i, n) and m ∈ ω. Then, h is a bisimulation between Pm and Tr∗(P),
where Tr∗(P) is obtained from Tr(P) by taking as initial condition Θ̃ ≡ P =
{0, . . . ,m− 1} ∧

⋃k
l=1 Bl ⊆ P ∧ ∀P i : tr(Θ).

194 Kai Baukus et al.

Proof: Consider s0 to be an initial state of Pm, i.e., s0 |= Θ. With Lemma 1 it
follows that

h(s0) |= P = {0, . . . ,m− 1} ∧
k⋃

l=1

Bl ⊆ P ∧ (∀P i : tr(Θ)) .

Vice versa, for any initial state s̃0 of some computation in [[Tr∗(P)]] the
state h−1(s̃0) is an initial state of P .
With the same argumentation we can show for s, s′ ∈ Σm and s̃, s̃′ ∈ Σ̃ with
s̃ = h(s) that for any τ ∈ T ,
– if s′ is a τ -successor of s then h(s′) is a tr(ρτ)-successor of s̃, and
– if s̃′ is an tr(ρτ)-successor of s̃ then h−1(s̃′) is a τ -successor of s.

Hence, both systems are bisimilar. ✷

Using Theorem 1, we can prove the following:

Corollary 1. Let P be an MPS built from S(i, n). Then, lifting h to computa-
tions, we have a bijection between

⋃
m∈ω[[Pm]] and [[Tr(P)]]. ✷

5 Abstracting WS1S Systems

In Section 4, we have shown how parameterized boolean transition systems can
be translated into WS1S systems. This translation allows us to consider a single,
though infinite-state, transition system instead of an infinite family of systems.
In the following, we present a method to construct finite abstractions of WS1S
systems.

To do so, we first present a heuristic that allows to construct for a given WS1S
system an abstraction function such that the corresponding abstract system has
a finite state space. Then, we present a method that, given such a function,
constructs a finite transition system that is an abstraction of the given WS1S
system. Model-checking techniques can then be used to construct a state graph
of this abstract system.

The nodes of the constructed graph represent sets of abstract states and the
edges correspond to abstract transitions. This graph contains all reachable ab-
stract states. The nodes of the finest graph that can be constructed represent
singleton sets, i.e., single abstract states. The coarsest graph has one node corre-
sponding to the set of reachable states. In fact, the granularity of the computed
graph depends on the techniques used during exploration.

While the previous method first constructs an abstract system from which a
graph is computed, we also present two methods inspired by [GS97] for comput-
ing an abstract state graph, resp. an abstraction of it, without computing the
abstract transition system at all. These methods are useful in case the abstract
system is not computable for size reasons.

Finally, we describe our pax tool which implements these techniques using
Mona [KM98,HJJ+96].

Abstracting WS1S Systems to Verify Parameterized Networks 195

We first recall some definitions and the idea of proving properties of systems
by abstraction.

Given a transition system S = (V , Θ, T) and a total abstraction relation
α ⊆ Σ × ΣA, we say that SA = (VA, ΘA, TA) is an abstraction of S w.r.t. α,
denoted by S �α SA, if the following conditions are satisfied:

– s0 |= Θ implies α(s0) |= ΘA

– τ ◦ α−1 ⊆ α−1 ◦ τA.

Let ✷ϕ,✷ϕA be invariance formulae, i.e., ϕ,ϕA are state formulae. Then, from
S �α SA, α−1([[ϕA]]) ⊆ [[ϕ]], and SA |= ✷ϕA we can conclude S |= ✷ϕ.
This statement, which is called preservation result, shows the interest of ver-
ification by abstraction: since if SA is finite, it can automatically be checked
whether SA |= ✷ϕA. In fact a similar preservation result holds for any tem-
poral logic without existential quantification over paths, e.g., ∀CTL�, LTL, or
µ✷ [CGL94,DGG94,LGS+95].

5.1 Constructing the Abstraction Function

Our heuristic to construct an abstraction function for WS1S systems assumes
the transitions to have the following form:

∃P i : G ∧ L(i) ∧ C(i) ∧ V ′ = exp(V ,V ′) ,

where G,L(i), C(i) are WS1S formulae whose free variables are in V and such
that:

– G is a 1st-order closed WS1S formula. Intuitively, G describes a global con-
dition. E.g., in the Szymanski example (see Example 2), the presented tran-
sition contains the global condition ∀P j : j ∈ At �1 ∪ At �2 ∪ At �4.

– L(i) is a quantifier-free formula with i as the unique free 1st-order variable.
Intuitively, if i models a process index then L(i) is a condition on the local
state of this process.

– C(i) is a condition that as in the case of L(i) has i as the unique free 1st-
order variable but which contains 1st-order quantifiers. Intuitively, it imposes
conditions on the context of process i.

Though, the above requirements restrict the set of considered WS1S systems, it
still includes all translations of MPS systems.

Let S = (V , Θ, T) be a WS1S system whose transitions satisfy the restriction
above.

We are now prepared to present our heuristic for constructing abstraction
functions. The set VA of abstract variables contains a boolean variable bX for
each variable X ∈ V . Moreover, for each global guard G, resp. local guard L
occurring in a transition, it contains a boolean variable bG, resp. bL. Since the
context guards C(i) describe a dependence between process i and the remaining
processes, it turns out to be useful to combine them with the local guards. In-
deed, this allows to check, for instance, whether some dependence is propagated

196 Kai Baukus et al.

over some transitions. Therefore, we introduce boolean variables bLk,Cl for some
boolean combinations of local guards and context guards. Additionally, VA con-
tains a boolean variable for each state formula appearing in the property to be
verified.

It remains now to present how we relate the concrete and abstract states,
i.e., to describe an abstraction relation α. The abstraction relation α can be
expressed on the syntactic level by a predicate α̂ over V ,VA which is defined as
the conjunction of the following equivalences:

bX ≡ X �= ∅
bG ≡ G

bL ≡ ∃P i : L(i)
bLk,Cl ≡ ∃P i : Lk(i) ∧ Cl(i)

bξ ≡ ξ

Henceforth, we use α̂(V ′,V ′
A) to denote the predicate obtained from α̂ by sub-

stituting the unprimed variables with their primed versions.

Example 3 (Szymanski cont’d). Applying the above heuristic on Szymanski’s
algorithm (see Example 2) we get seven boolean variables:

ψi ≡ At �i �= ∅, for each 1 ≤ i ≤ 7 .

The global guards not referring to i can be derived by the above variables and
do not lead to a finer partitioning of the state space. All the local guards i ∈
At �l would introduce a boolean variable with meaning ∃i : i ∈ At �l which is
equivalent to stating that At �l is not empty. In the transition leading from �6 to
�7 we have a context ∀j < i : j ∈ At �1∪At �2∪At �4 which we have to combine
with the local guards i ∈ At �l. For this example it turns out to be enough to
take only one combination, namely

ϕ ≡ ∃i : i ∈ At �7 ∧ ∀j < i : j ∈ At �1 ∪ At �2 ∪ At �4 .

Moreover, for the property of interest we introduce

ξ ≡ ¬∃l, j : l �= j ∧ l ∈ At �7 ∧ j ∈ At �7 .

�

5.2 Constructing the Abstract System

In Section 5.1, we presented a method that allows to construct an abstraction
function from a given WS1S system. In this section, we show how to use this
abstraction function to automatically construct a finite transition system that
can be model-checked.

Let S = (V , Θ, T) be a given WS1S system that satisfies the restriction given
in Section 5.1 and let α be the abstraction function constructed by the method

Abstracting WS1S Systems to Verify Parameterized Networks 197

given in the same section. Notice that since the abstract variables are booleans,
the abstract system we construct is finite, and hence, can be subject to model-
checking techniques. Moreover, we make use of the fact that both α̂(V ,VA) and
the transitions in T are expressed in WS1S to give an effective construction of
the abstract system.

Henceforth, given a set γ of abstract states, we denote by γ̂(VA) a WS1S
formula that characterizes this set.

The abstract system we construct contains for each concrete transition τ an
abstract transition τA, which is characterized by the formula

∃V ,V ′ : α̂(V ,VA) ∧ ρτ (V ,V ′) ∧ α̂(V ′,V ′
A)

with free variables VA and V ′
A.

The initial states of the abstract system we construct can be described by
the formula

∃V : α̂(V ,VA) .

To compute them, one has to find all states fulfilling this formula, which is
possible since this is a WS1S formula.

5.3 Constructing Abstract State Graphs

We first define state graphs of transition systems. Note that there is a whole set
of state graphs for a given transition system.

Definition 4 (State Graphs). Let S = (V , Θ, T) be a transition system and
Σ be the set of all reachable states of S. A state graph G of S is a tuple
(N , E ,N0, µ), where N is a set of nodes, N0 ⊆ N is the set of initial nodes,
E ⊆ N ×T ×N is a set of labeled edges, and µ : N → 2Σ is a labeling function,
such that the following conditions are satisfied:

1. [[Θ]] ⊆
⋃

q∈N0
µ(q).

2. ∀q ∈ N , τ ∈ T : postτ (µ(q)) ⊆
⋃

(q,τ,q′)∈E µ(q′), where postτ (µ(q)) is the set
of successors of µ(q) w.r.t. τ . ✷

There are several strategies to calculate a state graph for an abstract system.
First of all, if one has previously computed the abstract system as explained in
Section 5.2, one can use model-checking techniques, for example a forward state
exploration, to construct a state graph. The actual graph obtained depends on
the computation techniques used.

Another way is to compute such a graph without calculating the abstract
system at all. The nodes of the graph are sets of abstract states. One starts
with an initial node representing the set of abstract initial states, which are
computed as shown in Section 5.2. Assume that a concrete transition τ and
node q are given. The formula

∃VA,V ,V ′ : µ̂(q)(VA) ∧ α̂(V ,VA) ∧ ρτ (V ,V ′) ∧ α̂(V ′,V ′
A)

198 Kai Baukus et al.

describes the set M of abstract post states w.r.t. τA. Then, a node q′ with
µ(q′) = M and an edge (q, τA, q′) are added to the graph. This process is repeated
until no new nodes or edges can be added. The so obtained graph is a state graph
of SA, we call this calculation precise computation.

Since we restrict ourselves to abstraction functions of the form

α̂(V ,VA) ≡
∧

1≤i≤k

ai ↔ ϕi(V) ,

where VA = {a1, . . . , ak}, we can also eliminate the abstract variables VA by
replacing each abstract variable ai by ϕi(V).

The decision procedure for WS1S is based on constructing a finite automaton
over finite words that recognizes the set of models of the considered formula. In
practice, however, it can happen that the automaton cannot be constructed
because of its size. In this case, we propose to go on as follows to obtain an
abstract state graph of SA.

We start with the same initial node as before. Given a node q and concrete
transition τ , we construct new nodes by computing for each abstract variable ai

the set Mi ⊆ {true, false} of fulfilling values for a′i of

∃VA,V ,V ′ : µ̂(q)(VA) ∧ α̂(V ,VA) ∧ ρτ (V ,V ′) ∧ (a′i ↔ ϕi(V ′)) .

Again, the abstract variables VA can be eliminated. In case Mi is empty for
some i, then there does not exist any post state, and hence, the computation
for the other variables can be omitted. Otherwise, instead of taking a node
representing the set of abstract post states, one takes a new node q′ with µ(q′) =
{s | ∀i : s(ai) ∈Mi} and a new edge (q, τA, q′). The set µ(q′) contains at least all
possible abstract post states w.r.t. τA. It is not difficult to see that this method
computes an abstraction of SA, and hence, is also an abstraction of S.

5.4 The Pax Tool

We use Mona [KM98,HJJ+96] to decide the predicates mentioned above. In
fact, Mona is able to construct all models of a WS1S predicate.

Our system pax constructs state graphs. It uses Mona to compute the ab-
stract initial states, the abstract transitions, or the set of abstract post states
represented by a state graph node. To do so, it creates from its input files input
for Mona and interprets the Mona results. Once an abstract system (resp. ab-
stract state graph) is constructed, a translation to SMV, alternatively to SPIN,
can be used to model-check the obtained abstract system (resp. abstract state
graph).

pax allows the combination of the method of Section 5.2, which consists
in computing abstractions of concrete transitions independently of any source
abstract state, with the methods of Section 5.3. This is helpful in case Mona does
not succeed in computing an abstract transition because of memory limitations.

In Table 1 we give run time results for the calculation of the abstract systems
of some examples, one of it is the Szymanski mutual exclusion algorithm given

Abstracting WS1S Systems to Verify Parameterized Networks 199

in Example 3. The construction of the state graph from the abstract system does
not require mentionable time. We used a Sun Ultra Sparc 5/10 with 768 MB of
memory and 333 MHz processor.

Table 1. pax construction of abstract transition systems

Example Abstract Transitions System

Szymanski 7 min 28 sec

Server-ring 40 sec

Token passing 5 sec

The run time results for the construction of a state graph (resp. an abstrac-
tion) without previous computation of the abstract system of these examples is
summarized in Table 2.

Table 2. pax results for state graph construction

Example Precise Computation Abstraction

Szymanski 49 min 52 sec 56 sec

Server-ring 1 min 5 sec 13 sec

Token passing 1 min 40 sec 19 sec

Example 4 (Szymanski cont’d). For the Szymanski’s algorithm and the abstrac-
tion function given in Example 3, we obtain using the last method of Section 5.3
the state graph presented in Figure 1. The labeling function µ is also given in
Figure 1 in form of the predicates µ̂(q) for each node q. The initial states are
marked by an edge without source node. It is not difficult to check that no state
falsifying the mutual exclusion property is reachable in the obtained graph. �

6 Proving Liveness Properties

Let S be a WS1S transition system and G = (N , E ,N0, µ) be a state graph of
SA constructed from S and an abstraction function α. Let ϕ be an LTL formula.
Let ξ1, · · · , ξn be the atomic subformulae of ϕ such that, for every node p ∈ G,
either all states in µ(p) satisfy ξi or none does, i.e., we have either µ̂(p) → ξi

or µ̂(p) → ¬ξi is valid. For each ξi, we introduce a proposition Pi. Then, let
Ǧ = (N , E ,N0, ν) be a Kripke structure with the same nodes, edges, and initial
nodes as G and such that Pi ∈ ν(p) iff µ̂(p) → ξi is valid. Let also ϕ̌ be the
formula obtained from ϕ by substituting Pi for ξi. Then, S |= ϕ, if Ǧ |= ϕ̌.

Example 5 (Szymanski cont’d). Let G = (N , E ,N0, µ) be the state graph for
Szymanski’s algorithm given in Example 4. Let us now consider the liveness
property ϕ ≡ ✷✸ψ7 expressing that the critical section is entered infinitely

200 Kai Baukus et al.

ψ1∧¬ψ2..7
∧¬φ∧ξ

ψ2∧¬ψ3..7
∧¬φ∧ξ

ψ3∧¬ψ4..7
∧¬φ∧ξ

ψ2,4∧¬ψ5..7
∧¬φ∧ξ

¬ψ2,4,6,7∧ψ5
∧¬φ∧ξ

ψ2,4∧¬ψ3,5..7
∧¬φ∧ξ

ψ3,4∧¬ψ5..7
∧¬φ∧ξ

¬ψ2,6,7∧ψ4,5
∧¬φ∧ξ

¬ψ2..4,7∧ψ6
∧¬φ∧ξ

¬ψ2,6,7∧ψ5
∧¬φ∧ξ

¬ψ2..4∧ψ7
∧φ∧ξ

¬ψ2..4∧ψ6,7
∧φ∧ξ

ψ1∧¬ψ2..4,7
∧¬φ∧ξ

ψ1,6∧¬ψ2..4,7
∧¬φ∧ξ

ψ1,7∧¬ψ2..4
∧φ∧ξ

ψ1,6,7∧¬ψ2..4
∧φ∧ξ

1→2

1→21→2

1→2

1→2

2→3
2→3

2→3

2→3

2→3

3→4

3→4

3→4

3→4

3→4

3→4
3→5

3→5

4→5

4→5

5→6

5→6

5→6

5→6

5→6

5→6

5→6

5→6

5→6

6→7

6→7

6→7

7→1

7→1

7→1

7→1

Fig. 1. Reachability graph for Szymanski’s mutual exclusion algorithm

often. Clearly, we can define a Kripke structure Ǧ = (N , E ,N0, ν) with the
same nodes and edges as G and with a proposition P such that P ∈ ν(p) iff
|= µ̂(p) → ψ7. Thus, all nodes labeled by P are shadowed in Figure 1. Moreover,
we get ϕ̌ ≡ ✷✸P . �

It is easy to see that ϕ̌ does not hold in the Kripke structure Ǧ. This is due to
the cycles which generate infinite traces in Ǧ without ever reaching a shadowed
node. However, these traces have no corresponding computations in the concrete
WS1S system. E.g., the loops labeled 1 → 2 are the abstraction of the transition
taking an element out of At �1 and adding it to At �2. Clearly, since WS1S is
interpreted over finite sets, it is impossible to infinitely execute transition 1 → 2
without taking a transition that adds elements to At �1.

In this section we present a method that allows us to add fairness conditions
to the Kripke structure Ǧ constructing a fair Kripke structure ǦF such that we
still have S |= ϕ, if ǦF |= ϕ̌ and such that the added fairness conditions rule out
infinite traces in Ǧ that have no counter-parts in S.

The method uses a marking algorithm that labels each edge of the considered
state graph with one of the symbols {+X ,−X ,=X} for each set variable X of
the original WS1S system. Intuitively, the labels −X resp. =X express whether
the transitions at the concrete level reduce resp. maintain the cardinality of a
set X , the label +X represents all other cases.

For the sake of presentation, we use p̂(VA) instead of µ̂(p).

Abstracting WS1S Systems to Verify Parameterized Networks 201

Marking Algorithm

Input: WS1S system S = (V , Θ, T), abstraction relation α̂, state graph
G = (N , E ,N0, µ) of SA

Output: Edge labeling of G
Description: For each X ∈ V , for each edge e = (p, τA, q) ∈ E , let τ be the

concrete transition in T corresponding to τA. Moreover, let ∆(X, e,≺),
with ≺∈ {⊂,=}, denote the WS1S formula:

p̂(VA) ∧ α̂(V ,VA) ∧ q̂(V ′
A) ∧ α̂(V ′,V ′

A) ∧ τ(V ,V ′) ⇒ X ′ ≺ X .

Then, mark e with −X , if ∆(X, e,⊂) is valid, mark e with =X , if
∆(X, e,=) is valid, and mark e with +X otherwise.

Now, for a set variable X we denote with E+
X the set of edges labeled with +X .

Then, the fair Kripke structure is defined as ǦF = (Ǧ, F) where F is the set
of strong fairness conditions containing for each edge e and each of its labels −X

the set (e, E+
X). Each fairness condition states that e can only be taken infinitely

often if one of the edges in E+
X is taken infinitely often.

Example 6 (Szymanski cont’d). Figure 2 shows part of the abstract state graph
after running the labeling algorithm. All =X symbols are left out and the labels
+At �k ,−At �k are abbreviated with +k,−k. The figure shows a strongly con-

ψ2 ∧ ψ4 ∧ ¬ψ5..7

∧¬φ ∧ ξ

ψ2 ∧ ¬ψ3 ∧ ψ4 ∧ ¬ψ5..7

∧¬φ ∧ ξ
ψ3 ∧ ψ4 ∧ ¬ψ5..7

∧¬φ ∧ ξ

−1,+2

−1,+2

−2,+3

−2,+3

−2,+3

−3,+4

−3,+4

in

out

Fig. 2. Part of the labeled state graph

nected part of the graph with the only ingoing edge in and only outgoing edge
out. To prove communal accessibility it is necessary to show that the system
cannot cycle forever in this component.

It can be proved, e.g., using model-checking, that ǦF |= ϕ̌. Hence, Szyman-
ski’s algorithm satisfies ✷✸ ∃P i : i ∈ At �7. �

202 Kai Baukus et al.

7 Conclusion

We have presented a method for the verification of parameterized networks of
finite processes. Our method is based on the transformation of an infinite fam-
ily of systems into a single WS1S transition system and applying abstraction
techniques on this system. We also showed how our method can deal with live-
ness properties. We have applied this method, which has been implemented in
our tool pax, to a number of parameterized protocols. The obtained results are
encouraging.

Closest to our work is [ABJN99]. Therefore, we give a short account of the
main differences between this and our work. While the method in [ABJN99]
aims at computing the exact set of reachable states, our method computes an
over-approximation. On the other hand, their method may fail because of the
divergence of the exploration algorithm, even when acceleration is applied. More-
over, our method can deal with a larger class of networks and with a class of
liveness properties, often called communal accessibility.

We intend to extend our method to deal with a larger class of liveness prop-
erties. It is also clear that we can use WS2S instead of WS1S when we consider
networks arranged in trees.

References

ABJN99. P.A. Abdulla, A. Bouajjani, B. Jonsson, and M. Nilsson. Handling Global
Conditions in Parameterized System Verification. In N. Halbwachs and
D. Peled, editors, CAV ’99, volume 1633 of LNCS, pages 134–145. Springer,
1999. 189, 191, 202

AK86. K. Apt and D. Kozen. Limits for Automatic Verification of Finit-State
Concurrent Systems. Information Processing Letters, 22(6):307–309, 1986.
188

BCG89. M.C. Browne, E.M. Clarke, and O. Grumberg. Reasoning about networks
with many identical finite state processes. Information and Computation,
1989. 188

Büc60. J.R. Büchi. Weak Second-Order Arithmetic and Finite Automata. Z. Math.
Logik Grundl. Math., 6:66–92, 1960. 190

CGJ95. E. Clarke, O. Grumberg, and S. Jha. Verifying Parameterized Networks
using Abstraction and Regular Languages. In I. Lee and S. Smolka, editors,
CONCUR ’95: Concurrency Theory, LNCS. Springer, 1995. 188

CGL94. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstrac-
tion. ACM Transactions on Programming Languages and Systems, 16(5),
1994. 189, 195

DGG94. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of re-
active systems: Abstractions preserving ACTL∗, ECTL∗ and CTL∗. In
E.-R. Olderog, editor, Proceedings of PROCOMET ’94. North-Holland,
1994. 189, 195

Elg61. C.C. Elgot. Decision problems of finite automata design and related arith-
metics. Trans. Amer. Math. Soc., 98:21–52, 1961. 190

Abstracting WS1S Systems to Verify Parameterized Networks 203

EN95. E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In 22nd ACM
Symposium on Principles of Programming Languages, pages 85–94, 1995.
188

EN96. E. A. Emerson and K. S. Namjoshi. Automatic verification of parameterized
synchronous systems. In 8th Conference on Computer Aided Verification,
LNCS 1102, pages 87–98, 1996. 188

Gru97. O. Grumberg, editor. Proceedings of CAV ’97, volume 1256 of LNCS.
Springer, 1997. 203

GS92. S.M. German and A.P. Sistla. Reasoning about systems with many pro-
cesses. Journal of the ACM, 39(3):675–735, 1992. 188

GS97. S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In
Grumberg [Gru97]. 194

HJJ+96. J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic Second-Order Logic in Practice. In
TACAS ’95, volume 1019 of LNCS. Springer, 1996. 190, 194, 198

HLR92. N. Halbwachs, F. Lagnier, and C. Ratel. An experience in proving regu-
lar networks of processes by modular model checking. Acta Informatica,
22(6/7), 1992. 188

KM89. R.P. Kurshan and K. McMillan. A structural induction theorem for pro-
cesses. In ACM Symp. on Principles of Distributed Computing, Canada,
pages 239–247, Edmonton, Alberta, 1989. 188

KM98. N. Klarlund and A. Møller. MONA Version 1.3 User Manual. BRICS,
1998. 190, 194, 198

KMM+97. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic Model
Checking with Rich Assertional Languages. In Grumberg [Gru97], pages
424–435. 189

LGS+95. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design, 6(1), 1995. 189, 195

LHR97. D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of pa-
rameterized linear networks of processes. In POPL ’97, Paris, 1997. 188

MP94. Z. Manna and A. Pnueli. Verification of parameterized programs. In
E. Borger, editor, Specification and Validation Methods, pages 167–230,
Oxford University Press, 1994. 189

MP95. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems, Safety.
Springer Verlag, 1995. 191

SG89. Z. Stadler and O. Grumberg. Network grammars, communication be-
haviours and automatic verification. In Proc. Workshop on Automatic
Verification Methods for Finite State Systems, Lecture Notes in Computer
Science, pages 151–165, Grenoble, France, 1989. Springer Verlag. 188

Szy88. B.K. Szymanski. A simple solution to Lamport’s concurrent programming
problem with linear wait. In Proceedings of International Conference on
Supercomputing Systems 1988, pages 621–626, St. Malo, France, July 1988.
191

Tho90. W. Thomas. Automata on infinite objects. In Handbook of Theoretical
Computer Science, Volume B: Formal Methods and Semantics, pages 134–
191. Elsevier Science Publishers B. V., 1990. 190

WL89. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes
with network invariants (extended abstract). In Sifakis, editor, Workshop
on Computer Aided Verification, LNCS 407, pages 68–80, 1989. 188

	Introduction
	Preliminaries
	Parameterized Systems
	WS1S Transition Systems
	Abstracting WS1S Systems
	Constructing the Abstraction Function
	Constructing the Abstract System
	Constructing Abstract State Graphs
	The Pax Tool

	Proving Liveness Properties
	Conclusion
	References

