
OpenMP Parallelism for Multi-dimensional
Grid- Adaptive Magnetohydrodynamic

Simulations

R. ~ e ~ ~ e n s ' and G. ~ 6 t h ~

FOM-Instituut voor Plasma-Fysica Rijnhuizen, P.O. Box 1207,
3430 BE Nieuwegein, The Netherlands

Department of Atomic Physics, Eotvos University,
PAzmAny Pkter sktAny 1, 1117 Budapest, Hungary

Abstract. First results on the parallelism achieved by both automated
and manually controlled opedW3 programming are reported for 2D and
3D magnetohydrodynamic computations. The simulations exploit adap-
tive mesh refinement, capable of capturing flow features like shocks and
other sharp discontinuities accurately and efficiently. Implement at ion de-
tails are discussed, alongside with their scaling properties on realistic
plasma flow simulations.

1 Introduction

This paper focuses on the parallelization of a general-purpose software package
- AMRVAC - for grid-adaptive numerical simulations. The AMRVAC package
combines the versatility of the Versatile Advection Code (vA@) with the advan-
tages of Adaptive Mesh Refinement (AMR). AMRVAC [5, 4, 81 is particularly
suited for time-evolving physical systems governed by (near-) conservation laws,
e.g. the ideal magnetohydrodynamic (MHD) equations expressing conservation
of mass, momentum, energy, and magnetic flux. The generality of the software
resides in (i) a choice of the actual equations to solve for; (ii) a total indepen-
dence of the implementation on the dimensionality of the problem (ID, 1.5D, 2D,
2.5D and 3D configurations are possible thanks to the LASY syntax [Ill); and
(iii) the availability of several high-resolut ion, shock-capt uring spatial discretiza-
t ion~. Its grid-adaptivity follows an AMR technique, for which data structures
and algorithmic issues handling the automated production of subgrids have been
introduced by Berger [I]. Only fairly recently, this solution adaptive regridding
strategy has been applied in multi-dimensional MHD simulations [lo, 3, 91.

We recall that the AMR process involves the generation and destruction of
hierarchically nested grids of subsequently finer resolution. In Keppens et al. [5],
we concentrated on algorithmic improvements of the regridding and evaluated
obtainable efficiencies by dynamic meshing for a variety of ID, 2D and 3D prob-
lems. This 'efficiency' was characterized by the reduction in serial execution

See h t t p : //www . openmp . org.
See h t t p : //www . phys . uu. n l /wtoth

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2329, pp. 940-949,2002.
O Springer-Verlag Berlin Heidelberg 2002

OpenMP Parallelism 941

times when comparing high resolution static grid simulations with correspond-
ing AMR runs. In the latter simulations, fine meshes are triggered only when and
where needed, significantly reducing computing costs. Furthermore, the memory
requirements drop accordingly (by an order of magnitude for a 2D hydrodynamic
shock problem as shown in [8]), allowing for much more realistic simulations of
plasma behavior in regimes where both large-scale and small-scale structures are
dynamically import ant.

X
Fig. 1. A snapshot of the density (Schlieren contour plot) and the flow field at time
t = 20 in a 2D resistive MHD reconnection simulation. The grid structure on the finest
level 1 = 4 is indicated.

1.1 Grid- Adaptive Magnet ofluid Simulations

Figs. 1-2 illustrate two MHD applications which greatly benefit from dyna-
mically evolving meshes. Fig. 1 shows a snapshot of the density structure and
the plasma flow field in a 2D magnetic reconnection problem. The setup is taken
from [12] and considers a sideways (x-direction) mass inflow from x = *1 at an
Alfvkn Mach number MA = 0.04 and a plasma beta p(x = 1) = 1.5. The latter

942 R. Keppens and G.T6th

Fig. 2. The evolution of the density in a sinuously unstable, super-Alfvknic wake flow.
Three periodic segments are shown at times t = 110 and t = 150.

quantity measures the ratio of thermal to magnetic pressure ,O = 2 ~ 1 ~ ~ . We
start from a static, isothermal equilibrium state where Bx = 0, By = tanh(l0x)
and the pressure profile is given by p(x) = 0.5 B; (x = 1) [,O(x = 1) + 11 - B; (x) 12.
Due to a spatially localized anomalous resistivity which allows for topological
changes in the magnetic field structure around the origin, the initial magnetic
field variation changes into an X-shaped feature centered on the origin. Sym-
metry arguments may reduce the simulated domain to a quadrant, the central
region of which is shown in Fig. 1. We allowed for 4 grid levels, such that we
locally achieve a resolution where (Ax, Ay) = (0.0025,0.005). Only the high-
est grid level structure, which nicely traces the locations of steep gradients, is
indicated in the figure. As a second example, Fig. 2 shows the temporal evo-
lution of the density in a supersonic (Mach number M = 3), super-Alfvknic
MA = 5 wake. The problem description is given by a planar velocity profile
v = [l - sech(y)]ex pervaded by a 3D magnetic field configuration with com-
ponents given by Bx = A tanh(y), Bz = A sech(y). The stability properties
of such current carrying, shear flow states were analyzed in [2]. Cross-stream
(vertical in the figure) perturbations lead under the chosen parameter values to
transverse striations of the wake, accompanied by rightwardly traveling compres-
sive variations reaching far out in the cross-stream direction. These ultimately

OpenMP Parallelism 943

lead to magnetosonic shock fronts, clearly visible in the density evolution (bot-
tom panel of the figure). The simulation shown in Fig. 2 exploited three grid
levels, with a base resolution of 100 x 200 per periodic segment, locally reaching
800 x 1600. Again, the finest level grids (not shown) only cover regions with
sharp flow features, and at all times maximally covered about 20% of the com-
putat ional domain.

1.2 Parallel A M R

The data structures used in AMRVAC are discussed in [8]. It should be noted
that the Berger [I] approach to create higher level (i.e., finer) grids fits these
grids optimally to the flow details, so that possibly many different sized grids
are present on a certain grid level (see, e.g. Fig. 1). Their different sizes pose a
potential load-balancing problem when parallelizing a mesh refinement code over
the grids. This difficulty can be overcome by reformulating the original AMR
procedure to enforce the creation of equally sized blocks, as realized in parallel
MPI implementations in [9, 71. Without switching to this block-adaptive strategy,
virtually shared memory parallelization for C C N U M A ~ architectures making use of
OpenMP offers a viable alternative to parallel grid-adaptive simulations. In [4],
first attempts with auto-parallelization on the SGI Origin 3800 were reported:
while linear scaling was demonstrated for non-adaptive, Domain Decomposi-
t ion (DD) usage of AMRVAC , experiments with fully grid-adapt ive simulations
showed no speedup. In the remaining of this paper, we detail that a suitable ma-
nual OpenMP parallelization effort is able to achieve fair to good scaling properties
for multi-dimensional, mult i-level AMR calculations.

2 OpenMP Parallelization

2.1 Automated versus Manual OpenMP Parallelism

At a minimal effort, we can rely on the present version (7.3.1.2m) of the MIPSpro
Fortran 90 compiler as available on the SGI Origin 3800 at Amsterdam to au-
tomatically generate parallel code. This auto-parallelization almost necessarily
parallelizes individual do loops, which should contain sufficient, parallelizable op-
erations. For AMRVAC, most computations are associated with the discretized
explicit time advancing of the set of unknowns (like density p, momenta p v ,
energy e, and magnetic field B for MHD problems) for each individual grid at a
certain AMR level. Since this coincides with the lowest level subroutines in the
AMRVAC calling tree, we expect the automated parallelization to scale well, as
long as there is sufficient work to be done on each grid seperately.

This is indeed confirmed by timing experiments of AMRVAC shown in Fig. 3
for a full 3D MHD jet simulation. The problem is taken from Keppens and
T6th [6], and considers a cylindrical jet flow with v = Vo tanh(r-Rjet)/O.lRjetex,
in a uniform magnetic field B = Boex, when the shear flow about radius r = Rjet

ccNUMA: cache coherent Non-Uniform Memory Access.

944 R. Keppens and G.T6th

DIP usage of AMRVAC DIP usage of AMRVAC

1 40 MHD jet simulation 1 2 3D MHD jet 64 blocks (203) - .:..

I Auto

1 10 1 10
Number of processors Number of processors

Fig. 3. Scaling behavior of both automated and manual parallelism on a 3D MHD
simulation using AMRVAC as a Domain Decompositioner. L e f t panel: changing the
number of blocks in accord with the number of processors. Right panel: running a fixed
number of blocks on a varying number of processors. In both panels, the total problem
size is kept constant.

is Kelvin-Helmholtz destabilized. Note that we fixed the number of refinement
levels to one, so AMRVAC is only used as a Domain Decompositioner. Hence,
the grid does not adjust dynamically, but is merely split into size-controlled
equal blocks. The left panel of Fig. 3 shows that the automated paralleliza-
tion can even achieve superlinear speedup behavior as we split a fixed size 3D
problem of resolution 52 x 104 x 104 in N blocks and run the N-block case
on N processors. The scaling continues up to 16 processors, but no longer im-
proves when going to 32 processors as the block size of the domains becomes
263. The superlinearity at lower processor numbers is due to better cache usage
when the block size changes from the single processor run. Unfortunately, in our
dimension-independent, general implementation the cache usage is difficult to
control actively (as an indication, we probably reach at most 10% of the peak
performance on 1 processor for this particular problem).

The right panel in Fig. 3 confirms that the individual block size is the crit-
ical factor for parallel efficiency in auto-parallelized code. The same 3D MHD
problem was now run on a 803 grid, first split into 64 blocks of size 203 and
subsequently run on 1, 2, 4, 8, and 16 processors. A second timing measurement
is also shown, where the 803 problem is always split into 512 blocks of size lo3.
While the latter experiment shows no speedup at all, the first one reaches a
speedup of 2.7 on 4 processors, with a marginal 'gain' up to 3.3 on 8 processors.
Clearly, the low-level parallelism achieved by the compiler is easily lost when
grids become too small.

In the following section 2.2, we outline how we made use of manually inserted
OpenMP directives to bring the parallelism of the code to its natural level, namely

OpenMP Parallelism 945

to allow for parallel execution over the grids present at any individual level. Both
panels of Fig. 3 also show the achieved speedups in this manually parallelized
mode for all three DD experiments discussed above. Ideally, since the load bal-
ance is optimal in these cases, linear speedup can be obtained. In fact, we reach a
speedup of 20 on 32 processors in the blocksize-adjusted experiment (left panel),
while the speedup on 16 processors for the 512 and 64 block run is 6.34 and 8.95,
respectively. With these scalings, we clearly outperform the automated parallel
executions, although there is still room for improvement.

2.2 Implement at ion Details

The manual OpenMP parallelization of our adaptive mesh refinement code con-
centrates on the most time consuming parts of the code: denoting the set of
unknowns at time tn on grid i, at grid level 1 as Uy (i,, 1), where the subscript j
indicates a cell index within the grid i,, a partial step of an explicit conservative
update can be denoted as:

In this expression, the numerical fluxes at the cell interfaces fcl12 and f7-l12
are calculated from the known time level Un with a certain stencil in the cell
index range j . Note that the temporal Atn (1) and spatial Ax(1) increments vary
from level to level. By surrounding each grid i, on level 1 with a border of ghost
cells conform with the stencil of the flux evaluation, this operation can be done
in parallel over the collection of grids i, on level 1. In pseudocode, this is achieved
as follows

if (level==l) then
!$omp parallel do &
! $omp& shared(leve1, dt) private (igrid) schedule (static)
do igrid= 1,ngrids

call process-grid(igrid,level,dt)
end do

else
!$omp parallel do &
! $omp& shared(leve1 ,dt) private (igrid) schedule (dynamic)
do igrid= 1,ngrids

call process-grid(igrid,level,dt)
end do

endif

The number of grids on level 'level' is given by ngrids, and these are indexed
by igrid. Since the number of grids on level 1 = 1 is fully controlled by setting the
overall computational domain and imposing a maximal size for an individual grid
at pre-processing, we enforce st at ic scheduling there. This ensures a perfect load
balance on level 1 = 1. At higher levels, the number of grids varies unpredictably

946 R. Keppens and G.T6th

and their size is only controlled in upper bound. Therefore, we resort to dynamic
scheduling.

While the code segment above is responsible for most of the obtained paral-
lelism, there are in total five instances in the code where work has to be done for
all grids at a certain level. Apart from the partial advance step, they correspond
to filling the ghost cells for all grids at a certain level, adding a source term,
making an error estimate (needed to flag cells which need refinement), and up-
dating all grids at a certain level by information available from overlapping finer
level grids. We have inserted OpenMP directives to allow for parallel execution of
all these five level-wide computations.

I ?D HD Raylriglr-Taylor

n n
Number of processors

Fig. 4. Scaling of a realistic 2D hydrodynamic simulation exploiting AMR with 5 levels.
The total scaling is from timings of actual simulations up to time t = 0.5. Individual
contributions from time advancing, filling ghost cells ('BC') and error estimation plus
updates ('AMR') are indicated.

2.3 Scaling Results for Full Grid- Adaptive Computations

To evaluate full grid-adaptive parallelism, beyond the DD usage as discussed
in section 2.1, we perform timings for a realistic application. We set up a 2D
hydrodynamic simulation of a Rayleigh-Taylor unstable configuration where a
heavy compressible fluid rests on top of a lighter one (density contrast of 10)
in an external gravitational field. We simulate on a [O , l] x [O , l] domain, with
gravity g = -e, pointing downwards. We let a dense fluid with pd,,,, = 1 rest on
top of a light fluid with Plight = 0.1 above the interface yint = 0.8 + 0.05 sin 87rx,

OpenMP Parallelism 947

so that 4 wavelengths are present in the domain at t = 0. The pressure field is
set from a centered differenced hydrostatic balance d p l d y = -p, ensuring that
the pressure about yint equals unity. We allow for 5 refinement levels, with a
base resolution of 48 x 48 and refinement ratios between consecutive levels fixed
to 2. Regridding is done every sixth timestep per level, and as advocated in [5],
we use a different spatial discretization on the finest level than on all underlying
levels. To account for the effect of many refinements happening in a true AMR
simulation, we perform timings of simulations running till time t = 0.5, up to
which point 228 time steps have been taken on the coarsest level. To make this a
tough test for the load balancing on levels I > 1, we enforce a maximal grid size
of 24 x 24, ensuring the creation of many small-sized grids. Not unexpectedly,
automated parallelization fails completely on this problem.

Fig. 5. A snapshot of the simulation used in the scaling experiment from Fig. 4. The
density structure on the unit square is shown at time t = 1.75.

The result of the timings of this simulation up to 16 processors on the SGI
Origin 3800 are shown in Fig. 4. We get a speedup of 2.9 on 4 processors, which

948 R. Keppens and G.T6th

only marginally improves up to 4.9 on 16 processors. If we analyze the obtained
parallelism over the parallelized code segments discussed above, the most time
consuming part - the partial advancing and the source term additions - scales
best with a speedup of 6.2 on 16 processors. The ghost cell filling takes up
a significant fraction (up to 32 % for the 4 processor run) of the computing
time in this experiment due to the small maximal grid size enforced. As this is
even more influenced by different grid sizes, this is responsible for the worsened
scaling. The part indicated by AMR in Fig. 4 scales even less, but this combined
time spent on error estimation and updating coarser from finer levels amounts
to only 13 % of the total computing time on 4 processors. Overall, the obtained
parallelism is in fact quite encouraging, given the severity of the test. Our timings
indicate that for this particular 2D hydro simulation, it is beneficial to use up to
4 processors. We continued the calculation in that fashion and show a snapshot
of the density field at time t = 1.75 in Fig. 5. Note the intricate small-scale
structure developing in this mixing process.

3 Conclusions and Outlook

On the multi-processor ccNUMA architecture of the SGI Origin 3800, we eva-
luated both automated and manually parallelized AMR simulations of 2D and
3D MHD problems. Automated parallelization can achieve linear scaling for
non-adaptive, Domain Decomposition approaches as long as the block size per
processor is of order 203 or higher for the 3D MHD simulations discussed. As
yet, automated parallelizat ion is inadequate for mult i-level AMR runs. However,
a rather straightforward manual parallelization strategy relies on dynamically
scheduled OpenMP 'threads' to execute the time integration of multiple grids at
the same AMR grid level in parallel. With this strategy, we demonstrated fair
to good scaling properties for realistic multi-level applications. A more extensive
set of timing measurements for a set of problems differing in complexity (pure
hydrodynamic or full MHD simulations) and dimensionality (ID through 3D)
will be a valuable extension to this work. The AMRVAC package will be used
for multi-dimensional magnetized plasma studies where both global and local
phenomena play an equally important role in the dynamics. With the ongoing
developments in the OpenMP effort to become a portable standard for shared
memory parallelism, it seems fair to state that OpenMP parallelism for dynami-
cally regridded mult i-dimensional computations offers a promising alternative to
message passing implement at ions.

Acknowledgements. This work was performed as part of the research
programme of the 'Stichting voor Fundamenteel Onderzoek der Materie' (FOM)
and Euratom, with financial support from the 'Nederlandse Organisat ie voor
Wetenschappelijk Onderzoek' (NWO) and computing resources by 'Nationale
Computer Faciliteiten' . G.T. has been partly supported by the Education Min-
istry of Hungary (grant No. FKFP-0242-2000) and the Hungarian Science Foun-

OpenMP Parallelism 949

dation (OTKA, grant No. D-25519). R.K. thanks Peter Michielse (SGI Nether-
lands) for the OpenMP workshop (oct . 2001) which led to code improvements.

References

1. Berger, M. J. : Data structures for adaptive grid generation, SIAM J. Sci. Stat. Com-
put. 7(3), 904 (1986)

2. Dahlburg, R.B., Keppens, R., Einaudi, G.: The compressible evolution of the super-
Alfvknic magnetized wake, Phys. of Plasmas 8(5), 1697-1706 (2001)

3. Friedel, H., Grauer, R., Marliani, C.: Adaptive mesh Refinement for Singular Cur-
rent Sheets in Incompressible Magnetohydrodynamic Flows, J . Comput. Phys. 134,
190-198 (1997)

4. Keppens, R., Nool, M., Goedbloed, J.P.: Zooming in on 3D magnetized plasmas
with grid-adaptive simulations, in Parallel Computational Fluid Dynamics - Recent
Developments and Advances, edited by P. Wilders et al. (Elsevier Science B.V., in
press 2002)

5. Keppens, R., Nool, M., T6th, G., Goedbloed, J.P.: Adaptive mesh refinement for
conservative systems: mult i-dimensional efficiency evaluation, submitted to J. Com-
put. Phys. (2001)

6. Keppens, R., T6th, G. : Nonlinear dynamics of Kelvin-Helmholtz unstable magne-
tized jets: Three-dimensional effects, Phys. of Plasmas 6(5), 1461-1469 (1999)

7. MacNeice, P., Olson, K.M., Mobarry, C., de Fainchtein, R., Packer, C.:
PARAMESH: A parallel adaptive mesh refinement community toolkit, Comp. Phys.
Comm. 126, 330 (2000)

8. Nool, M., Keppens, R. : AMRVAC: a multidimensional grid-adaptive magnetofluid
dynamics code, submitted to Comp. Methods in Applied Math. (2001)

9. Powell, K.G., Roe, P.L., Linde, T. J., Gombosi,T. I., De Zeeuw, D.L.: A Solution-
Adaptive Upwind Scheme for Ideal Magnetohydrodynamics, J . Comput. Phys. 154,
284-309 (1999)

10. Steiner, O., Knolker, M., Schussler, M. : Dynamic interaction of convection with
magnetic flux sheets: first results of a new MHD code, in Proc. NATO advanced re-
search workshop ASI Series C-433, Solar Surface Magnetism, edited by R.J. Rutten
and C. J . Schrijver, p. 441-470 (Kluwer Dordrecht , 1994)

11. T6th, G.: The LASY Preprocessor and its Application to General Multi-Dimen-
sional Codes, J . Comput. Phys. 138, 981 (1997)

12. T6th, G., Keppens, R., Botchev, M. A.: Implicit and semi-implicit schemes in
the Versatile Advection Code: numerical tests, Astron. Astrophys. 332, 1159-1 170
(1998)

	Introduction
	Grid-Adaptive Magnetofluid Simulations
	Parallel AMR

	OpenMP Paralization
	Bautomated versus Manual OpenMP Parallelism
	Implementation Details
	Scaling Results for Grid-Adptive Computations

	Conclusions and Outlook
	References

