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Abstract 
The security of cellular automata for stream cipher applications is inves- 

tigated. A cryptanalytic algorithm is developed for a known plaintext attack 
where the plaintext is assumed to be known up to the unicity distance. The 
algorithm is shown to be successful on small computers for key sizes up to N 
between 300 and 500 bits. For a cellular automaton to be secure against more 
powerful adversaries it is concluded that the key size N needs to be about 1000 
bits. 

The cryptanalytic algorithm takes advantage of an equivalent description 
of the cryptosystem in which the keys are not equiprobable. It is shown that 
key search can be reduced considerably if one is contented to succeed only with 
a certain success probability. This is established by an information theoretic 
analysis of arbitrary key saurces with non-uniform probability distribution. 

1 Introduction 
In [7],[8] S. Wolfram introduced cellular automata for pseudo random sequence gen- 
eration with possible application for stream ciphers. Another application is suggested 
in [l], which uses pseudo random sequences produced by cellular automata for con- 
structing collision free hash functions. 

A one-dimensional cellular automaton consists of a (possibly infinite) line of sites 
with values s; E GF(2). These values are updated in parallel (synchronously) in 
discrei 3 time steps according to a fixed rule of the form 

s: = qsi-r,  S;-,+1,. . . ,3;+,). (1) 

Practical implementations of cellular automata must contain a finite number of sites 
N. These are arranged in a circular register, so as to  have periodic boundary condi- 
tions. 
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Cellular automata have been investigated in studies of the origins of randomness 
and chaos in physical systems ([6], [7]). As pointed out in [2], cellular automata differ 
from cryptographic mechanisms such as feedback shift registers in that, even if they 
are invertible, it is not possible to calculate the predecessor of an arbitrary state by 
simply reversing the rule for finding the successor. It is suggested in [7] that the 
problem of deducing the initial configuration from partial output is equivalent to the 
general problem of solving Boolean equations, which is NP-complete. 

The investigations in [7] concentrate on rules (1) with 3 arguments, i.e., T = 1. 
The two rules that seem best as random sequence generators are nonlinear, and are 
given by 

or equivalently, s: = si-l+ 5; t s;+1 + s;s;+1 mod 2, and 
S: = ~ i - 1  XOR ( ~ i  OR ~ ; + l )  

S: = si-1 XOR ( 5 ;  OR (NOT ~ i + l ) )  

(2) 

(3) 
or equivalently, 5: = 1 + s,-~ + s ; + ~  t S ; S , + ~  mod 2. It is indicated in [7] that, with 
respect to certain measures, rule (2) appears to be more favourable than rule (3). 
For stream cipher applications the values s ; ( t )  attained by a particular site i through 
time serve as pseudo random bits in a key stream sequence. The initial state of the 
register is used as the seed, or the secret key. 

In view of the period of the output sequences, practical implementations with key 
size N = 127 have been suggested in [7]. In this paper we address the question whether 
this key size is sufficient to withstand cryptanalysis. To this end a cryptanalytic 
algorithm is developed in Section 2 which appears to be successful on a PC for key 
sixes up to N between 300 and 500 bits (depending on the updating rule). Using 
large parallel computers with special hardware, it is conceivable that cryptanalysis is 
possible up to a key size of about 1000 bits. 

In this cryptanalysis a known plaintext attack is assumed where the plaintext is 
known up to the unicity distance. It is shown that there is an equivalent cryptosystem, 
such that the problem of deducing the original key can be reduced to finding the key 
in the equivalent system. It turns out that the number of keys in the equivalent 
system is much smaller. Thus a search for the equivalent key is much more efficient 
than a search for the original key. 

Moreover the equivalent system has another property which is favourable for crypt- 
analysis, namely that certain keys have much higher probability than others. It turns 
out that in this situation the cost of a cryptanalytic attack is considerably reduced if 
one is contented to succeed only with a certain success probability 6 (e.g., 6 = 0.5). 
In this respect, the efficiency of our cryptanalytic algorithm has been determined by 
numerous experiments for different key sizes. 

The results of Section 3 show that the security of the cellular automaton for 
rule (2) is in fact quite low for key sizes N 5 300. As an example we mention that, 
for key size N = 200 and success probability 6 = 0.5, the average number of trials 
p necessary to find the key was obtained to be about 23,000. Thus the effective key 
size can be estimated as log, p = 14.5 bits. For larger N we can extrapolate from the 
experiments that, for the cellular automaton (with rule (2)) to be secure, one needs 
the key size of about 1000 bits, as mentioned above. 
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If our cryptanalytic algorithm is applied to cellular automata satisfying rule (3), it 
turns out that cryptanalysis is much easier than for rule (2). In fact, for the average 
number of trials p ,  the effective key size log,p is roughly half of the corresponding 
value for rule (2), e.g., for N = 400 we have obtained log,p = 13.8 bits. Therefore, 
our cryptanalysis confirms to prefer rule (2) over rule (3). 

The equivalent cryptosystem used in our attack implements a key source with 
a strongly non-uniform, but not explicitly known probability distribution. In gen- 
eral, for a given cryptosystem, knowledge of additional information (e.g., part of the 
plaintext) may result in an equivalent description of the cryptosystem where the keys 
in the equivalent system are no longer equiprobable. Therefore, an analysis of an 
"exhaustive search" for key sources with non-uniform probability distribution is of 
independent interest. Since by assumption one does not know the most probable keys, 
which would be tried first in an optimum search, the best one can do is to generate 
the trial keys according to the original probability distribution of the key source until 
the correct key has been found. 

Suppose that the cryptanalyst performs m different attacks on m keys chosen by 
the cryptographer, and that the required numbers of trials are listed in ascending 
order TI 5 Tz 5 . . . 5 Tm. Then the mean value 

is an empirical value for the average number of trials to a given success probability 6. 
In Section 4 lower and upper bounds for the expected value of p(m,  6) are derived 

for any key source. The natural question arises how p(m, 6) is related to the entropy of 
the key source. For stationary ergodic key sources with finite memory (as considered 
in [4]), it is shown that the expected value of p satisfies 

where Hs denotes the per bit entropy of the key source S (as introduced by Shannon 
[5 ] ) .  Although the key source considered in our analysis of cellular automata does 
not completely fit into the model of an ergodic source, one suspects that E[p(m, 6)] 
is related to the entropy. Therefore the experimental results in Sections 2 and 3 
(notably Table 1) may also be applied to estimate the entropy of sequences produced 
by cellular automata (see [7], [3]). 

2 Cryptanalysis on Cellular Automata 
By (2) the values of the sites determined by a site vector S( t )  = ( s ; J t ) ,  . . . , s; ( t ) ,  
. . . ,si+, , ( t ) )  form a triangle as shown in Figure 1. The sequence { s ; ( t ) }  in the middle 
column is called the temporal sequence (at site i). The security of a stream cipher 
based on cellular automata relies on the difficulty of determining the seed from the 
given temporal sequence. In an exhaustive search one would try all possible seeds 
until the correct temporal sequence is produced. 
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S & ( t )  * ... * s;-l(t) s i ( t )  si+l(t) * . . *  * St+n(t) 

* ... * S i _ l ( t +  1) & ( t +  1) si+l(t+ 1) * .. . * 
* * 

* * * 
s i ( t  + n )  

Figure 1: Triangle determined by s i - n ( t ) ,  . . . , s i + n ( t ) .  

In this section we develop a different approach which finds the seed using the 
partial linearity of (2) by writing it in the form 

s;-l(t) = s ; ( t  t 1) XOR ( ~ ; ( t )  OR s i+ l ( t ) ) .  (4) 

Given the values of the cells in two adjacent columns, this allows the values of all cells 
in a triangle to the left of the temporal sequence to be reconstructed. This process 
will be called completion backwards. By completion backwards, N - 1 digits of the 
temporal sequence { s ; ( t ) }  and N - 2 digits of its right adjacent sequence { s ; + l ( t ) }  
determine the seed. Similarly the seed  may also be reconstructed from N - 2 digits 
of the temporal sequence and N - 1 digits of its left adjacent sequence { ~ i - ~ ( t ) } .  

Thus if N - 1 digits of the temporal sequence are given, knowledge of the seed is 
equivalent to knowledge of one of its adjacent sequences. In view of this equivalence 
an adjacent sequence can be considered as a key which determines the remainder of 
the temporal sequence. In a known plaintext attack only (a portion of) the temporal 
sequence is known, but neither of its adjacent sequences. Our aim is to search for 
a correct (right or left) adjacent sequence and to determine the seed by completion 
backwards. In fact it turns out that this search can be done much faster than a direct 
exhaustive search over the original seed. 

In constructing adjacent sequences, which are consistent with a given temporal 
sequence, there is an essential difference between left and right adjacent sequences. 
We explain this difference for a general cellular automaton of width 2n + 1 where the 
sites siVn(t), . . . , s;+,(t) are not restricted by periodic boundary conditions. 

Suppose we are given a temporal sequence s i ( t ) ,  . . . , s , ( t  + n). Referring to 
Figure 1, the problem of finding the left adjacent sequence is equivalent to completing 
the triangle consistently to the left of the temporal sequence. By (2), knowledge of 
~ ; - ~ ( t ) ,  . . . , ~ ; - ~ ( t )  together with the temporal sequence is sufficient to determine the 
triangle to the left. However the sites si-,,(t),  . , . , $ i - l ( t )  cannot be chosen arbitrarily. 
For example, in the case s ; ( t )  = 1 we must have s i - l ( t )  = q ( t +  1) + 1, and there are 
similar restrictions at any site in the process of extending to the left. 

On the other hand, for triangles to the right any choice of the sites s;+l(t), . . . , 
si+,(t) has a completion consistent with the given temporal sequence. This follows 
from the fact that, by (4), for any right adjacent s i + l ( t )  there is a left adjacent 
s ; - l ( t )  consistent with the next digit s i ( t  + 1) of the temporal sequence. Further- 
more, according to (2), any choice of s;+z( t ) ,  . . . , s;+,(t) has a consistent extension to 
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S;+l(t + 11, .. . , S i + - - l ( t  4- 1). Iteration of this construction leads to the  desired 
completion of the triangle to the right. This process will be called completion fur- 
wards which, for any choice of the sites ~ + ~ ( r ! ) ,  . . . , s i+ , ( t )  constructs a right adjacent 
sequence consistent with the given temporal sequence. 

Now suppose that the cellular automaton satisfies periodic boundary conditions 
with period N .  This means that the indices are calculated modulo N .  For illustra- 
tion consider Figure 1 where n = N - 1 and S i - l ( i )  = ~ ; + ~ - l ( t ) ,  . . . , s ; - ~ + l ( t )  = 
~ ; + ~ ( t ) ,  Thus to determine the seed we can either compute ( s i ( t ) ,  . . . ,s;+,v-,(t)) or 
( s i ,~+ , ( t ) ,  . , . , ~ i ( t ) ) .  For t’ 2 t, the right adjacent ai+l(t’) may not be chosen arbi- 
trarily to be consistent with the next digit si(t’ -t 1) of the temporal sequence, i t s  the 
left adjacent si-l(t‘) may be restricted by the boundary conditions. Nevertheless, by 
neglecting the boundary conditions, for any choice of the values ~ ; + ~ ( t ) ,  . . . , .s i+~- I ( t ) ,  

completion forwards yielde a consistent triangle to the right, and one obtains a pas- 
sible candidate for the right adjacent sequence. In fact, if s;+l( t ) ,  . , + , ~ ; + ~ - l ( t )  co- 
incide with the original seed, the correct right adjacent sequence will be produced. 
Surprisingly, it turns out that there are many (incorrect) seeds leading to the correct 
right adjacent sequence which, by completion backwards, determines the correct seed. 
This phenomenon is the basis of our cryptanalytic algorithm which, for given digits 
s;(t), . . . , s i ( t  + N - 1) of the temporal sequence, determines the seed. 

Algorithm. 

1. Generate a random seed s;+l( t ) ,  . . . , s i + N - I ( t ) ,  

2. Complete forwards, i.e. determine the right adjacent sequence by executing 

FOR k := 1 TO N - 2  DO FORj  := 1 TO N - k -  1 DO 
3 i + j ( t + k )  := ~ ; + j - l ( t + k - l )  XOR ( ~ ; + j ( t + k - l )  OR ~ ; + j + l ( t + L - l ) )  

3. Complete backwards, i.e. determine the seed s ; - ~ + ~ ( t ) ,  . . . s;-l(b) by executing 

F O R j  := I TO N -  1 DO FOR k := N -  1 - j  DOWNTO 0 DO 
s ; - j ( f + k )  := ~ ; - j + l ( t + k + l )  XOR ( s i - j + l ( t + k )  OR ~ ; - j + z ( t + k ) )  

4. Load the cellular automaton with the computed seed and produce the output 
sequence up to the length according to the unicity distance. Terminate if the 
produced sequence coincides with the given temporal sequence else go to step 1. 

The algorithm is illustrated by an example with N = 5 as shown in Figure 2. 
Let the seed be { s i , . .  . , s ; + ~ )  = (O,l,O,I, 1). Then, by the boundary conditions, 
( ~ i - ~ ,  . . . , si-1) = ( l , D ,  1, l), and the resulting temporal sequence is obtained as 
(O,O, I, 0,D). According to step 1 of the algorithm the digits 81+1,. . . ?si+4 are cho- 
sen randomly. If s;+1 happens to be 1, then by rule (2) the right adjacent sequence 
produced turns out to be independent of the choice of s,+p, s;+3 and s;+4. (Therefore 
these digits are marked by * in Figure 2.1 Thus there is only one right adjacent 
sequennce wi th  s;+1 = 1. As one can see from Figure 2, this right adjacent sequence is 
in fact correct. Thus with probability 1/2 the correct seed is found in the first trial. 
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1 0  1 1 p J ~ ~ ~ ~  
0 1 0 0 1 0 1  

1 1 1 1 0  
0 0 0  

0 

Generation of temporal sequence. 

m a m m p - J 1 *  * * 
0 1 0 0 1  * *  

1 1 1 1 *  
0 0 0  

0 

Determination of the seed b y  completion backwards. 

Figure 2: Cryptanalysis-a small example. 

The example shows that for a given temporal sequence there may be only few 
right adjacent sequences, and that some of these occur with high probability, e.g., for 
the temporal sequence (O,O,l,O,O) the sequence (l,l,l,O) is generated with probability 
1/2 as right adjacent sequence. The phenomenon as observed in the example also 
arises in a general automaton with arbitrary N .  This is based on the fact that some 
changes in right-hand initial sites have no effect on the given part of the temporal 
sequence or its right adjacent sequence. In fact it has been observed in [7] that the 
effect of a bit change propagates to the left with speed rougly 1/4. By the partial 
linearity of (2) the speed of propagation to the right is 1. This further justifies to 
search for right adjacent rather than for left adjacent sequences. 

In general, a temporal sequence s ; ( t ) ,  . . . , s i ( t  +n  - 1) of length n together with 
the values of R + 1 sites s;+~(  t ) ,  . . . , s;+,+~ ( t )  determines a right adjacent sequence 
si+l(t), ..., s;+l(t+n) of length n + l .  It appears that the number of right adjacent 
sequences strongly depends on the given temporal sequence. In fact for some temporal 
sequences there remain only very few possibilities for the right adjacent sequence. 
Suppose for example that the temporal sequence consists of n consecutive digits 0, 
i.e., s;(t) = s;(t+l)  = . . . = s ; ( t+n- l )  = 0. Let k be the smallest non-negative 
integer with s ; + l ( t t k )  = 1.  Then rule (2) implies that s ;+~( t+k)  = s i+ l ( t+k+l )  = 
. . -  = s;+*(t+n) = 1. Thus the right adjacent sequence ~ ; + ~ ( t ) ,  . . . , ~ i + ~ ( t + n )  can only 
consist of k digits 0 followed by n-k+l  digits 1. Hence in this case the number of 
possible right adjacent sequences grows only linearly in the length n of the temporal 
sequence. By slightly different arguments one can show that a similar result holds for 
temporal sequences consisting of TI consecutive digits 1.  

For arbitrary temporal sequences statistical experiments show that also in general 
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there are only few possibilities for the right adjacent sequence. In Table 1, for every 
N ,  2 5 N 5 17, samples of 100 temporal sequences of length N - 1 have been 
generated. For any of these temporal sequences the number of all possible right 
adjacent sequences have been determined by an exhaustive search over all 2N seeds. 
As a result, for each sample the mean value p and standard deviation D are listed 
in Table 1. Note for example that for N = 17, in the average, there are only about 
42 right adjacent sequences compared to all 217 = 131,072 possible sequences of 
length 17. I; 11.47 

10 15.78 
12 21.64 
14 28.18 
16 37.49 

U 

0.00 
0 .oo 
0.81 
1.67 
2.85 
4.45 
7.03 
9.71 

13.90 

U 

0.00 
0.46 
1.21 
2.38 
3.67 
5.57 
7.72 
10.63 

Table 1: Statistics on the number of right adjacent sequences. 

3 Experimental results 
In this section we report on the results of extensive experiments concerning our crypt- 
analytic algorithm. In these experiments we simulate a known plaintext attack where 
the keys are chosen with uniform probability as seed of the cellular automaton of size 
N (i.e., the size of the keys is N ) .  The problem of cryptanalysis consists in determin- 
ing the seed (or the key) from the produced output sequence, which is assumed to be 
known up to the unicity distance. 

It turns out that the efficiency of our cryptanalytic algorithm strongly depends 
on properties of the known output sequence, i.e., on the chosen key. In fact, the 
algorithm is much more efficient for those keys whose corresponding output sequences 
(or temporal sequences) turn out to have only few right adjacent sequences. As 
pointed out in Section 2, for a cellular automaton with known output sequence the 
search for the original key K ,  (the seed) is equivalent to finding the correct right 
adjacent sequence. Therefore we consider the right adjacent sequence as an equivalent 
key, denoted by Kr. By complttion forwards there is a mapping 

F :  {K,} - {Kr}. ( 5 )  

By assumption, the keys I(, are equiprobable, whereas the keys I(, turn out to have 
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a non-uniform probability distribution determined by the mapping F ,  

For the cellular automaton to be secure, the mapping F is supposed to be complex 
and involved. Thus it has to be assumed that the probability distribution (6) is not 
explicitly known, neither to the cryptographer nor to the cryptanalyst. In particular 
one does not know the most probable keys which in an optimum search would be 
tried first. Therefore the best one can do is to generate the keys K, according to the 
probability distribution (6). This is done by choosing K, randomly according to the 
uniform distribution and to generate the key Kr as the corresponding right adjacent 
sequence. Then the expected number of trials T for finding a particular key I<, can 
be computed as 

1 

which in fact is lowest for the most probable keys. If the cryptanalytic attack is 
required to be successful on every key, the expected number of trials is 

In the average this is much smaller than the number of trials necessary for an ex- 
haustive search over K,, as I{Kr}l << 2 N  (e.g., see Table 1).  Nevertheless for large N 
it may become infeasible to find the key in every case, as I{Kv}I may be too large. 
However it turns out that certain keys K,  appear with high probability P(IC,) (i.e., 
are accidentially generated by the cryptographer with high probability). By (7), the 
expected number of trials for finding such keys may be much smaller than the average 
expected number as obtained in (8). Thus we are in the situation that the algorithm 
may not be able to find the key in every case, but may succeed with a certain success 
probability 6, say S = 0.5. In order to obtain an estimate of the complexity of the 
attack to a given success probability 6, we set up our experiments as follows. 

1. Simulate the cryptographer by choosing a random key K, as seed of the cellular 
automaton. 

2. Simulate a known plaintext situation by generating the output sequence (or the 
temporal sequence) up to the unicity distance. 

3. Apply the cryptanalytic algorithm of Section 2 in order to determine the key K, 
(or K. respectively) and count the number T of trials that have been necessary. 

These steps are repeated a certain -Lumber of times rn, and the required numbers of 
trials are listed in ascending order, TI 5 TZ 5 . . . 5 T,. To obtain an empirical value 
for the average number of trials for success probability 6 we compute the mean value 
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In Table 2 the results of m = 100 experiments are listed for each key size N = 
10,20,. . . ,300, as indicated. The success probability has been chosen to be 6 = 0.5. 
The value log2 p as given in the third and sixth column indicates the eflective Ley sire 
with respect to this success probability 6. 

Key size 

10 
30 
50 
70 
90 

110 
130 
150 
170 
190 
250 

2.9 
10.2 
23.9 

102.6 
270.5 
687.5 

1,626.0 
2,740.3 
9,267.8 

14,s 76.0 
97,583.1 

-- 
log, P 

1.5 
3.4 
4.6 
6.7 
8.1 
9.4 

10.7 
11.4 
13.2 
13.9 
16.6 

Key size 

20 
40 
60 
80 

100 
120 
140 
160 
180 
200 
300 

P 

5.5 
23.0 
73.7 

178.9 
334.1 

1,696.3 
1,956.8 
4,131.3 

10,206.1 
23,367.5 

272,195.6 

2.4 
4.5 
6.2 
7.5 
8.4 

10.7 
10.9 
12.0 
13.3 
14.5 
18.1 

Table 2: Complexity of the attack with success probability 6 = 0.5 for rule (2). (For 
technical reasons the entry for N = 250 corresponds to 6 = 0.44 and for N = 300 to 
6 = 0.27.) 

The results of our experiments allow to estimate the security of the cellular au- 
tomaton for stream cipher applications. In this respect Table 2 shows that the secu- 
rity is quite low for key sizes N 5 300. For larger key size we have to extrapolate 
the average complexity of the attack from the values p obtained for N 5 300. For 
this purpose we observe that the number of right adjacent sequences grows at most 
exponentially in the length n of the sequence, i.e., 

fr(m + n )  5 fr(m)fr(n) (10) 

where fr(n) denotes the number of all possible length n right adjacent sequences 
corresponding to a given temporal sequence. Then (10) implies that the complexity 
of the attack also grows at most exponentially in the length N of the key. 

The derivation of (10) is explained in Figure 3. Let A be the set of all possible 
right adjacent sequences ( ~ ; + ~ ( t ) ,  . . . , ~ ; + ~ ( t + m - l ) )  of length rn, let B be the set of all 
possible right adjacent sequences (si+l(t+m), . . . ,si+l(t+m+n- 1)) of length n, and 
let C be the set of all possible right adjacent sequences ( s i+ l ( t ) ,  . . . ,s;+l(t+m+n-l)) 
of length m+n. Then for any right adjacent sequence {s;+1} in C, the sequence { s : + ~ }  
formed by the first n digits of {s;+1} lies in A, and the sequence { s : + ~ ]  formed by the 
last n digits of {sitl} lies in D. Therefore we have JCI 5 Idl. 101, which proves (10). 
Inequality usually holds in ( l o ) ,  since the site values s,+l(t + m ) ,  . . . ,s , tm(t+ rn) can 
be chosen arbitrarily in generating the set B whereas, in generating the set C, they 
are restricted to conditions caused by the cellular automaton rule (2). Thus there 
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K e y  size p log2p 

50 22.8 4.5 
150 206.2 7.7 
250 1,396.3 10.4 
350 5,457.6 12.4 

may exist pairs ({s:+~}, {s:+~}) in A x B whose concatenation is not a right adjacent 
sequence of length m + n. 

si(t) s;+l(t)  $ . . .  * s;+,(t) * ... * s;+,+,(t) 
* * * ... * * * ... t 

* 
s i ( t+m)  s i + l ( t +  m) * . . .  * si+,,,(t+m) 

K e y  size P log2p 

100 82.8 6.4 
200 423.3 8.7 
300 2,559.3 11.3 
400 14,400.5 13.8 

* * * . . .  * 
* 

* * 

Table 3: Complexity of the attack with success probability 6 = 0.5 for rule (3). 

4 Key Search for Key Sources with Non-uniform 
Probability Distribution 

In Sections 2 and 3 the search for the seed K ,  of a cellular automaton to a given 
output sequence was reduced to finding the correct right adjacent sequence. In this 
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equivalent description the right adjacent sequence was considered as a key K ,  which 
turned out to have a non-uniform probability distribution. In general, for a given 
cryptosystem, knowledge of additional information (e.g., part of the plaintext) may 
result in an equivalent description of the cryptosystem where the keys in the equivalent 
system are no longer equiprobable. Therefore, an analysis of an "exhaustive search" 
for key sources with non-uniform probability distribution is of independent interest. 

Suppose we are given a cryptographic system with key source S. Denote by K: 
the set of d keys and let { P ( k ) ,  k E K} be the probability distribution of the keys. 
It is assumed that the individual probabilities of the keys are unknown (even to the 
cryptographer). If the keys are available in an ordered list K: = {k,, k2,. . . , Icw} the 
cryptanalyst could try all keys in this order until the correct key has been found. If 
this order is independent of the probability distribution, he cannot take any advantage 
of the fact that some keys are more probable than others. An optimum search would 
be to try the keys in the order of decreasing probabilities. Since by assumption this 
order is unknown, the best one can do is to generate the keys by the original key 
source S according to the probability distribution P. Then the expected number of 
trials T for finding a particular key k can be computed as 

which implies that the most probable keys are easiest to find. However, over all keys 
the cryptographer may choose, the expected number of trials is 

This means that in the average, or in long terms, cryptanalysis cannot take advantage 
of the fact that the probability distribution of the keys is not uniform. However the 
situation turns out to be different if the cryptanalyst is contented with finding the 
key only with a certain success probability 6, e.g. 6 = 0.5. 

As in our experiments in Section 3 suppose that the cryptanalyst performs rn 
different attacks on m keys chosen by the cryptographer according to the probabil- 
ity distribution P of the key source S. The required number of trials are listed in 
ascending order TI 5 Tz 5 . . . 5 T,. Then the mean value 

is an empirical value for the average number of trials to a given success probability 6. 
Our aim is to establish a relationship between the expected value of p(rn,6) in (13) 
and the entropy of the key source S. 

Let A c K be a subset of keys. Then a key k produced by the source S accidentally 
lies in A with probability 

P ( A )  = c P ( k ) .  (14) 
CEA 



197 

The expected number of trials T conditioned on the event that  the key, chosen by 
the cryptographer, lies in A is given by 

Lemma 1 For any 6, 0 < 6 < 1, and any subset A c K with P ( A )  > 6, 

Proof. Let B denote the event that at  least [6nl keys, out of the m keys chosen by 
the cryptographer, lie in A. Then the expected value of p(m, 6), conditioned on the 
event B,  satisfies the inequality 

(17)  
I4 

P ( 4  
E[p(m,6)IB] 5 E[TIX:EA]=- 

On the other hand the expected value of p(m, S), conditioned on the complementary 
event of B (denoted by Be) ,  satisfies the inequality 

Since P ( A )  > 6, by the law of large numbers, for any e > 0 there is an integer mo 
such that for all m 2 mo, the event B has probability X = P(B) > 1 - E .  Thus 

E[Cl(m, (511 = E[Cl(m, 6) I BI P ( B )  + E[Cl(m, 6) I B"1 P(B")  
E M m ,  6) I BI + (1 - A )  6) I B'I (19) 

The first term in (19) is bounded by (17), whereas the second term is of the form 
(1 - X)K where I( is bounded by (18). Since the bound (18) is independent of m, 
by choosing E sufficiently small (or equivalently, by choosing rn sufficiently large), the 
second term in (19) can be made arbitrarily small. 0 

Lemma 2 For any 6, 0 < 6 < 1, and any subset A C K: with E = 1 - P ( A )  < 6, 

a 

P a  
liminf E[p(m,6)] 2 -, 
m-oo 

where pa denotes the probability of the most probable key in A,  and where a = 
(6 - &)*/(46). 

Proof. Let k E K and p = P ( k ) .  For 0 < c 1, let P(T < ( p / p )  I k) denote the 
probability of T < P / p ,  conditioned on the event that the cryptographer has chosen 
key k. Then by Bernoulli's inequality we have 

P(T < ( P / P )  I k) = 1 - (1 - P)Lp'p' < 1 - (1 - L P / P M  = l B / P J P  I P 
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Thus  for any key in A ,  

P(T < ( P / P a )  I k) I P(T < ( P / P )  I k) < P,  (21) 

( 2 2 )  

which can be applied to estimate 

P(T < P/Pa) = C P(T < ( P / P ~ )  I k) ~ ( k )  + C P(T < (@/Pa) I k) P ( k ) .  
k € A  k € K - A  

According to  (21), the first term in ( 2 2 )  is bounded by p(1 - E )  < p, whereas the 
second term is trivially bounded by P(K: - A )  = e. Hence 

P(T < @ / p a )  < P + 6. ( 2 3 )  

Let 6, = P(T < P/pa) and 62 = P t E .  Since c < 6, it is possible to choose P such 
that 62 < 6. We will make the choice 62 = (6 + ~ ) / 2 .  Let B denote the event that at 
most 62rn numbers T among TI,. . . , T, are below P / p a .  Then the expected value of 
p(m. 6) conditioned on B satisfies 

Since by ( 2 3 ) ,  6, = P(T < @ / p a )  < S2, it follows, by the law of large numbers, that 
for any 'I > 0 there is an integer rno (depending on 61, 62 and 7 ,  only) such that for 
all rn > mo the event B has probabilty P ( B )  > 1 - 9. Hence 

By choosing m sufficiently large, 7 can be made arbitrarily small. This implies that 
(20) is satisfied with a = (6 - E ) ~ / ( ~ S ) .  

Xow we consider the case where the keys produced by the source S are bit strings 
of length N ,  i.e., A4 = 2 N .  We assume that S is a stationary ergodic source with 
a finite memory according to the model considered in [4]. In this model the state 
of the source is given by the k preceeding output bits ( ~ ~ - 1 , .  . . ,u,,-k). Therefore 
any state has only two possible successors, namely (u,, . . . , Un-k+l) with u, = 0, or 
with u,, = 1. It follows that there is a one-to-one correspondence between the state 
sequence of the source and its output sequence. Therefore the entropy per symbol 
(or state) H s ,  as introduced by Shannon in [5],  can be considered as the entropy per 
ouput bit of the key source (see [4]). As a consequence, Shannon's Theorem 3 in [5] 
can be applied, which is stated here as follows. 

Theorem 3 (Shannon) For any E > 0 and 77 > 0 there exists an integer No such 
that for all N 2 No, there is a set A c K: with probability P ( A )  > 1 - E such that the 
probability of any element in A lies within the bounds 

(26) 

(27) 

~ - ( H s + v ) N  < < ~ - ( H s - v ) N .  - P -  

AS a consequence the cardinality of A lies within the bounds 

2(HS-V)N < 5 2 ( H S + V ) N .  - 
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In Theorem 3 we may choose E < min(6,l - 6) in order to apply Lemma 1 and 
Lemma 2, and thus we obtain 

or by taking logarithms and dividing by N ,  

By choosing N sufficiently large, e and 
time Q approaches the value 6/4. Thus we have proved the following theorem. 0 

can be made arbitrarily small. At the same 

Theorem 4 An ergodic stationary k e y  source S with a finite memory satisfies 
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