
The Development of a Grid Based Engineering Design
Problem Solving Environment

A. D. Scurr1 and A. J. Keane
School of Engineering Sciences

University of Southampton.
1{ads294@soton.ac.uk}

Abstract: This paper gives an overview of the grid
based Engineering Design Problem Solving
Environment (PSE) being developed at Southampton
University. Our current PSE is based on our
Options optimiser and the Cardiff VCCE and XML
component model. Essentially, VCCE provides a GUI
to enable a user to setup and execute a computation by
creating a task graph from available components via
drag and drop operations on a sketchpad display.

In order to provide an environment that more naturally
meets the data-centric view of users, two major
enhancements to the PSE are planned. The first
concerns scheduling and task farming. The ultimate
goal is to achieve within the PSE, an asynchronous
computational workflow pattern where analysis tasks
can seek to exploit whatever computational resources
are available in various workstation clusters. The
second enhancement concerns computational resource
control and job control and the setting up of an
Engineering Design Grid Portal.

1. Problem Solving Environments (PSEs) and Grid Portals

To enhance engineering insight, reduce development costs and improve product
quality, engineering design studies are increasingly using sophisticated analysis
packages together with optimisation tools. The chief characteristics of these design
studies are the need to optimise a design where the analysis is very time consuming,
where there are multiple methods or domains of analysis and where we need to deploy
distributed, cluster based computing systems. The use of PSE’s facilitates working on
such problems. The accepted definition of a PSE is: “A PSE is a computer system that
provides all the computational facilities needed to solve a target class of problems.” (J.
Rice - Purdue University). Closely aligned with PSE development is the concept of
grid computing and the idea of a grid portal. A Grid Portal is an access point (usually
a web browser page) designed to facilitate the use of a PSE in a particular discipline
by providing seamless access to the PSE’s range of computational tools, information
and resource.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2329, pp. 881−889, 2002.
 Springer-Verlag Berlin Heidelberg 2002



Problem Solving Environment

Programming Solvers Intelligence Software Bus

Search method
selector

Machine learning;

Case-based
reasoning;

Expert systems

Search
parameters
advisor

Library Codes
(e.g. Options
DLL)

Application
packages (FEA,
CFD, etc)

Legacy codes (e.g.
older FEA)

Solver objects
and wrappers

Expert
assistant

Visual
programming
environment

Component
based (CORBA 3
CCM)

Application
domain PDL

Computational
steering

Visualization and
graphics

Glue that binds
components together.

Location &
instantiation
components, tools, etc,
through ORB

Handles security,
persistence, database
transactions, etc

‘Distributed computing
technology’ CORBA,
COM+, RM I

Alternatives?: Mobile
objects/components/agents

Figure 1: The main components of a generic PSE

The main sub-systems in a generic PSE (Figure 1.) include visual-programming
environments for graphically composing, steering and monitoring applications,
various component wrapped analysers and solvers, an integrating software-bus (here
CORBA) and optionally one or more AI systems to assist the user formulate a
computational strategy.

2. Prototype Engineering Design PSE

We have developed a prototype PSE built around our Options [1] suite of
search/optimisation programs and various CFD codes. Our current Engineering
Design PSE incorporates the Cardiff University Visual Component Composition
Environment (VCCE) as its front-end [2] and uses CORBA 2.3 as its distributed
object middleware (software bus above). In Figure 2, components are dragged from
the Component Repository on the left column of a sketchpad display and dropped
onto the canvas of the Component Composition Tool on the right of the display.
Components can then be joined together if their interfaces are compatible to form a
task graph. This defines the execution order and dependencies between the various
components making up a job. For a component to be available for use in VCCE, an
XML definition of the component must be available in the Component repository. The
component’s XML definition is based on the Component Model defined in VCCE.

The Engineering Design PSE (Figure 3.) uses a component architecture based on
CORBA objects (here, the terms CORBA Object and component are synonymous)
whose structure and functionality are defined in CORBA IDL interfaces. Optimisation

882 A.D. Scurr and A.J. Keane



is a procedure that searches through the design domain for optimum designs. During
the search, the optimiser continuously calls the analysis code and, based on the results
to date, decides on the next design point to evaluate. In the Engineering Design PSE,
the optimiser is contained in the Options CORBA Object and the analysis codes are
contained in the OPTFUN/OPTCON CORBA Object.

Figure 2: VCCE drag and drop interface to Engineering Design PSE

The current PSE has the following components:

• An Options component which consists of the Options search package wrapped in
a C++ wrapper which uses the Options direct subroutine access facilities to set up
and run a problem defined in the Client Application code. Options stores all
problem data in its own database which can be output as a problem definition file
for later re-input.

• A user supplied problem specific component that provides the analysis
calculations on the optimisation design variable values found in the Options
component solution method.

• A Client Application component, which defines the problem to be solved and
specifies the Options search/optimisation method to be used, input parameter
values, etc.

• A callback object created by the Client Application, which helps de-couple the
Options and OPTFUN/OPTCON components.

883The Development of a Grid Based Engineering Design Problem Solving Environment



C++ wrapper

Options CORBA Object
(Generic - C++/C/Fortran)

OPTDBS setup
OR
GENBAT file read

OPTFUN stub
(Objective function)

OPTCON stub
(Constraints)

C++ wrapper

OPTFUN/OPTCON
CORBA Object

Setup

OPTFUN
(Re-calculate
Objective function
for design variables)

OPTCON
(Re-calculate constraints
for design variables)

Client Application
(Java)

Problem definition
& set-up OR

Read from existing
database file

Solve

Callback CORBA Object
(Generic - Java)

Analysis code

Options
search/optimization
package

O
ptions

d
atabase

OPTIONS
search/
optimization

Setup

Calculate
Objective
Callback

Calculate
Constraints
Callback

Figure 3: The Engineering Design PSE component architecture

3. Design Studies Process

Designers generally use approximation techniques to solve optimisation problems in
order to reduce the otherwise enormous computational effort that would be involved if
only full fidelity models were used. Depending on the size of the problem domain
space, local, mid-range or global approximations are employed. For single design
point optimisation, the above PSE architecture is appropriate, but for global
approximation techniques such as Response Surface Modeling (RSM) [3], rather
different computational workflow strategies are required.

In the DoE/RSM process (left part of Figure 4.) some technique (e.g., Latin
hypercubes) is used to select a set of initial design points (typically say 100 points)
that will span the design space. The analysis codes are then run for each design point,
ideally in parallel on some large compute cluster, as the design point evaluations are
independent of each other. From the resulting database, a response surface is built
using the chosen approximation method (e.g., kriging [4]). If satisfactory, the surface
is searched for an optimal design point (right part of Figure 4.) and if found, full
analysis codes are run at that point. If the analysis is satisfactory and all design
constraints are met, the process terminates; otherwise the new design point is added to
the design set, the surface regenerated and the optimisation repeated.

884 A.D. Scurr and A.J. Keane



Figure 4: Overall Design of Experiments (DoE)/RSM Process

From a user perspective, the above RSM process suggests a data-centric approach to
the computational workflow, where the user is primarily looking at problem design
point and results data to-date (and possibly other test data such as flight trial or wind
tunnel results in aerospace design problems) in order to decide where new problem
analyses need to be run (see figure 5 below). From a computational perspective, the
aim is to achieve the maximum amount of parallelism in the analysis computations by
exploiting the various cluster resources available. This can be accomplished by de-
coupling the search engine computation from the analysis computations and using
some task farming approach to schedule parallel running of analysis tasks over the
available resources.

4. Engineering Design Grid Portal/PSE Architecture

Rapid advances in commodity computing and the emerging nation-wide
computational grid are significantly influencing the development of the next
generation of PSE’s. The term ‘commodity computing’ encompasses the development
of distributed computing technologies (Web services, Java, JINI, CORBA, DCOM,
etc.), plus the use of standard PC hardware in networked clusters. ‘Grid computing’
refers to the high-performance computing community’s creation of Grids; advanced
infrastructures designed to enable the co-ordinated use of distributed high
performance computers for scientific problem solving. Closely aligned with the
concept of grid computing is the idea of portal computing [5]. A user or application
portal is a web-based collection of information presented together on a browser page.
In many cases a portal can replace the need for users to log on to a number of different
computers to gain access to the various resources that exist. In portal computing well-
defined services are delivered to the portals instead of giving users direct access to the

885The Development of a Grid Based Engineering Design Problem Solving Environment



operating system prompt. As a result, resource management and security can be
exercised at a higher level.

Figure 5: User view of engineering design system

Figure 6: Grid Portal/PSE Architecture

886 A.D. Scurr and A.J. Keane



The proposed PSE design involves integrating a number of existing PSE and Globus
based software packages in a layered structure, in order to provide a fully functional
Engineering Design Grid Portal (Figure 6.). The Globus project [6] aims to provide
PSE developers with Grid services for resource management, security and resource
discovery. The University of Houston EZ-Grid project [7] uses Globus services to
make the use of the Grid easier and transparent for the user. This is achieved by
developing easy-to-use interfaces coupled with brokerage systems to assist the
resource selection and job execution process.

We propose using the PSE prototype described above to provide the basis for a Design
Optimisation Grid portal. This involves extending the PSE functionality with the EZ-
Grid/Globus software at a level above the existing VCCE system to provide for Grid
user login, job submission, etc. In addition, the development of a task farming
approach on the analysis side should de-couple optimisation from analysis task
execution in order to exploit Grid technologies to gain more parallelism.

Figure 7: Grid Portal/PSE Computational Workflow

The aim of our Grid Portal/PSE system is to provide the computational workflow
scheme shown in figure 7 above where analysis and search/optimisation tasks are de-
coupled by the two central database systems (the Problem Set and Results databases).
Thus the search and analysis tasks can compute asynchronously, with the Search
Engine adding new design point data sets into the Problem Set database and large
scale “task farming” on the analysis side. Here, a number of independent analysis
tasks can be run in parallel over one or more linked computational clusters under some
form of computational resources control. The analysis results are added to the Results

887The Development of a Grid Based Engineering Design Problem Solving Environment



database, where the Search Engine can be guided via the user or advisor (machine
learning based) systems in selecting the most promising new design to analyse.

At present, the problem is set-up using the pre-defined components available to the
VCCE task-graph interactive front-end. Once the problem task graph is built, the only
options are to run or reset the components in the graph. The Job Control function
provides facilities to control computations and monitor their progress. Essentially the
Job Control will be able to dynamical start/stop/restart computations and change
parameters of running processes i.e., provide interactive computational control as
opposed to the process scheduling/task farming available in the Computational
Resources Control. Also, for some applications, it might be useful to interactively
display feedback on the progress of computations (e.g., provide on-demand graphical
displays of analysis or search results to-date).

5. Conclusions

The proposed Engineering Design PSE can probably be best seen as an example of a
distributed collaborative system, where the Client, Computational Resources, Job
Control and multiple computational components (different kinds of agents) engage in
a shared activity. The defining feature is that agents in the system are working
together towards a common goal and have a critical need to interact closely with each
other: sharing information, exchanging requests with each other and informing each
other of their status. Concurrency is important, with any agent interacting with other
agents running in parallel in a distributed heterogeneous computing environment.

We have developed a prototype Engineering Design PSE that uses the Cardiff VCCE
software to provide a drag and drop user interface to create a task graph based on a
comprehensive component model and that uses CORBA as the software bus or
middleware. The PSE currently supports a restricted cluster communications structure
involving three component types (Options, OPTFUN/OPTCON and the Callback
CORBA objects) and relies on specific features in the Orbacus ORB to handle
asynchronous callbacks. To overcome these communications restrictions and to
provide the framework for a generic PSE system, a more general communications
sub-system is being developed.

As developed, the current PSE will be able to compute single or multi-point design
evaluations over network clusters. However, in order to fully exploit parallel
computation over intranet or even internet clusters and to provide an environment
which more naturally meets the data-centric view of users, two additional major
enhancements to the PSE are planned.
• The first concerns scheduling and task farming. The ultimate goal is to achieve

within the PSE, an asynchronous computational workflow pattern where analysis
tasks can seek to exploit whatever computational resources are available in
various workstation clusters (i.e., task farming), running independently of
search/optimisation tasks. Communication between the search and analysis tasks
is through the Problem Set and Results databases. Whilst the Options package has
some of this functionality available through script files, this functionality should

888 A.D. Scurr and A.J. Keane



be provided in a generic way through the development of a scheduling/task
farming PSE component.

• The second enhancement concerns computational resource control and job control
and the setting up of an Engineering Design Grid Portal. EZ-Grid provides a basic
set of components for creating a grid portal, including a GUI for Grid
authentication and login, a Job Manager for job submission and monitoring and a
Broker Kernel for resource control. However, these components are likely to
require considerable enhancements to work with the scheduling and task farming
components above.

References:

[1] A.J. Keane, The Options Design Exploration System Reference Manual and
User Guide – Version B3.0 February 2000.

[2] O. F. Rana, M. Li, M. S. Shields, and D. W. Walker, A Wrapper Generator
for Wrapping High Performance Legacy Codes as Java/CORBA Components
in Proceedings of the IEEE/ACM SC2000 Conference, held in Dallas, TX,
Nov 10-12, 2000.

[3] Myers, R. H. and Montgomery, D. C. (1995), Response Surface
Methodology: Process and product optimization
using designed experiments, John Wiley and Sons inc.

[4] Jones, D. R., Schonlau, M. and Welch, W. J. (1998), Efficient global
optimization of expensive black-box functions,
Journal of Global Optimization, 13, 455-492.

[5] G. von Laszewski, Ian Foster, Jarek Gawor, Peter Lane, Mike Russell.
Designing Grid-based Problem Solving Environments and Portals. HICSS
2001.

[6] The Globus Project web-site: http://www.globus.org/
[7] The EZ-Grid Project web-site: http://www.cs.uh.edu/~ezgrid/EZ-Grid.htm

889The Development of a Grid Based Engineering Design Problem Solving Environment


	Problem Solving Environments (PSEs) and Grid Portals
	Prototype Engineering Design PSE
	Design Studies Process
	Engineering Design Grid Portal/PSE Architecture
	Conclusions
	References:

