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Abstract. A new method to detect damages on crates oP beverages is 
investigated. It is based on a pattern-recognition-system by an artificial neural 
network (ANN) with a feedforward multilayer-perceptron topology. The sorting 
criterion is obtained by mechanical vibration analysis which provides 
characteristic frequency spectra for all possible damage cases and crate models. 
To support the network training, a large number of numerical dala-sets is 
calculated by finite-element-method (FEM). The combination of artificial 
neural networks with methods oP numerical simulation is a powerlul instrument 
to cover the broad range oP possible damages. First results are discussed with 
respect to the influence of modelling inaccuracies of the finite-element-model 
and the support of A N N  by training-data obtained from numerical simulation. 

1 Introduction 

Based on the prqject-idea to improve the quality requirements on deposit systems and 
filling lines in the beverage industry [I], a new recognition method is presented in the 
current contribution. The increasing variety of crate models complicates the sorting as 
well as added impurities and ageing of the material. Therefore, functional sorting 
systems are needed for the inspection of returned reusable crates of beverages which 
are mainly sorted by optical systems in industrial automatic filling lines. The general 
problem of these lines is the detection of small and hidden damages. 

The scientific motivation results from some contributions in aerospace, civil 
engineering, seismic research and some basic mechanical engineering problems. They 
describe methods to detect damages and failures in structures using frequency 
response and transient response data of vibrating mechanical systems ([2], [3], [4]). 
Also numerical simulation on frequency response methods of different examples as 
plates, beams, bridges, buildings have been done with good agreement on 
experimental results (1.51, 161). Further research show the capability of artificial neural 
networks (ANN) in different topologies to classify some damages of structures which 
receive data out of different vibration based analysis (171, 181). This short review 
shows that the basic principles have been proven on buildings, aircraft-wings, beams 
and plates by different authors. The combination of all these principles to get finite- 
element (FE) supported ANN trained by numerical simulated data-sets have been 
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taken mainly at simple structures like plates, beams and strongly simplified models 
(191, [lo]), where also some problems to get fitting results with this technique are 
discussed [ I  I ] .  This also underlines that there is not an overall solution and each 
single case needs its special adaptation. 

The following contribution will apply the methods to the complex structure of a 
crate of beverage. The basic idea and the feasibility of the method have been reported 
in [12]. The development of a pattern-recognition-system for damaged polyethylene 
crates of beverages is carried out on the principle of mechanical excitation and 
frequency response measurement. The aim of the system is to take advantage of these 
reliable mechanical methods and combine them with the quick, adaptive pattern 
recognition of ANN which allows automatic sorting. Additionally, numerical 
simulation of the mechanical system provides many information about the system 
behaviour for the planning of the experimental device and for further use in network 
training. Typical damages as flaws, deformations or separated components are 
considered in the current contribution. 

2 Analysis 

In order to meet the principle objectives of the system, the damage detection of 
polyethylene crates of beverages, based on the pattern recognition of vibration 
response analysis data is established. This technique is taking advantage of the 
property of mechanical systems to transmit signals through the whole structure. The 
vibration response of damaged crates or crates of different kind vary from that of a 
standard (undamaged) crate. The difference is used as a criterion to select individual 
crates. The pattern recognition of various response spectra is done by ANN. Since a 
large number of possible damages occur, the training is carried out with data obtained 
from experimental analysis and from numerical simulation. Also the data reduction 
(pre-processing) of the response spectra to an appropriate amount of characteristic 
input data is described. 

In the experimental part of the present project a mechanical excitation is applied to 
a crate of beverage. Therefore, a customary polyethylene crate is fixed on an 
electrodynamic vibration facility (see figure 1). Control by a PC-control-system 
provides a sinusoidal vertical movement of the shaker-piston where the crate is fixed 
on a central position on a specially constructed expander. The excitation is carried out 
over a sweep of a frequency range from 50 to 1000 Hz, controlled by an amplitude of 
constant power with a starting acceleration of 75 m/s2 which also is the reference for 
the system calibration. This excitation does not cause any visible destruction or plastic 
deformation to the crates. The system answer is recorded separately as an acceleration 
signal over the whole frequency range at different locations on the crate by several 
acceleration-sensors. Mainly observed for the described results is one control sensor 
at the expander and one reference sensor on the middle of the handle of the crates. All 
kind of crates and damages can be processed in this way. In the present case, 20 crates 
with different, empirically evaluated damages are used to cover a basic range of 
damages. Flaws, deformations, separated components on sides, handles, 
compartments and also multiple damages as well as three different models are 
inspected. 
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Fig. 1. Vibration system at the laboratory 

The vibrational motion can be described mathematically by the general equation of 
motion (1) which is the basis for the numerical analysis of the system. In a finite- 
element model inertia (M), damping (D), stiffness (K) of the model are determined by 
the geometry and the material properties. The force f(t) defines the excitation, and u 
represents the displacement vector of all degrees of freedom of the discretized model. 

From modal analysis it is known, that the displacement vector {u} can be 
expressed as a series of superposed eigenmodes Qi with different amplitudes ti . 

The natural frequencies of a structure are the frequencies at which the structure 
naturally tends to vibrate if it is subjected to a disturbance. The deformed shape of a 
structure at a specific natural frequency is called its mode shape of vibration. Natural 
frequencies and mode shapes are functions of the structural properties (e.g. material 
parameters, geometry). All the modes and frequencies are system immanent. If the 
excitation frequency is equal to one of the natural frequencies the response- 
amplitudes become very large. This is called resonance. In the case of enforced 
motion, the amplitude and the phase of the vibration at a distinct point are recorded. 
Excitation in the representative frequency range results in associated response 
frequency spectra which are specific for each observed measurement point as well as 
for each geometry, including damages, and different material properties. 

Based on this knowledge, numerical simulation is carried out in order to provide 
both, insight into the basic vibration behaviour and frequency response spectra for the 
training of the ANN. The evaluation of the mode shapes ensures the optimisation of 
the experiment and can guide through it. In pre-test planning stages standard mode 
shapes can be used to indicate the best location for the accelerometers and for the 
position of excitation [13]. Furthermore, there is an enormous need of data-sets for the 
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network-training and network-testing, that represent a wide range o f  crates o f  equal 
damages and also a wide variety o f  possible damages, whose experimental data 
collection is very costly. These data-sets can be produced in a more efficient way by 
numerical simulation. 

A CAD-data-set is automatically meshed with support o f  the pre-processor 
MSCIPATRAN, which leads to a model o f  more than 1.000.000 degrees o f  freedom. 
Two different element types are deployed, 4 node (TET4) and 10 node (TETIO) 
tetrahedral elements [14]. The finite-element-solver MSCNASTRAN is configured to 
a frequency response analysis to calculate comparable spectra o f  the vibration 
behaviour o f  the crates, intact as well as damaged. For this purpose some 
simplifications are done within the configuration. Therefore, usually the first step is 
the calculation o f  mode shapes and natural frequencies. No damping is used which 
leads to results that characterise the basic dynamic behaviour o f  the structure and 
indicate how the structure will respond to dynamic loading. T o  simulate frequency- 
response-spectra another method is applied, which uses the technique o f  the large- 
mass-principle, where applied forces are used in conjunction with concentrated 
masses (see [ I  51, [ I  61, [ I  71 for further information). These spectra are validated by 
comparison with the experimental data and by optimisation o f  the parameters and the 
simulation configuration o f  the system and the solver. The validated numerical 
database now is applicable for any possible damage case in further simulations. This 
data can be included into the training-data-set to enhance experimental training-data 
and cover a broad range o f  possible damages. 

The third part o f  the system, the pattern recognition by ANN, is done with a 
multilayer-perceptron (MLP) network. As also reported by 1181 the MLP is proved to 
be an appropriate topology for the desired classification. A network with 10 input 
nodes and 5 nodes in the hidden layer, all connected in forward direction, is built up 
in order to classify the signal in 2 output nodes as "intact" or "damaged" (figure 2). 

i npu t - layer  h i d d e n  output- layer - layer  

c lassi f icat ion m 
Fig. 2. Multilayer-perceptron network 

The initial worths o f  each input are summed up and weighted in the nodes by 

leading to the activation o f  each node by the common type o f  a sigmoid transfer 
function 
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Here x, is the activity of the j-th input node and Si (2)  is the activity of the i-th 

hidden layer node. This effects a binary output, which leads in the output layer to the 
prediction of each output node to a " 1 "  for true and a " 0  for false, as also reported by 
[19]. Starting with a random weight w,, of each connection the supervised learning 
algorithm resilient propagation (RPROP) is used for the network training to adjust the 
weights of the initial connections to minimise errors between network output and the 
output target. For this feed-forward network RPROP performs a fast and robust 
learning algorithm, which adjusts the interconnecting weights by adapting each 
weight automatically in order to minimise the error function by correcting them 
because of the gradients algebraic sign ([20], [21]). As ANN are only able to process 
data in a certain format, data-reduction by splitting and integrating the spectra yields a 
suitable amount of data for the input nodes. Each input node processes a normalised 
past of response range and is not dependent on any previous knowledge about the 
model behaviour. A minimum of non-redundant data-sets is needed for training (20 to 
50 different cases at the moment). This number depends on the variety of the 
damages. The implementation of more crate models will cause more training-data- 
sets. 

3 Results and Discussion 

The mode shape analysis gives insight into the preferred state of motion of the 
mechanical structure. Therefore, it can be evaluated in order to choose sensor 
positions which provide a high degree of sensitivity. For example, in figure 3, the fifth 
mode shape is shown. The region around the handles is strongly deformed. This 
means, that a sensor placed on the handle would record a high amplitude. A damaged 
handle would be recognised because of a different mode shape at a different 
frequency. 

The experimental results show, concerning the feasibility of the damage 
recognition method, that different cases of detected spectra show different peaks with 
different amplitudes and positions depending on the damages. See figure 4 for typical 
vibration spectra at one reference point on the handle of an intact and two damaged 
crates. 

It can be stated that damages on crates of beverages can be identified by the 
comparison of vibration spectra. Also the small and hidden damage in the 
compartment is observable. In detail, the peaks are specific in position and size, 
especially in two main regions from 120 to 250 Hz and from about 400 to 850 Hz. 
This is mainly due to the geometry modifications of every sample. The reproducibility 
of the spectra measured by the described method is possible in all cases. This is 
proved by repeated measurements. However, to obtain data-sets, which are to be 
expected in an industrial environment, data of up to 5% perturbation in amplitude are 
produced by artificial inaccuracies during the measurement process, which offers a 
pool of about 300 data-sets. Further investigations show that some very small 
damages (e.g. very small flaws) are better observable, if more than one spectra of 
different measurement points is taken into account. 
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Fig. 3. Fifth mode shape at 243 Hz 
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Fig. 4. Examples of vibration spectra of two different damages (handle reference point) 

In order to limit the degrees of freedom of the ANN, the number of input nodes has 
been limited to 10. This requires a reduction of the spectrum data-sets by a factor of 
hundred. Different methods have been applied. Splitting the spectrum into ten parts 
and integration of each part leads to an appropriate data reduction. Scaling, 
normalising, shifting or calculating of for example inertia moments did not improve 
the results. Figure 5 shows four different cases, where the input values of the nodes 
are displayed as bars. The data-reduction for both numerically and experimentally 
obtained spectra is carried out in the same way. 
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handle damage intact crate other type compartment d. 

Fig. 5. Input data for ANN, bar plot of four different cases 

3.1 ANN trained by experimental data-sets 

In a first step, the ANN is processing exclusively experimental data in order to prove 
the feasibility of the pattern-recognition-system. The configuration of the network has 
been modified in order to analyse the sensitivity of the net topology. In all tests a 
MLP is used, trained by RPROP algorithm. Using more than 10 input nodes and more 
than 5 hidden nodes did not lead to any improvement in the prediction. Using less 
nodes resulted in worse predictions. If more output nodes are used, additional features 
of damages can be classified. For example a detection of different damage classes 
(e.g. "broken handle" or "broken compartment") is then possible. Damages that can 
not be identified, are automatically put into the class of "unknown" damages. The 
10x5~2 network yields a prediction of the defined output values ("1" and " 0 )  with an 
accuracy of about 5% for all the data-sets. 

3.2 ANN trained by a combination of numerical and experimental data-sets 

The frequency response obtained by numerical simulation has to agree with the 
experimental data in order to make sure that both methods can be applied. 
Experimental and numerical data of a frequency response analysis obtained by the use 
of 4 node and 10 node tetrahedral elements for an intact crate are shown in figure 6. 

It can be stated, that the observable main characteristics of the curves are similar. 
In addition, there are two regions of interest where the numerical data are similar to 
those of the experimental response (around 200 Hz and above 500 Hz). It is obvious 
that the simulation by the 10 node element model is closer to the experimental spectra 
than the 4 node element model. Further improvement of the agreement of the numeric 
simulation with the experiment is required. Nevertheless, simulations of damaged 
crates have been carried out in order to investigate their accuracy. As in the measured 
spectra (see figure 4) it can be stated that damages can be identified by comparison of 
the spectra. To estimate their quality, the comparison of numerical and experimental 
data of a handle damage is presented in figure 7. 
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Fig. 6. Comparison of experimental and numerical spectra simulated by 4 node and 10 node 
tetrahedral elements (handle reference point) 
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Fig. 7. Comparison of experimental and numerical handle damage (handle reference point) 

The calculated response spectra as well as the experimental response spectra show 
net changes of peak size and location in similar frequency ranges. The difference 
between model and measurement of the undamaged crate in the example is, as [ l l ]  
reported for a cracked beam, in the order of the change that the damage on the handle 
causes in measurement as well as in the simulation data. Because of this overlapping, 
it is important to be aware of the problem of false indication of damage in the two 
categories "false-positive" (indication of damage when none is present) and "false- 
negative" (no indication of damage when damage is present) [19]. However, other 
damages and other crate models cause serious changes in the spectra so that these 
cases differ significantly, which allows their classification. 
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At the moment, the objective o f  a training without experimental data-sets o f  these 
complex model is not yet met. Due to the existing difference between the numerical 
data-sets and the experimental data-sets, at the moment only an additional support use 
o f  the numerical data-sets is possible. Nevertheless, these first results point out the 
feasibility o f  network-training with simulated data. As the quality o f  the numerical 
simulation will be improved and data-reduction will be refined the classification is 
expected to become better. 

4 Conclusion and Perspectives 

In the present contribution, a pattern recognition method has been developed in order 
to detect damages on crates o f  beverages. Therefore, vibration response data o f  both 
damaged and intact crates have been recorded. Net differences can be observed with 
respect to the intact crate in all analysed damage cases. As the attempt is to use as less 
as possible "expest know-how", an ANN has been trained such that the detection o f  
damaged crates is possible in all cases. Finite-element-simulation is carried out to 
analyse the mode shapes and in order to obtain data for the ANN-training. An 
updating o f  the FE-model meshing with ten node tetrahedral elements causes an 
enhancement o f  the agreement to measured data. While in the FE-data, damages can 
also be recognised easily, the agreement between experimental data and numerical 
data is not yet satisfying with regard to the little changes o f  some damages. Moreover 
the FE-data are exploited to get insight into the basic vibration behaviour. This is 
important to determine locations where sensors can be placed in order to obtain 
damage-representative data. The data reduction by splitting the spectra in equal sized 
parts and integration o f  each past over the individual frequency range has been proved 
to be an appropriate method. 

The next steps in the current project will consist o f  a further improvement o f  the 
agreement between numerical and experimental data. This might be obtained by an 
anisotropic behaviour o f  the sensor or the idealised material parameters in the 
numerical model. Further improvement in availability o f  data is expected from the use 
o f  more than one measurement point on a crate and more data-sets to assure the 
reliability o f  the prediction o f  the ANN. 

As a long term objective ageing or micro damages should be recognised by the 
system. For application o f  the method in an industrial context a reduction o f  the cycle 
time is required. While at the moment the cycle time is about 20 seconds, it has to be 
reached a level o f  one to two seconds. This can be obtained, i f  the excitation can be 
modified such that a shock excitation replaces the sinusoidal sweep which represents 
the bottle-neck o f  the current procedure. Also alternative processes are possible for 
the measurement o f  vibration signals, for example using contactless measurement 
systems or directly the signals on gripper devices. 
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