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Abstract. Least-squares spectral element methods are based on two im-

portant and successful numerical methods: spectral/hp element methods

and least-squares �nite element methods. Least-squares methods lead to

symmetric and positive de�nite algebraic systems which circumvent the

Ladyzhenskaya-Babu�ska-Brezzi stability condition and consequently al-

low the use of equal order interpolation polynomials for all variables. In

this paper, we present results obtained with a parallel implementation of

the least-squares spectral element solver on a distributed memory ma-

chine (Cray T3E) and on a virtual shared memory machine (SGI Origin

3800).

1 Introduction

For many engineering 
ow problems, the least-squares principles o�er several

theoretical and computational advantages in the algorithmic design and imple-

mentation [1, 2, 3, 4] of the corresponding �nite element methods, advantages

that are not present in standard Galerkin based discretization. In particular, the

least-squares formulations lead to symmetric and positive de�nite algebraic sys-

tems [5] which circumvent the Ladyzhenskaya-Babu�ska-Brezzi stability condition

irrespective of the underlying partial di�erential equations. Due to these advan-

tages, least-squares �nite element methods are becoming increasingly popular to

solve the Stokes [6, 7, 8] and Navier-Stokes equations [9, 10, 5].

Least-squares spectral element methods (LSQSEM) seem very promising

since these methods combine the generality of �nite element methods with the

accuracy of the spectral methods and also the theoretical and computational

advantages in the algorithmic design and implementation of the least-squares

methods. In [11, 12], the accuracy of a least-squares spectral discretization of the

Stokes problem (cast in velocity-vorticity-pressure form) has been reported for
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di�erent boundary conditions. The interested reader is referred to these papers

for a sound discussion regarding the least-squares spectral element formulation

of the Stokes problem, the gathering procedure and the e�ect of the boundary

conditions on the formulation. The present paper deals with eÆcient parallel so-

lution strategies to solve the algebraic systems resulting from the least-squares

spectral element formulation of the Stokes problem.

Parallelization of the least-squares �nite element methods seems to be straight-

forward by using element-by-element techniques [1, 4]. However, this is not the

case with least-squares spectral element methods since two di�erent kinds of

distribution of data are required and the conversion is rather complicated. The

spectral element structure enables to calculate the local matrices corresponding

to each spectral element, simultaneously. Obviously, if the number of available

processors is much larger than the number of spectral elements, many proces-

sors become idle unless the data of a single spectral element will be computed

along several processors. In the present paper, we consider a spectral element,

also called a cell, as the smallest computational unit. The parallel solution of the

algebraic problem, a large, global sparse system, requires a completely di�erent

data distribution.

The present paper is organized in the following way. In Sect. 2, some imple-

mentation aspects of least-squares spectral element methods are treated. The

program structure and parallel implementation are discussed in Sect. 3. The re-

sults of the numerical simulations are discussed in Sect. 4. Conclusions are given

in Sect. 5.

2 Implementation aspects of least-squares spectral

element methods

The domain is discretized with a mesh of k non-overlapping conforming quadri-

lateral spectral elements of the same order. As discussed in [11, 12], each quadri-

lateral spectral element is �rst mapped on the parent spectral element and then

the local systems

Aizi = fi; with i = 1; � � � ; k (1)

are calculated. The matrix Ai represents the least-squares spectral element dis-

cretization of the governing equations of spectral element i and the vectors zi
and fi represent the corresponding local variables and the right-hand function,

respectively.

In Fig. 1 an example is given of a domain discretized with a mesh of four

spectral elements. Each spectral element contains nine local nodes, numbered

from 1 to 9 (small-size digits). In the same �gure, also a global numbering

(normal-size digits) is shown. First, the internal nodes or variables are num-

bered (1; � � � ; 9), then the knowns (10; � � � ; 25) given by the boundary conditions.

Since each local variable corresponds to a global variable, one can establish the

local-global mapping operator gmI for each spectral element. For the given ex-
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Fig. 1. Example of local and global numbering. The domain has been divided into four

cells: I, II,III, IV. Each cell contains 9 nodes, denoted by a Æ.

ample, we have

gmI = [ 10; 11; 12; 19; 1; 2; 20; 4; 5 ];

gmII = [ 12; 13; 14; 2; 3; 15; 5; 6; 16 ];

gmIII = [ 20; 4; 5; 21; 7; 8; 22; 23; 24 ];

gmIV = [ 5; 6; 16; 8; 9; 17; 24; 25; 18 ]:

(2)

The local-global mapping operator gmI can also be expressed by the sparse

gathering matrix Gi which has nonzero entries according to Gi(i; gmI (i)) =

1; I = I; � � � ; IV. The global assembly of the k local systems (1) can now readily

be obtained with:

KU = F ,

"
kX

i=1

G
T
i AiGi

#
U =

kX
i=1

G
T
i fi. (3)

where the matrix K represents the symmetrical globally gathered matrix of full

bandwidth and the vectors U and F represent the global nodes (e.g., variables

and knowns) and the global right-hand side function, respectively.

Since the known nodes are numbered last, one can subdivide the vector U

into an unknown component U
1
and a known component U

2
. Consequently, the

matrix K can be factored into submatrices K
1;1, K1;2, K

T
1;2 and K

2;2. Also the

the right-hand side vector F can be factored into the submatrices F
1
and F

2
.

Hence, system (3) has the following matrix structure�
K
1;1 K1;2

K
T
1;2 K2;2

� �
U
1

U
2

�
=

�
F
1

F
2

�
; (4)
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which readily allows "static condensation\ of the knowns, leading to the following

sparse symmetric and positive de�nite system

K1;1U1 = F1 �K1;2U2 . (5)

System (5) will be solved in parallel with the conjugate gradient method.

3 Program structure and parallel implementation

3.1 Redistribution of data due to renumbering

After we have built up the grid completely and after the calculation of the

local systems (1), we have to switch from local numbering to global numbering

as discussed in Sect. 2. As a result, we obtain a global CSR-matrix which can

easily be distributed long an arbitrary number of processors. Each processor has

to send data from one cell to a few other processors or possibly to itself, a very

unbalanced task due to the chosen numbering. However, if this task is completed,

each processor contains a part of the global assembled matrix (3), and the data

per processor will be balanced again.

Let us return to the example grid of Fig. 1. If we consider only the internal

nodes and investigate the case of four processors, then before redistribution

processor p0 corresponds to cell I, p1 to cell II and so on. After the rearrangement

of the data, p0 contains the �rst three rows of matrix K of (3), p1; p2 and p3
each two rows. The distribution is as follows:

p0( cell I) ) p0(N1; N2); p1(N4; N5);

p1( cell II) ) p0(N2; N3); p1(N5); p2(N6);

p2( cell III)) p1(N4; N5); p2(N7); p3(N8);

p3( cell IV) ) p1(N5); p2(N6); p3(N8; N9):

(6)

3.2 Parallel Conjugated Gradient Performance

Since system (5) is symmetric and positive de�nite, the conjugate gradient (CG)

method can be applied directly. The performance of this iterative solution strat-

egy for least-squares �nite element approximation of 
ow problems on distributed

parallel computers is clearly of relevance to computational 
uid dynamics. In this

report, we describe results with the simple, easy to parallelize, Jacobi or diagonal

preconditioning. At this moment, we test the eÆciency of other precondition-

ing schemes for the incompressible Navier-Stokes problem: block-Jacobi, SSOR,

FEM-matrix and Additive Schwarz and their parallel possibilities. The latter

seems to be a good candidate.

Having assembled the system locally in parallel, solution by CG iteration

involves repeated matrix-vector products, dot products and DAXPY operations.

More speci�cally, each iteration involves one matrix-vector product, two dot

products, t wo DAXPY and one DAYPX operations (y = y + �x; y = x+ �y). Local

dot products are computed in parallel on the processors and the scalar results
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are accumulated across the processors using global summation followed by a

broadcast. The communication of the dot product will increase logarithmically

with increasing number of processors. The matrix-vector products, which clearly

require the greatest fraction of the computation, are computed in parallel.

Consider the matrix-vector product

Y = � A X + � Y; (7)

where A is stored in Compressed Row Storage mode. A fast method to parallelize

this operation is to divide matrix A and vector Y into equal parts for the sake

of a good load balancing. For the matrix A this means that each processor gets

the same number of rows mp, following the next distribution:

mp = m=p; (8)

if m, the number of rows of A, is a multiple of the number of processors p. If not,

which will be true in most cases, some adjustment of this approximate proces

partitioning will be needed and the number of grid points per processor may

vary slightly. We assume that each part has a comparable number of nonzero

elements. The complete vector X must be available on each processor.

X

+ β

YY

= α

A

Fig. 2. Parallel distribution of matrix A and vector Y , along 8 processors

The CSR-matrix A of Fig. 2 is de�ned as

TYPE,PUBLIC :: matvec_csr

REAL(DOUBLE), DIMENSION(:), POINTER :: FKE

INTEGER, DIMENSION(:), POINTER :: JFKE

INTEGER, DIMENSION(:), POINTER :: IFKE

INTEGER :: no_rows

END TYPE matvec_csr
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Then on each processor the matrix A can be declared as:

TYPE(matvec_csr) :: A,

where A%FKE contains the nonzero values at the processor involved, where the

INTEGER array A%JFKE contains their column numbers and where A%IFKE(i+1)-

A%IFKE(i) denotes the number of nonzeros of row i on that particular processor.

4 Numerical results

In (least-squares) spectral element applications, two di�erent kinds of re�nement

strategies are commonly used: h-re�nement and p-re�nement. The purpose of the

numerical simulations is to check the parallel performance for both re�nement

strategies. To this end, the least-squares spectral element formulation of the

velocity-vorticity-pressure formulation of the Stokes problem is demonstrated

by means of the smooth model problem of Gerritsma-Phillips [13] with v = 1.

This model problem involves an exact periodic solution of the Stokes problem

de�ned on the unit-square ([0; 1] � [0; 1]). The velocity boundary condition is

used for all the numerical simulations. The pressure constant is set at the point

( 0; 0). The h� and p�grids used in the present paper correspond to the grids in

[11, 12].

4.1 The h- and p-re�nement approach and its parallel performance

Six di�erent grids are used to check the parallel performance of the h-re�nement.

As can be observed in Table 1, the polynomial order of all the spectral el-

ements equals 4, which means that each direction has four Gauss-Legendre-

Lobatto(GLL) collocation points, and the number of spectral elements is varied

from 4 to 144. For the moment, we consider a cell as the smallest computational

unit. Obviously, an increase of the number of cells allows to use more processors,

and the parallel eÆciency will grow. In case the number of processors is less than

the number of cells, one or more processors will compute data of more than one

cell.

In the middle column of Tables 1 and 2 the order of the large sparse global

system is given together with the number of iterations required to solve this sys-

tem using CG. The parallel solution of the systems may give a slightly di�erent

number of iteration steps. The right column in the Tables lists the L2 norm of

the di�erent components, like the velocity (L2 norm of x� and y�components

agree), the vorticity and pressure. Only four di�erent grids have been used to

check the parallel performance in case of the p-re�nement (see Table 2). Each

grid contains four spectral elements. The order of the approximating polynomial

varies from 4 to 10 and is the same in all the variables. A growth of the poly-

nomial order in the p-re�nement case will increase the number of nodes per cell

and so does the amount of computational e�ort per cell. However, the highest

parallel eÆciency will be achieved in case the number of cells equals the number
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Table 1. The di�erent grids used for the investigation of the h�re�nements.

Spectral GLL- size of # L2 norm

elements order global system iterations Velocity Vorticity Pressure

2� 2 4 259 132 9.2 10�4 4.8 10�2 1.8 10�2

4� 4 4 1027 232 5.0 10�5 1.6 10�3 7.1 10�4

6� 6 4 2307 326 5.2 10�6 2.8 10�4 6.9 10�5

8� 8 4 4099 431 1.1 10�6 8.7 10�5 1.3 10�5

10� 10 4 6403 569 3.2 10�7 3.5 10�5 3.6 10�6

12� 12 4 9219 707 1.2 10�7 1.7 10�5 1.3 10�6

Table 2. The di�erent grids used for the investigation of the p�re�nements.

Spectral GLL- size of # L2 norm

elements order global system iterations Velocity Vorticity Pressure

2� 2 4 259 132 9.2 10�4 4.8 10�2 1.8 10�2

2� 2 6 579 224 8.7 10�6 7.5 10�4 1.9 10�3

2� 2 8 1027 305 6.5 10�8 7.1 10�6 1.6 10�6

2� 2 10 1603 388 4.4 10�10 4.5 10�8 7.6 10�9

of processors. If the number of processors is larger than the number of cells, pro-

cessors will become idle and for parallel performance and scalability this result

is dramatic.

We remark that four spectral elements and a GLL-order of 8 gives a higher

accuracy compared to the grid with 12� 12 spectral elements and a GLL-order

of 4. Moreover, the systems to solve are much smaller whereas the number of

iterations is halved.

4.2 Parallel platforms and implementation

The calculations have been performed on

{ Cray T3E system Vermeer (named after the Dutch painter) at HP�C with

128 user PEs interconnected by the fast 3D torus interconnect network with a

peak performance of 76.8 Giga
op/s. Each PE is con�gured with 128 Mbytes

of local memory, providing more than 16 Gbytes of globally addressable

distributed memory.

{ The SGI Origin 3800 Teras with 1024 500 MHz RI 14000 processors, subdi-

vided into six partitions, two (interactive) 32-CPU partitions and four batch

partitions of 64, 128, 256 and 512 CPU's, respectively. The theoretical peak

performance is 1 Tera
op/s. The Teras is a CC-NUMA machine, Cache-

Coherent, Non Uniform Memory Access. For the user the complete memory

is accessible, though as a matter of fact the memory is distributed along all
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processors. The memory access is not uniform, because each processor can

access its own memory much faster than the memory of other processors.

To get good portable programs which may run on distributed-memory multi-

processors, networks of workstations as well as shared-memory machines we use

MPI, Message Passing Interface. At this moment, standard or blocking commu-

nication mode is used: a send call does not return until the message data have

been safely stored away so that the sender is free to access and overwrite the

send bu�er. All routines have been implemented in FORTRAN 90.

4.3 Parallel performance and speedups

The grid creation and the calculations of the global systems can be performed

completely in parallel and is very fast compared to the solution of the global

systems. However, the conversion of the cell distribution to the parallel CSR-

format distribution becomes more expensive in case more processors are involved.

Table 3 shows wall-clock timings for the Teras of this conversion simulated on a

single processor and we do not expect a high parallel speedup for this process

that is mainly dominated by communication.

Table 3. Teras: Wall-clock timings in seconds for conversion of cell-wise distribution

of grid with 2� 2 spectral elements into global matrix in CSR-format, simulated on a

single processor.

# Processors GLL-order

converted for 4 6 8 10

1 0.03 0.12 0.35 0.86

2 0.04 0.17 0.51 1.25

4 0.07 0.28 1.01 2.40

8 0.12 0.65 2.31 5.30

16 0.25 1.20 5.85 13.25

32 0.69 4.78 13.64 30.67

In Fig. 3, speedups for the solution part are given for grids with di�erent

numbers of spectral elements. The speedups, obtained at Teras and Vermeer, are

achieved for 2,4,8,16 and 32 processors. The speedup Sp is de�ned as the quotient

of the wall-clock time measured on one processor and the time measured on p

processors. Obviously, the speedup on the distributed memory machine Vermeer

is much higher than on the virtual shared memory Teras (cf. Fig. 3a and 3b).

Since the SGI MPI-implementation on Teras takes into account that the CPUs

share the memory, we did not expect this behaviour. The disappointing speedup

may be dominated by the slow communication compared to its high performance.

To get an indication of the performance of both machines, the solution times for

grid 8� 8 on 1 and 32 processors are listed in Table 4.
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Fig. 3. Speedups achieved on both Vermeer and Teras for di�erent kind of grids.

Table 4. Wall-clock timings in seconds for the solution part obtained for the grid of

12� 12 spectral elements and GLL-order=4.

Teras Vermeer

p = 1 p = 32 p = 1 p = 32

46.9 3.8 314.9 16.0

If we add per spectral element two more GLL-collocation points per direction,

the computational e�orts increase and the speedup on Teras is nearly twice

as much (see Fig. 3c). Finally, Fig. 3d demonstrates that the eÆciency of the

CG-solution method depends on the GLL-order. Actually, the model problem

discussed here appears to be too small for both machines.

5 Conclusions and future plans

The LSQSEM method results in symmetric and positive de�nite systems of

linear equations which can be solved by CG in parallel. At the moment, a Jacobi
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preconditioner is used that does not converge very fast. Since the total execution

time is dominated by solving the linear systems it is necessary to concentrate

on good parallelizable preconditioners for these systems. Obviously, we have to

complete the parallelization of the conversion part and to reduce communication

time by making use of nonblocking MPI-routines. The execution times listed in

Fig. 4 indicate that the parallel implementation is very suitable for large-scale

problems arising in scienti�c computing.
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