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Abstract. First results on the parallelism achieved by both automated 
and manually controlled opedW3 programming are reported for 2D and 
3D magnetohydrodynamic computations. The simulations exploit adap- 
tive mesh refinement, capable of capturing flow features like shocks and 
other sharp discontinuities accurately and efficiently. Implement at ion de- 
tails are discussed, alongside with their scaling properties on realistic 
plasma flow simulations. 

1 Introduction 

This paper focuses on the parallelization of a general-purpose software package 
- AMRVAC - for grid-adaptive numerical simulations. The AMRVAC package 
combines the versatility of the Versatile Advection Code (vA@) with the advan- 
tages of Adaptive Mesh Refinement (AMR). AMRVAC [5, 4, 81 is particularly 
suited for time-evolving physical systems governed by (near-) conservation laws, 
e.g. the ideal magnetohydrodynamic (MHD) equations expressing conservation 
of mass, momentum, energy, and magnetic flux. The generality of the software 
resides in (i) a choice of the actual equations to solve for; (ii) a total indepen- 
dence of the implementation on the dimensionality of the problem (ID, 1.5D, 2D, 
2.5D and 3D configurations are possible thanks to the LASY syntax [Ill);  and 
(iii) the availability of several high-resolut ion, shock-capt uring spatial discretiza- 
t ion~.  Its grid-adaptivity follows an AMR technique, for which data structures 
and algorithmic issues handling the automated production of subgrids have been 
introduced by Berger [I]. Only fairly recently, this solution adaptive regridding 
strategy has been applied in multi-dimensional MHD simulations [lo,  3, 91. 

We recall that the AMR process involves the generation and destruction of 
hierarchically nested grids of subsequently finer resolution. In Keppens et al. [5], 
we concentrated on algorithmic improvements of the regridding and evaluated 
obtainable efficiencies by dynamic meshing for a variety of ID, 2D and 3D prob- 
lems. This 'efficiency' was characterized by the reduction in serial execution 
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times when comparing high resolution static grid simulations with correspond- 
ing AMR runs. In the latter simulations, fine meshes are triggered only when and 
where needed, significantly reducing computing costs. Furthermore, the memory 
requirements drop accordingly (by an order of magnitude for a 2D hydrodynamic 
shock problem as shown in [8]), allowing for much more realistic simulations of 
plasma behavior in regimes where both large-scale and small-scale structures are 
dynamically import ant. 

X 
Fig. 1. A snapshot of the density (Schlieren contour plot) and the flow field at time 
t = 20 in a 2D resistive MHD reconnection simulation. The grid structure on the finest 
level 1 = 4 is indicated. 

1.1 Grid- Adaptive Magnet ofluid Simulations 

Figs. 1-2 illustrate two MHD applications which greatly benefit from dyna- 
mically evolving meshes. Fig. 1 shows a snapshot of the density structure and 
the plasma flow field in a 2D magnetic reconnection problem. The setup is taken 
from [12] and considers a sideways (x-direction) mass inflow from x = *1 at an 
Alfvkn Mach number MA = 0.04 and a plasma beta p(x = 1) = 1.5. The latter 
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Fig. 2. The evolution of the density in a sinuously unstable, super-Alfvknic wake flow. 
Three periodic segments are shown at times t = 110 and t = 150. 

quantity measures the ratio of thermal to magnetic pressure ,O = 2 ~ 1 ~ ~ .  We 
start from a static, isothermal equilibrium state where Bx = 0, By = tanh(l0x) 
and the pressure profile is given by p(x) = 0.5 B; (x = 1) [,O(x = 1) + 11 - B; (x) 12. 
Due to a spatially localized anomalous resistivity which allows for topological 
changes in the magnetic field structure around the origin, the initial magnetic 
field variation changes into an X-shaped feature centered on the origin. Sym- 
metry arguments may reduce the simulated domain to a quadrant, the central 
region of which is shown in Fig. 1. We allowed for 4 grid levels, such that we 
locally achieve a resolution where (Ax, Ay) = (0.0025,0.005). Only the high- 
est grid level structure, which nicely traces the locations of steep gradients, is 
indicated in the figure. As a second example, Fig. 2 shows the temporal evo- 
lution of the density in a supersonic (Mach number M = 3), super-Alfvknic 
MA = 5 wake. The problem description is given by a planar velocity profile 
v = [l - sech(y)]ex pervaded by a 3D magnetic field configuration with com- 
ponents given by Bx = A tanh(y), Bz = A sech(y). The stability properties 
of such current carrying, shear flow states were analyzed in [2]. Cross-stream 
(vertical in the figure) perturbations lead under the chosen parameter values to 
transverse striations of the wake, accompanied by rightwardly traveling compres- 
sive variations reaching far out in the cross-stream direction. These ultimately 
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lead to magnetosonic shock fronts, clearly visible in the density evolution (bot- 
tom panel of the figure). The simulation shown in Fig. 2 exploited three grid 
levels, with a base resolution of 100 x 200 per periodic segment, locally reaching 
800 x 1600. Again, the finest level grids (not shown) only cover regions with 
sharp flow features, and at all times maximally covered about 20% of the com- 
putat ional domain. 

1.2 Parallel A M R  

The data structures used in AMRVAC are discussed in [8]. It should be noted 
that the Berger [I] approach to create higher level (i.e., finer) grids fits these 
grids optimally to the flow details, so that possibly many different sized grids 
are present on a certain grid level (see, e.g. Fig. 1). Their different sizes pose a 
potential load-balancing problem when parallelizing a mesh refinement code over 
the grids. This difficulty can be overcome by reformulating the original AMR 
procedure to enforce the creation of equally sized blocks, as realized in parallel 
MPI implementations in [9, 71. Without switching to this block-adaptive strategy, 
virtually shared memory parallelization for C C N U M A ~  architectures making use of 
OpenMP offers a viable alternative to parallel grid-adaptive simulations. In [4], 
first attempts with auto-parallelization on the SGI Origin 3800 were reported: 
while linear scaling was demonstrated for non-adaptive, Domain Decomposi- 
t ion (DD) usage of AMRVAC , experiments with fully grid-adapt ive simulations 
showed no speedup. In the remaining of this paper, we detail that a suitable ma- 
nual OpenMP parallelization effort is able to achieve fair to good scaling properties 
for multi-dimensional, mult i-level AMR calculations. 

2 OpenMP Parallelization 

2.1 Automated versus Manual  OpenMP Parallelism 

At a minimal effort, we can rely on the present version (7.3.1.2m) of the MIPSpro 
Fortran 90 compiler as available on the SGI Origin 3800 at Amsterdam to au- 
tomatically generate parallel code. This auto-parallelization almost necessarily 
parallelizes individual do loops, which should contain sufficient, parallelizable op- 
erations. For AMRVAC, most computations are associated with the discretized 
explicit time advancing of the set of unknowns (like density p, momenta p v ,  
energy e, and magnetic field B for MHD problems) for each individual grid at a 
certain AMR level. Since this coincides with the lowest level subroutines in the 
AMRVAC calling tree, we expect the automated parallelization to scale well, as 
long as there is sufficient work to be done on each grid seperately. 

This is indeed confirmed by timing experiments of AMRVAC shown in Fig. 3 
for a full 3D MHD jet simulation. The problem is taken from Keppens and 
T6th [6], and considers a cylindrical jet flow with v = Vo tanh(r-Rjet)/O.lRjetex, 
in a uniform magnetic field B = Boex, when the shear flow about radius r = Rjet 

ccNUMA: cache coherent Non-Uniform Memory Access. 
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Fig. 3. Scaling behavior of both automated and manual parallelism on a 3D MHD 
simulation using AMRVAC as a Domain Decompositioner. L e f t  panel: changing the 
number of blocks in accord with the number of processors. Right panel: running a fixed 
number of blocks on a varying number of processors. In both panels, the total problem 
size is kept constant. 

is Kelvin-Helmholtz destabilized. Note that we fixed the number of refinement 
levels to one, so AMRVAC is only used as a Domain Decompositioner. Hence, 
the grid does not adjust dynamically, but is merely split into size-controlled 
equal blocks. The left panel of Fig. 3 shows that the automated paralleliza- 
tion can even achieve superlinear speedup behavior as we split a fixed size 3D 
problem of resolution 52 x 104 x 104 in N blocks and run the N-block case 
on N processors. The scaling continues up to 16 processors, but no longer im- 
proves when going to 32 processors as the block size of the domains becomes 
263. The superlinearity at lower processor numbers is due to better cache usage 
when the block size changes from the single processor run. Unfortunately, in our 
dimension-independent, general implementation the cache usage is difficult to 
control actively (as an indication, we probably reach at most 10% of the peak 
performance on 1 processor for this particular problem). 

The right panel in Fig. 3 confirms that the individual block size is the crit- 
ical factor for parallel efficiency in auto-parallelized code. The same 3D MHD 
problem was now run on a 803 grid, first split into 64 blocks of size 203 and 
subsequently run on 1, 2, 4, 8, and 16 processors. A second timing measurement 
is also shown, where the 803 problem is always split into 512 blocks of size lo3. 
While the latter experiment shows no speedup at all, the first one reaches a 
speedup of 2.7 on 4 processors, with a marginal 'gain' up to 3.3 on 8 processors. 
Clearly, the low-level parallelism achieved by the compiler is easily lost when 
grids become too small. 

In the following section 2.2, we outline how we made use of manually inserted 
OpenMP directives to bring the parallelism of the code to its natural level, namely 
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to allow for parallel execution over the grids present at any individual level. Both 
panels of Fig. 3 also show the achieved speedups in this manually parallelized 
mode for all three DD experiments discussed above. Ideally, since the load bal- 
ance is optimal in these cases, linear speedup can be obtained. In fact, we reach a 
speedup of 20 on 32 processors in the blocksize-adjusted experiment (left panel), 
while the speedup on 16 processors for the 512 and 64 block run is 6.34 and 8.95, 
respectively. With these scalings, we clearly outperform the automated parallel 
executions, although there is still room for improvement. 

2.2 Implement at ion Details 

The manual OpenMP parallelization of our adaptive mesh refinement code con- 
centrates on the most time consuming parts of the code: denoting the set of 
unknowns at time tn on grid i, at grid level 1 as Uy (i,, 1), where the subscript j 
indicates a cell index within the grid i,, a partial step of an explicit conservative 
update can be denoted as: 

In this expression, the numerical fluxes at the cell interfaces fcl12 and f7-l12 
are calculated from the known time level Un with a certain stencil in the cell 
index range j .  Note that the temporal Atn (1) and spatial Ax(1) increments vary 
from level to level. By surrounding each grid i, on level 1 with a border of ghost 
cells conform with the stencil of the flux evaluation, this operation can be done 
in parallel over the collection of grids i, on level 1. In pseudocode, this is achieved 
as follows 

if (level==l) then 
!$omp parallel do & 
! $omp& shared(leve1, dt) private (igrid) schedule (static) 
do igrid= 1,ngrids 

call process-grid(igrid,level,dt) 
end do 

else 
!$omp parallel do & 
! $omp& shared(leve1 ,dt) private (igrid) schedule (dynamic) 
do igrid= 1,ngrids 

call process-grid(igrid,level,dt) 
end do 

endif 

The number of grids on level 'level' is given by ngrids, and these are indexed 
by igrid. Since the number of grids on level 1 = 1 is fully controlled by setting the 
overall computational domain and imposing a maximal size for an individual grid 
at pre-processing, we enforce st at ic scheduling there. This ensures a perfect load 
balance on level 1 = 1. At higher levels, the number of grids varies unpredictably 
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and their size is only controlled in upper bound. Therefore, we resort to dynamic 
scheduling. 

While the code segment above is responsible for most of the obtained paral- 
lelism, there are in total five instances in the code where work has to be done for 
all grids at a certain level. Apart from the partial advance step, they correspond 
to filling the ghost cells for all grids at a certain level, adding a source term, 
making an error estimate (needed to flag cells which need refinement), and up- 
dating all grids at a certain level by information available from overlapping finer 
level grids. We have inserted OpenMP directives to allow for parallel execution of 
all these five level-wide computations. 

I ?D HD Raylriglr-Taylor 

n n 
Number of processors 

Fig. 4. Scaling of a realistic 2D hydrodynamic simulation exploiting AMR with 5 levels. 
The total scaling is from timings of actual simulations up to time t = 0.5. Individual 
contributions from time advancing, filling ghost cells ('BC') and error estimation plus 
updates ('AMR') are indicated. 

2.3 Scaling Results for Full Grid- Adaptive Computations 

To evaluate full grid-adaptive parallelism, beyond the DD usage as discussed 
in section 2.1, we perform timings for a realistic application. We set up a 2D 
hydrodynamic simulation of a Rayleigh-Taylor unstable configuration where a 
heavy compressible fluid rests on top of a lighter one (density contrast of 10) 
in an external gravitational field. We simulate on a [ O , l ]  x [ O , l ]  domain, with 
gravity g = -e, pointing downwards. We let a dense fluid with pd,,,, = 1 rest on 
top of a light fluid with Plight = 0.1 above the interface yint = 0.8 + 0.05 sin 87rx, 
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so that 4 wavelengths are present in the domain at t = 0. The pressure field is 
set from a centered differenced hydrostatic balance d p l d y  = -p, ensuring that 
the pressure about yint equals unity. We allow for 5 refinement levels, with a 
base resolution of 48 x 48 and refinement ratios between consecutive levels fixed 
to 2. Regridding is done every sixth timestep per level, and as advocated in [5], 
we use a different spatial discretization on the finest level than on all underlying 
levels. To account for the effect of many refinements happening in a true AMR 
simulation, we perform timings of simulations running till time t = 0.5, up to 
which point 228 time steps have been taken on the coarsest level. To make this a 
tough test for the load balancing on levels I > 1, we enforce a maximal grid size 
of 24 x 24, ensuring the creation of many small-sized grids. Not unexpectedly, 
automated parallelization fails completely on this problem. 

Fig. 5. A snapshot of the simulation used in the scaling experiment from Fig. 4. The 
density structure on the unit square is shown at time t = 1.75. 

The result of the timings of this simulation up to 16 processors on the SGI 
Origin 3800 are shown in Fig. 4. We get a speedup of 2.9 on 4 processors, which 
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only marginally improves up to 4.9 on 16 processors. If we analyze the obtained 
parallelism over the parallelized code segments discussed above, the most time 
consuming part - the partial advancing and the source term additions - scales 
best with a speedup of 6.2 on 16 processors. The ghost cell filling takes up 
a significant fraction (up to 32 % for the 4 processor run) of the computing 
time in this experiment due to the small maximal grid size enforced. As this is 
even more influenced by different grid sizes, this is responsible for the worsened 
scaling. The part indicated by AMR in Fig. 4 scales even less, but this combined 
time spent on error estimation and updating coarser from finer levels amounts 
to only 13 % of the total computing time on 4 processors. Overall, the obtained 
parallelism is in fact quite encouraging, given the severity of the test. Our timings 
indicate that for this particular 2D hydro simulation, it is beneficial to use up to 
4 processors. We continued the calculation in that fashion and show a snapshot 
of the density field at time t = 1.75 in Fig. 5. Note the intricate small-scale 
structure developing in this mixing process. 

3 Conclusions and Outlook 

On the multi-processor ccNUMA architecture of the SGI Origin 3800, we eva- 
luated both automated and manually parallelized AMR simulations of 2D and 
3D MHD problems. Automated parallelization can achieve linear scaling for 
non-adaptive, Domain Decomposition approaches as long as the block size per 
processor is of order 203 or higher for the 3D MHD simulations discussed. As 
yet, automated parallelizat ion is inadequate for mult i-level AMR runs. However, 
a rather straightforward manual parallelization strategy relies on dynamically 
scheduled OpenMP 'threads' to execute the time integration of multiple grids at 
the same AMR grid level in parallel. With this strategy, we demonstrated fair 
to good scaling properties for realistic multi-level applications. A more extensive 
set of timing measurements for a set of problems differing in complexity (pure 
hydrodynamic or full MHD simulations) and dimensionality (ID through 3D) 
will be a valuable extension to this work. The AMRVAC package will be used 
for multi-dimensional magnetized plasma studies where both global and local 
phenomena play an equally important role in the dynamics. With the ongoing 
developments in the OpenMP effort to become a portable standard for shared 
memory parallelism, it seems fair to state that OpenMP parallelism for dynami- 
cally regridded mult i-dimensional computations offers a promising alternative to 
message passing implement at ions. 
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