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Abstract. We show how the problem of verifying parameterized sys-
tems can be reduced to the problem of determining the equivalence of
goals in a logic program. We further show how goal equivalences can be
established using induction-based proofs. Such proofs rely on a power-
ful new theory of logic program transformations (encompassing unfold,
fold and goal replacement over multiple recursive clauses), can be highly
automated, and are applicable to a variety of network topologies, includ-
ing uni- and bi-directional chains, rings, and trees of processes. Unfold
transformations in our system correspond to algorithmic model-checking
steps, fold and goal replacement correspond to deductive steps, and all
three types of transformations can be arbitrarily interleaved within a
proof. Our framework thus provides a seamless integration of algorith-
mic and deductive verification at fine levels of granularity.

1 Introduction

Advances in Logic Programming technology are beginning to influence the de-
velopment of new tools and techniques for the specification and verification of
concurrent systems. For example, constraint logic programming has been used
for the analysis and verification of hybrid systems [Urb96] and more recently
for model checking infinite-state systems [DP99]. Closer to home, we have used
a tabled logic-programming system to develop XMC, an efficient and flexible
model checker for finite-state systems [RRR+97]. XMC is written in under 200
lines of tabled Prolog code, which constitute a declarative specification of CCS
and the modal mu-calculus at the level of semantic equations. Despite the high-
level nature of XMC’s implementation, its performance is comparable to that
of highly optimized model checkers such as Spin [Hol97] and Murϕ [Dil96] on
examples selected from the benchmark suite in the standard Spin distribution.
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More recently, we have been investigating how XMC’s model-checking ca-
pabilities can be extended beyond finite-state systems. Essentially, this can be
done by enhancing the underlying resolution strategy appropriately at the level of
meta-programming, and without the undue performance penalties typically asso-
ciated with the concept of meta-programming. In this sense, XMC can be viewed
as a programmable verification engine. For example, we have shown in [DRS99]
how an efficient model checker for real-time systems can be attained through the
judicious use of a constraint package for the reals on top of tabled resolution.

In this paper, we expand on this theme even further. In particular, we exam-
ine how the tabled-resolution approach to model checking finite-state systems
can be extended to the verification of parameterized systems. A parameterized
system represents an infinite family of systems, each instance of which is finite
state. For example, an n-bit shift register is a parameterized system, the param-
eter in question being n. In general, the verification of parameterized systems
lies beyond the reach of traditional model checkers and it is not at all trivial (or
even possible) to adapt them to verify parameterized systems.

The main idea underlying our approach is to reduce the problem of verify-
ing parameterized systems to one of determining equivalence of goals in a logic
program. We then establish goal equivalences by inducting on the size of proofs
of ground instances of goals. To derive such induction proofs we were required
to substantially generalize the well-established theory of logic program trans-
formations encompassing unfold, fold and goal-replacement transformations. In
particular, in a recent paper [RKRR99b] we developed a new transformation sys-
tem that allows folding using multiple recursive clauses, which seems essential
for proving properties of parameterized systems.

In our framework, unfold transformations, which replace instances of clause
left-hand sides with corresponding instances of clause right-hand sides, represent
resolution. They thereby represent a form of algorithmic model checking; viz. the
kind of algorithmic, on-the-fly model checking performed in XMC. Unfold trans-
formations are used to evaluate away the base case and the finite portions of
the induction step in an induction proof. Fold transformations, which replace
instances of clause right-hand sides with corresponding instances of clause left-
hand sides, and goal replacement transformations, which replace a goal in a
clause right-hand side with a semantically equivalent goal, represent deductive
reasoning. They are used to simplify a given program so that applications of the
induction hypothesis in the induction proof can be recognized.

Using our approach, we have been able to prove liveness and safety properties
of a number of parameterized systems. Moreover, our approach does not seem
limited to any particular kind of network topology, as the systems we considered
have included uni- and bi-directional chains, rings, and trees of processes. The
primary benefits can be summarized as follows.

– Uniform framework. Our research has shown that finite-state systems, real-
time systems, and, now, parameterized systems can be uniformly specified
and verified in the tabled logic programming framework.
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– Tighter integration of algorithmic and deductive model checking. Unfold, fold,
and goal-replacement steps can be arbitrarily interleaved within the verifica-
tion proof of a parameterized system. Thus our approach allows algorithmic
model checking computation (unfold) to be integrated with deductive reason-
ing (fold, goal replacement) at fine levels of granularity. Also, since deductive
steps are applied lazily in our approach, finite-state model checking emerges
as a special case of verifying parameterized systems.

– High degree of automation. Although a fully automated solution to verifi-
cation of parameterized systems is not possible, for many cases of practical
interest, we have identified certain heuristics that can be applied to our proof
system in order to completely automate the deduction involved.

The idea of using logic program transformations for proving goal equivalences
was first explored in [PP99] for logic program synthesis. Our work expands the
existing body of work in logic program transformations with more powerful trans-
formation rules and strategies that are central to verification of parameterized
systems. Note that our transformation rules are also applicable for proving gen-
eral program properties.

Regarding related work in the verification area, a myriad of techniques have
been proposed during the past decade for verifying parameterized systems, and
the related problem of verifying infinite-state systems. [BCG89,EN95,ID99] re-
duce the problem of verifying a parameterized system to the verification of an
“equivalent” finite-state system. [WL89,KM95,LHR97] seek to identify a “net-
work invariant” that is invariant with respect to the given notion of parallel com-
position and stronger than the property to be established. The network-invariant
approach is applicable to parameterized systems consisting of a number of copies
of identical components (or components drawn from some finite set) that are
composed in parallel. Another approach [CGJ95] aims to finitely represent the
state space and transition relation of the entire family of finite-state systems
comprising a given parameterized system, and has been used in [KMM+97] to
extend symbolic model checking [McM93] to the verification of parameterized
systems. This method requires the construction of a uniform representation for
each class of networks, and the property in question must have a proof that is
uniform across the family of networks.

Perhaps the work most closely related to our own involves the use of the-
orem provers for verifying parameterized systems. Rajan et al. [RSS95] have
incorporated a mu-calculus model checker as a decision procedure within the
PVS theorem prover [OSR92]. Inductive proofs can be established by the prover
via calls to the model checker to verify finite subparts. Graf and Saidi [GS96]
combine a custom-built specification/deduction system with PVS to formalize
and verify invariant properties of infinite-state systems.

The key difference between our approach and these is that we enhance model
checking with deductive capabilities, rather than implement model checking as
a decision procedure in a deductive system. In particular, the underlying eval-
uation mechanism for model checking in XMC is essentially unfolding, and we
have enhanced this mechanism with folding and goal-replacement transforma-
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tions. In our approach, deductive steps are deployed only on demand and hence
do not affect the efficacy of the algorithmic model-checking. More importantly
our framework demonstrates that a tabled constraint logic-programming system
can form the core of a verification engine that can be programmed to verify prop-
erties of various flavors of concurrent systems including finite-state, real-time,
and parameterized systems.

2 Parameterized System Verification as Goal Equivalence

In this section, we discuss how verification of temporal properties of parameter-
ized systems can be reduced to checking equivalence of goals in a logic program.

gen([1]).

gen([0|X]) :- gen(X).

trans([0,1|T], [1,0|T]).

trans([H|T], [H|T1]) :- trans(T, T1).

thm(X) :- gen(X), live(X).

live(X) :- X = [1| ].

live(X) :- trans(X, Y), live(Y).

System description Property description

Fig. 1. Example: Liveness in a unidirectional token-passing chain

Modeling Parameterized Systems: Consider the parameterized system con-
sisting of a chain of n token-passing processes. In the system’s initial state, the
process in the right-most position of the chain has the token and no other process
has a token. The system evolves by passing the token leftward. A logic program
describing the system is given in Figure 1. The predicate gen generates the initial
states of an n-process chain for all n. A global state is represented as an ordered
list ( a list in Prolog-like notation is of the form [Head|Tail] ) of zeros and ones,
each bit corresponding to a local state, and the head of the list corresponding
to the local state of the left-most process in the chain. Each process in the chain
is a two-state automaton: one with the token (an entry of 1 in the list) and the
other without the token (an entry of 0). The set of bindings of variable S upon
evaluation of the query gen(S) is { [1], [0,1], [0,0,1], . . . }. The predicate
trans in the program encodes a single transition of the global automaton. The
first clause in the definition of trans captures the transfer of the token from
right to left; the second clause recursively searches the state representation until
the first clause can be applied.
Liveness Properties: The predicate live in Figure 1 encodes the temporal
property we wish to verify: eventually the token reaches the left-most process.
The first clause succeeds for global states where the token is already in the left-
most process (a good state). The second (recursive) clause checks if a good state
is reachable after a (finite) sequence of transitions. Thus, every member of the
family satisfies the liveness property if and only if ∀ X gen(X)⇒ live(X). More-
over, this is the case if ∀ X thm(X) ⇔ gen(X), i.e., if thm and gen are equivalent
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(have the same least model). Clearly, testing the equivalence of these goals is
infeasible since the minimal model of the logic program is infinite. However, we
present in Section 3 a proof methodology, based on program transformations,
for proving equivalences between such goals.
Safety Properties: We can model safety properties by introducing negation
into the above formulation for liveness properties, using the temporal-logic iden-
tity G φ ≡ ¬F ¬φ. Although our program transformation systems have been
recently extended to handle programs with negation [RKRR99a], for simplicity
of exposition we present here an alternative formulation without negation. In
particular, we define a predicate bad to represent states that violate the safety
property, show that the start states are not bad, and, finally, show that bad
states are reachable only from other bad states. For instance, mutual exclusion
in the n-process chain can be verified using the following program:

bad([1|Xs]) :- one more(Xs).

bad([ |Xs]) :- bad(Xs).

one more([1| ]).

one more([ |Xs]) :- one more(Xs).

bad start(X) :- gen(X), bad(X).

bad src(X,Y) :- trans(X, Y), bad(X).

bad dest(X,Y) :- trans(X, Y), bad(Y).

bad is true if and only if the given global state has more than one local state
with a token. Showing bad start(X) ⇔ false establishes that the start states
do not violate the safety property. Showing that bad src(X) ⇔ bad dest(X)
establishes that states that violate the safety property can be reached only from
other states that violate the property. These two facts together imply that no
reachable state in the infinite family is bad and thus establish the safety property.
A Note on the Model: XMC [RRR+97] provides a highly expressive process
description language based on value-passing CCS [Mil89] for specifying parame-
terized systems (although XMC is guaranteed to terminate only for finite-state
systems). The above simplified presentation (which we will continue to use in
the rest of this paper) is used to prevent a proliferation of syntax.

3 Goal Equivalence Proofs Using Tableau

In this section we describe the basic framework to construct such equivalence
proofs. We begin by defining the relevant notations.
Notations: We assume familiarity with the standard notions of terms, mod-
els, substitutions, unification, and most general unifier (mgu) [Llo93]. A term
having no variables is called a ground term. Atoms are terms with a predicate
symbol at the root (true and false are special atoms), and goals are conjunc-
tions of atoms. Atoms whose subterms are distinct variables (i.e., atoms of the
form p(X1, . . . , Xn), where p is a predicate symbol of arity n) are called open
atoms. We use the following notation (possibly with primes and subscripts): p, q
for predicate symbols; X,Y for variables; t, s for terms; X,Y for sequences of
variables; t, s for sequences of terms; A,B for atoms; σ, θ for substitutions; C,D
for Horn clauses; α, β for goals; and P for a definite logic program, which is a
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set of Horn clauses. A Horn clause C is written as A :− B1, B2, . . . , Bn. A, the
consequent, is called the head of C and the antecedent B1, B2, . . . , Bn the body
of C. Note that we can write Horn clauses as A :− α. Semantics of a definite
logic program P is given in terms of least Herbrand models, M(P ). Given a goal
α and a program P , SLD resolution is used to prove whether instances of α are
in M(P ). This proof is constructed recursively by replacing an atom B in α with
βθ where B′ :− β ∈ P and θ = mgu(B,B′). We use P0, P1, . . . , Pn to denote a
program transformation sequence where Pi+1 is obtained from Pi by applying a
transformation. We call P0 as the original program.

3.1 Tableau Construction

The goal equivalence problem is: given a logic program P and a pair of goals α, β,
determine if α and β are semantically equivalent in P : i.e., whether for all ground
substitutions θ, αθ ∈ M(P ) ⇔ βθ ∈ M(P ). This problem is undecidable in
general and we attempt to provide a deductive system for identifying equivalence.

We now develop a tableau-based proof system for establishing goal equiva-
lence. Our proof system is analogous to SLD resolution. Let Γ = 〈P0, P1, . . . , Pi〉
be a sequence of logic programs such that Pj+1 is obtained from Pj (1 ≤ j < i) by
the application of a rule in our tableau. Further let M(P0) = M(P1) = M(P2) =
. . . = M(Pi). An e-atom is of the form Γ 
 α ≡ β where α and β are goals,
and represents our proof obligation: that α and β are semantically equivalent in
any program in Γ . An e-goal is a (possibly empty) sequence of e-atoms (e-atoms
and e-goals correspond to atoms and goals in standard resolution).

(Ax)
Γ � α ≡ β

hline
where α ∼= β

(Tx)
Γ � α ≡ β

Γ, Pi+1 � α ≡ β
where M(Pi+1) = M(Pi)

(Gen)
Γ � α ≡ β

hline Γ, Pi+1 � α ≡ β, P0 � α′ ≡ β′ where M(Pi+1) = M(Pi) if α′ ≡ β′

Fig. 2. Rules for constructing equivalence tableau

The three rules used to construct equivalence tableau are shown in Figure 2.
The axiom elimination rule (Ax) is applicable whenever the equivalence of goals
α and β can be established by some automatic mechanism, denoted by α ∼= β.
Axiom elimination is akin to the treatment of facts in SLD resolution. The
program transformation rule (Tx) attempts to simplify a program in order to
expose the equivalence of goals. We use this rule when we apply a (semantics-
preserving) transformation that does not add any equivalence proof obligations
e.g. unfolding, folding. The sub-equivalence generation rule (Gen) replaces an
e-atom with new e-atoms which are (hopefully) simpler to establish. This step
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is akin to standard SLD resolution step. Note that the proof of α′ ≡ β′ may
involve a transformation sequence different from, and not just an extension of,
Γ . A successful tableau for an e-goal E0 is a finite sequence E0, E1, . . . , En

where Ei+1 is obtained from Ei by applying Ax/Tx/Gen and En is empty.

Theorem 1 Let E0, E1 . . . , En be a successful tableau, P0 be a (definite) logic
program and E0 = 〈P0〉 
 α ≡ β. For all ground substitutions θ, αθ ∈ M(P0) ⇔
βθ ∈ M(P0), i.e. α and β are equivalent in the least Herbrand model of P0.

The tableau, however, is not complete. There can be no such complete tableau
(which can be proved using a reduction in [AK86]).

Theorem 2 The problem of determining equivalence of predicates described by
logic programs is not recursively enumerable.

3.2 Program Transformations

The Tx and Gen rules of our proof system require us to transform a pro-
gram Pi into a program Pi+1. This is accomplished by applying logic program
transformations that include unfolding, folding, goal replacement and definition
introduction.

For a simple illustration of program transformations, consider Figure 3.
There, program P1 is derived from P0 by unfolding the occurrence of r in the
definition of q. P2 is derived from P1 by folding t,s in the definition of p using
the definition of q. While unfolding is semantics preserving, indiscriminate fold-

p :- t, s.

q :- r , s.

r :- t.

...

p :- t, s .

q :- t, s.

r :- t.

...

p :- q.

q :- t, s.

r :- t.

...

Program P0 Program P1 Program P2

Fig. 3. Example of an unfold/fold transformation sequence

ing may introduce circularity, thereby removing finite proof paths. e.g. folding
t,s in the definition of q in P2 using the definition of p in P0 results in a program
p :- q. q :- p. r :- t. .... This removes p and q from the least model.

We now present the program transformations informally. For a formal de-
scription, the reader is referred to [RKRR99b]. With each clause C in program Pi

of the transformation sequence, we associate a pair of integer counters that bound
the size of a shortest proof of any ground atom A derived using C in program Pi

relative to the size of a shortest proof of A in P0. Thus the counters keep track
of potential reductions in proof lengths. Conditions on counters are then used
to determine if a given application of folding is semantics preserving.
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B : −β, A , β′.

A1 : −α1.
A2 : −α2.
...
An : −αn.

=⇒

Bσ1 : −(β, α1, β′)σ1.
Bσ2 : −(β, α2, β′)σ2.
...
Bσn : −(β, αn, β′)σn.
A1 : −α1.
...
An : −αn.

Pj :

A1 : −α′
1.

...
An : −α′

n.

Pi:

B : −β, α1, β′.
B : −β, α2, β′.
...
B : −β, αn, β′.

=⇒B : −β, A , β′.

(a) Unfolding (b) Folding

Fig. 4. Schema for unfold/fold transformations

Unfolding of an atom A in the body of a clause in Pi is shown in Figure 4a.
The conditions for applying the transformation are : (i) A1, . . . , An are the only
clause heads in Pi which unify with A, and (ii) σj is the mgu of A and Aj for all
1 ≤ j ≤ n. Note that these conditions are taken directly from resolution, which
means that unfolding is essentially a resolution step.

Folding replaces an occurrence of the body of a clause with its head. The
clause where the replacement takes place is called the folded clause and the
clauses used to perform the replacement are called the folder clauses. The folding
schema is illustrated in in Figure 4b, where the clauses ofB are the folded clauses,
and the clauses of A are the folder clauses. The folder clauses may come from
some earlier program Pj(j ≤ i) in the transformation sequence. The conditions
for applying the transformation are1: (i) αl is an instance of α′

l with substitution
σl for all 1 ≤ l ≤ n (ii) there is an atom A such that ∀1 ≤ l ≤ n Alσl = A and
the folder clauses are the only clauses in Pj whose heads unify with A.

Goal replacement replaces an atom B in a clause A :− α,Bβ in program Pi

with a semantically equivalent atom B′ to obtain the clause A :− α,B′, β. Note
that such a replacement can change lengths of proofs of A arbitrarily. To obtain
the counters associated with the new clause we need to estimate the changes in
proof lengths. In practice, we do so by using techniques based on Integer Linear
Programming. Details appear in [Roy99].

Theorem 3 ([RKRR99b]) Let P0, P1, . . . , PN be a sequence of definite logic
programs where Pi+1 is obtained from Pi by an application of unfolding, folding,
or goal replacement. Then M(Pi) = M(P0), 1 ≤ i ≤ N .

Definition-introduction transformation adds clauses defining a new predicate to
a program Pi. This transformation is used to generate “names” for goals. Note
1 In addition, certain other conditions need to be imposed including conditions on the

counters of the folder and folded clauses; we do not mention them here.
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that after definition introduction, M(Pi+1) �= M(Pi) since a new predicate is
added to Pi+1. But for every predicate p in Pi, and all ground terms t, p(t) ∈
M(Pi) ⇔ p(t) ∈ M(Pi+1). The tableau presented earlier can be readily extended
to include such transformations.

3.3 Checking Goal Equivalence from Syntax

Recall that the axiom elimination rule (Ax) is applicable whenever we can me-
chanically establish the equivalence of two goals. We now develop a syntax-based
technique to establish the equivalence of two open atoms, i.e., atoms of the form
p(X) and q(X).

p(X) :- r(X).

p(X) :- e(X,Y), p(Y).

r(X) :- b(X).

q(X) :- s(X).

q(X) :- e(X,Y), q(Y).

s(X) :- b(X).

Consider the example program given above. We can infer that r(X) ≡ s(X)
since r and s have identical definitions. Then, we can infer q(X) ≡ p(X), since
their definitions are “isomorphic”. Formally:

Definition 1 (Syntactic Equivalence) A syntactic equivalence relation, P∼,
is an equivalence relation on the set of predicates of a program P such that for
all predicates p, q in P , if p P∼ q then:
1. p and q have same arity, and
2. Let the clauses defining p and q be {C1, . . . , Cm} and {D1, . . . , Dn}, re-
spectively. Let {C′

1, . . . , C
′
m} and {D′

1, . . . , D
′
n} be such that C′

l (D′
l) is ob-

tained by replacing every predicate symbol r in Cl (Dl) by s, where s is the
name of the equivalence class of r (w.r.t. P∼). Then there exist two functions
f : {1, . . . ,m} → {1, . . . , n} and g : {1, . . . , n} → {1, . . . ,m} such that:

(a) ∀1 ≤ i ≤ m C′
i is an instance of D′

f(i), and
(b) ∀1 ≤ j ≤ n D′

j is an instance of C′
g(j).

The largest syntactic equivalence relation can be computed by starting with all
predicates in the same class, and repeatedly splitting the classes until a fixed
point is reached. Syntactic equivalence is sound w.r.t. semantic equivalence, i.e.

Lemma 4 Let P be a program and P∼ be the syntactic equivalence relation. For
all predicates p, q, if p P∼ q, then p(X) ≡ q(X).

4 Automated Construction of Equivalence Tableau

We describe an algorithmic framework for creating strategies to automate the
construction of the tableau. The objective is to: (a) find equivalence proofs that
arise in verification with limited user intervention, and (b) apply deduction rules
lazily, i.e. a proof using the strategy is equivalent to algorithmic verification for
finite-state systems.
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algorithm Prove(A,B: open atoms, Γ :prog. seq.)
begin

let Γ = 〈P0, . . . , Pi〉
(* Ax rule *)

if (A = p(X) ∧ B = q(X) ∧ p
Pi∼ q) then

return true
else nondeterministic choice

(* Tx rule *)
case FIN (〈Γ, unfold(Pi)〉): (* Unfolding *)

return Prove(A, B, 〈Γ, unfold(Pi)〉)
case Folding is possible in Pi:

return Prove(A, B, 〈Γ, fold(Pi)〉)
(* Gen rule *)

case Conditional folding is possible in Pi:
let (A′, B′) = new atom equiv for fold(Pi)
return replace and prove(A, B, 〈A′, B′〉, Γ )

case Conditional equivalence is possible in Pi:
let (α, β) = new goal equiv for equiv(A, B, Pi)
return replace and prove(A, B, 〈α, β〉, Γ )

end choices
end

Fig. 5. Algorithmic framework for automated construction of tableau

In our framework, the tableau rules and associated transformations are ap-
plied in the following order. Given an e-atom Γ 
 α ≡ β, the proof is complete
whenever the axiom elimination rule (Ax) is applicable. Hence, we first choose
to apply Ax. When the choice is between the Tx and Gen rules, we choose
the former since Tx allows unfolding, i.e. resolution. This will ensure that our
strategies will perform algorithmic verification, a’ la XMC, for finite-state sys-
tems. For infinite-state systems, however, uncontrolled unfolding will diverge.
To create finite unfolding sequences we impose the finiteness condition FIN in
Definition 2. If FIN prohibits any further unfolding we either apply the folding
transformation associated with Tx or use the Gen rule. Care must be taken,
however, when Gen is chosen. Recall from the definition of Gen that α ≡ β
in Pi+1 implies α ≡ β in Pi only if we can prove a new equivalence α′ ≡ β′

in P0. Since Gen itself does not specify the goals in the new equivalence, its
application is highly nondeterministic. We limit the nondeterminism by using
Gen only to enable Ax or Tx rules.

Definition 2 (Finiteness condition) An unfolding transformation sequence
Γ = 〈P0, . . . , Pi, . . . 〉 satisfies FIN (Γ ) if and only if for the clause C and atom A
selected for unfolding at Pi: (i) A is distinct modulo variable renaming from any
atom B which was selected in unfolding some clause D ∈ Pj(j < i) where C is
obtained by repeated unfolding of D (ii) the term size of A is bounded a-priori
by a constant.
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Hence, when no further unfoldings are possible, we apply any possible folding.
If no foldings are enabled, we check if there are new atom equivalences that will
enable a folding step. We call this a conditional folding step. Note that atom
equivalences may be of the form p(t) ≡ q(s), where t and s are sequences of
arbitrary terms, whereas the test for syntactic equivalence is only done on open
atoms. We therefore introduce new definitions to convert them into open atoms.
Finally, we look for new goal equivalences, which, if valid, can lead to syntactic
equivalence. This is called as a conditional equivalence step. In such a step, an
equivalence proof on arbitrary goals is first converted into equivalence between
open atoms by introducing new definitions.

The above intuitions are formalized in Algorithm Prove (see Figure 5). Given
a program transformation sequence Γ , and a pair of open atoms A,B, algorithm
Prove attempts to prove that Γ 
 A ≡ B. Algorithm Prove uses the following
functions. Function replace and prove constructs proofs for sub-equivalences cre-
ated by applying theGen rule. replace and prove(A,B, 〈α, β〉, Γ ) first introduces
definitions for α and β, then proves the equivalence 〈P0〉 
 α ≡ β by invoking
Prove, then replaces α by β and finally invokes Prove to complete the proof
of Γ 
 A ≡ B. Functions unfold(P ) and fold(P ) apply unfolding and folding
transformations respectively to program P and return a new program. Whenever
conditional folding is possible, the function new atom equiv for fold(P ) finds the
pair of atoms whose replacement is necessary to do the fold operation. Similarly,
when conditional equivalence is possible, new goal equiv for equiv(A,B, P ) finds
a pair of goals α, β s.t. syntactic equivalence of A and B can be established after
replacing α with β in P .

Note that Prove terminates as long as the number of definitions introduced
(i.e., new predicate symbols added) is finite. If multiple cases of the nonde-
terministic choice are enabled, then Prove tries them in the order specified in
Figure 5. If none of the cases apply, then evaluation fails, and backtracks to the
most recent unexplored case. There may also be nondeterminism within a case;
for instance, many fold transformations may be applicable at the same time. By
providing selection functions to pick from the applicable transformations, one
can implement concrete strategies from Prove. Details appear in [Roy99].

4.1 Example: Liveness Property in Chains

Recall the logic program of Figure 1 which formulates a liveness property about
token-passing chains, namely, that the token eventually reaches the left-most
process in any arbitrary length chain. To establish the liveness property, we
prove thm(X)≡ gen(X) by invoking Prove(thm(X), gen(X), 〈P0〉). The proof tree
is illustrated in Figure 6 (dashed arrows in the figure denote multiple applications
of the transformation annotating the arrow). Prove first unfolds the clauses of
thm to obtain:

thm([1]).

thm([0|X]) :- gen(X), X = [1| ].

thm([0|X]) :- gen(X), trans(X,Y), live([0|Y]).
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P6

P0 thm(X)  gen(X)

P0

P11

P13

P14

P10

thm(X)  gen(X)

P5

P7

Unfolds

Fold

FoldFold

Unfolds

Defn. Intro.

live’(Y)  live(Y) 12,PP0,...,P7

live’ ~ live thm ~ gen

(live’(Y):-live([0|Y]).

Fold

Goal Replacement

Fig. 6. Proof tree for liveness property in chains

Since no unfolding or folding is applicable, conditional folding is done giving rise
to the (sub)-equivalence live([0|Y]) ≡ live(Y). Since live([0|Y]) is not an
open atom, a new definition live’(Y) :- live([0|Y]) is added to P5 to yield
P6. Then Prove folds the third clause of thm using this definition and recursively
invokes Prove(live’(X), live(X), 〈P0〉) to establish live’(X) ≡ live(X). This
subproof appears in the left branch of Figure 6. Finally, Prove replaces live’(X)
with live(X) in the clauses of thm and completes the proof of thm(X) ≡ gen(X)
by applying two folding steps.

It is interesting to observe in Figure 6 that the unfolding steps that transform
P0 to P5 and P7 to P10 are interleaved with folding steps. This illustrates how
we interleave algorithmic model-checking steps with deduction steps.

4.2 Example: Mutual Exclusion in Token Rings

Algorithm Prove generates a proof for mutual exclusion in a n-process token
ring. The token ring is described by the following logic program:

gen([0,1]). trans(X,Y) :- trans1(X,Y).

gen([0|X]) :- gen(X). trans([1|X],[0|Y]) :- trans2(X,Y).

trans1([0,1|T],[1,0|T]). trans2([0], [1]).

trans1([H|T],[H|T1]) :- trans1(T,T1). trans2([H|X],[H|Y]) :- trans2(X,Y).

As in the case of chains (see Section 2), we represent the global state of a ring
as a list of local states. Processes with tokens are in local state 1 while processes
without tokens are in state 0. trans is now divided into two parts: trans1 which
transfers the token to the left neighbor in the list, and trans2 which transfers the
token form the front of the list to the back, thereby completing the ring. Mutual
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Fold
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P23

Rest of the proof

Unfolds

Defn. Intro.(s1(X,Y):- ...)

(s2(X,Y):- ...)

Defn. Introductions

Fig. 7. Proof trees for mutual exclusion in token rings

exclusion, a safety property, is modeled using the predicates bad, bad start, etc.
as discussed in Section 2. These predicates, along with those listed above, form
the initial program P0. Recall that a safety proof can be completed by showing
bad start ≡ false and bad src ≡ bad dest. Figure 7 illustrates the proofs
generated by Prove to demonstrate these equivalences.

Invocation of Prove(bad start(X), false, 〈P0〉) performs unfoldings to ob-
tain program P3 where bad start is defined using a single clause, namely:
bad start([0|X]) :- gen(X), bad(X). Prove now folds using the original
definition of bad start to obtain P4 where bad start is defined by the clause:
bad start([0|X]) :- bad start(X). Since bad start is defined by a single
self-recursive clause, it is detected as failed, and hence bad start ≡ false.

An invocation of Prove(bad src(X), bad dest(X), 〈P0〉) performs unfoldings,
to get program P10 where the definitions of bad src and bad dest are:

bad src([0,1,1|X], [1,0,1|X]).

bad src([0,1,H|T], [1,0,H|T]) :- one more(T).

bad src([1|X],[1|Y]) :- trans1(X,Y), one more(X).

bad src([H|X],[H|Y]) :- trans1(X,Y), bad(X).

bad src([1,1|X],[0,1|Y]) :- trans2(X,Y).

bad src([1,H|X],[0,H|Y]) :- trans2(X,Y), one more(X).

bad dest([0,1,1|X], [1,0,1|X]).

bad dest([0,1,H|T], [1,0,H|T]) :- one more(T).

bad dest([1|X],[1|Y]) :- trans1(X,Y), one more(Y).

bad dest([H|X],[H|Y]) :- trans1(X,Y), bad(Y).

bad dest([1,1|X],[0,1|Y]) :- trans2(X,Y), one more(Y).

bad dest([1,H|X],[0,H|Y]) :- trans2(X,Y), bad(Y).
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Now, to show bad src ≡ bad dest, Prove applies conditional equivalence
steps, generating the following (sub)-equivalences:
trans1(X,Y), one more(X) ≡ trans1(X,Y), one more(Y)
trans1(X,Y), bad(X) ≡ trans1(X,Y), bad(Y)
trans2(X,Y), one more(Y) ≡ trans2(X,Y)
trans2(X,Y), one more(X) ≡ trans2(X,Y), bad(Y)

We now show the proof of the first of the above. Proofs of the other three
(sub)-equivalences proceed similarly, and are omitted. Since the goals are not
open atoms, the following definitions are created to obtain program P12.

s1(X, Y) :- trans1(X,Y), one more(X).

s2(X, Y) :- trans1(X,Y), one more(Y).

Since no new unfolding is applicable at P12, the clauses of bad src and bad dest
are folded using the above two clauses to obtain P14. Prove(s1(X), s2(X), 〈P0〉)
is then invoked by Prove as a subproof. This subproof is completed after a
sequence of unfoldings (to reach program P21) and two foldings, yielding P23:

s1([0,1|X], [1,0|X]).

s1([1|X],[1|Y]) :- trans1(X,Y).

s1([H|X],[H|Y]) :- s1(X,Y).

s2([0,1|X], [1,0|X]).

s2([1|X],[1|Y]) :- trans1(X,Y).

s2([H|X],[H|Y]) :- s2(X,Y).

s1
P23∼ s2 and hence s1(X) ≡ s2(X).

5 Concluding Remarks

A preliminary prototype implementation of our transformation system, built on
top of our XSB tabled logic-programming system [XSB99], has been completed.
So far we have been able to automatically verify a number of examples including
the ones described in this paper. Our plan now is to investigate the scalability
of our system on more complex problems such as parameterized versions of the
Rether protocol [DSC99] and the Java meta-locking protocol [BSW00].
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