
Semi-automatic Generation of Web-Based
Computing Environments for Software Libraries

Pedher Johansson1 and Daniel Kressner2

1 Department of Computing Science, Ume̊a University, SE-901 87 Ume̊a, Sweden
pedher@cs.umu.se

2 Institut für Mathematik, MA 4-5, Technische Universität Berlin, D-10623 Berlin,
Germany

kressner@math.tu-berlin.de

Abstract. A set of utilities for generating web computing environments
related to mathematical and engineering library software is presented.
The web interface can be accessed from a standard world wide web
browser with no need for additional software installations on the local
machine. The environment provides a user-friendly access to computa-
tional routines, workspace management, reusable sessions and support
of various data formats, including Matlab binaries. The creation of new
interfaces is a straightforward process. All necessary web pages are auto-
matically generated from XML description files. The integration of the
control and systems library SLICOT demonstrates the efficacy of this
approach.

1 Introduction

Highly reliable and efficient library software is of particular importance for so-
phisticated engineering solutions. However, there is a gap between the number
of existing mathematical routines and those actually used by engineers. A main
obstacle for potential users is that, in order to benefit from new software, they
typically have to go through the painful process of searching, downloading, in-
stalling and understanding. This requires a substantial amount of time; often
even before the usefulness of the software can be evaluated. The user may more-
over not have access to computing facilities and proprietary software.

We have developed a new collection of utilities, referred to as the Web Com-
puting Utilities (or briefly, Webcut), that addresses these concerns. It provides
a solution in the following way. The programmer can make new mathematical
and engineering software available on the web where it is accessible and exe-
cutable through standard web browsers. The programmer provides information
about the routine parameters and standardized calling routines in so called de-
scription files. From this input, Webcut automatically generates HTML pages
offering a user-friendly web computing environment. The essential prerequisites
of software users are then, to know the type of the problem to be solved and to
provide the input data in a convenient way. The use of web computing does not

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2329, pp. 872−880, 2002.
 Springer-Verlag Berlin Heidelberg 2002

require any installation of software on the local computer nor does it require any
documentation besides that which is integrated into the user interface.

This work is related to a wide variety of projects providing easy access to
mathematical software. Among those, the most popular and successful is cer-
tainly Matlab1 [1]. There exists a web environment for Matlab [2], its interfac-
ing functionalities, however, are very limited. Others are ATLAS [3], JSPICE [4],
MMM [5], Paraweb [6] and WOS [7]; those facilitate Java applets. We feel that
such applets unnecessarily limit the range of admissible browsers or devices and
thus preclude their use in Webcut. The network-computing system PUNCH [8]
is possibly the most closely related project. Here, interfaces are generated by
HTML templates quite similar to the XML strategy described in Section 3.
While being more mature in general, PUNCH lacks a sound workspace manage-
ment, i.e., an easy way for the user to administrate and reuse input / output
data among several computational tasks. It should be noted that Webcut is not
aimed to be a tool for accessing and using globally distributed resources. Al-
though it could be coupled with projects like NetSolve [9] the objectives of this
work are focused on handy interfaces.

The paper is organized as follows. Section 2 gives a short description of the
web computing environment, from a user’s point of view. This includes presen-
tation of the major functionalities and a step-by-step illustration of a computing
session. In Section 3, we describe the way in which the programmer has to provide
information about the routines to be implemented. Details about the internal
design are given in Section 4. Conclusions and future work are presented in Sec-
tion 5, mainly to show how the software library SLICOT [10, 11] benefited from
this work and how other libraries could benefit, too.

2 A User’s Point of View

The web computing environment can be accessed from a standard web browser,
with no need for additional software installations on the local computer.

In the following, we illustrate how the environment can be used to solve a
sample problem, namely to compute the circular convolution of two signals

ck =
n∑

j=1

ajbk+1−j, k = 1, . . . , n . (1)

The vectors defining the problem can be entered by the user in the web
interface. However, default values are provided so that computations can be
performed without the need for the user to define an own problem. Input data
can also be previously used data or be uploaded from Matlab binary or plain
text files. The underlying software is the SLICOT routine DE01PD based on
discrete Hartley transforms [12].

Figure 1 shows the user interface for the routine DE01PD. Here, the vectors
have already been entered and the user may choose between computing the

1 Matlab is a registered trademark of The MathWorks, Inc.

873Semi-automatic Generation of Web-Based Computing Environments

Fig. 1. Web interface for computing the convolution of real signals.

convolution or its inverse function, deconvolution. This is a simple example with
only two input parameters and one option. With more complex computational
tasks, the number of input parameters and options can be much larger, including
scalar parameters and multiple choice lists.

After pressing the compute button in the window of Fig. 1, the convoluted
signal is presented as in Fig. 2. It is also possible to download the input/output
data as plain text files or Matlab binaries. During the web computing session,
matrices are stored in a workspace, making the data from previous tasks available
as input in subsequent computations. For example, the discrete Fourier transform
of the signal c can be computed using the web interface of the SLICOT routine
DG01ND.

874 P. Johansson and D. Kressner

Fig. 2. Convoluted signal and possibilities for downloading data.

A convenient interface enables administrating this workspace, as illustrated
in Fig. 3. One of the features of the session manager is that users can login
and reuse data of previous computations. All information is stored on a remote
machine so that data computed in Ume̊a, Sweden could easily be recovered, e.g.,
in an Internet cafè in Berlin.

3 A Programmers Point of View

Apart from being user-friendly it is important to keep web computing facilities as
programmer-friendly as possible. The motivation for putting routines on-line will
remain low if software producers have to struggle with HTML dialects and CGI
techniques. Our approach only assumes the access to a web server that is able
to parse the HTML-embedded scripting language PHP and to call executable
binaries. The integration of new routines in the environment is then a process
divided into two parts.

External routines to be included are first formalized in an XML description
file. The syntax is well-defined and deals with a wide range of attributes of
the routine, e.g., parameters, conditions, options, default values, description of
the routine and so on. When dealing with software libraries which have very
restrictive in-line documentation standards the production of the description file
could be automatized.

875Semi-automatic Generation of Web-Based Computing Environments

Fig. 3. The workspace manager.

The XML-format currently used in Webcut differs slightly from the format
described below. Considerations concerning generality and reusability made it
necessary to develop a modified version, together with improved parsers.

For the example from Section 2, the convolution of two signals, the description
in the reviewed format is shown below.

<routine name = "DE01PD" supgroup = "DE - Covariances">

<description>

Convolution or deconvolution using Hartley transform

</description>

<parameters>

<matrix name = "A">

<description>First signal:</description>

<default>

\t0.4862\n\t0.1948\n\t0.5788\n\t-0.5861\n

\t0.8254\n\t0.1815\n\t0.2904\n\t-0.3599

</default>

</matrix>

<matrix name = "B">

<description>Second signal:</description>

<default>

\t0.2288\n\t0.3671\n\t0.6417\n\t0.3875\n

876 P. Johansson and D. Kressner

\t0.2380\n\t0.4682\n\t0.5312\n\t0.6116

</default>

</matrix>

<optionlist name = "conv">

<description>Perform:</description>

<option name = "C" description = "convolution;"/>

<option name = "D" description = "deconvolution."/>

<default> C </default>

</optionlist>

<functional type = "length">

<argument> A </argument>

</functional>

</parameters>

<conditions>

<condition type = "is_vector">

<argument> A </argument>

</condition>

<condition type = "is_vector">

<argument> B </argument>

</condition>

<condition type = "equal_length">

<argument> A, B </argument>

</condition>

</conditions>

</routine>

The top entry routine, specifies the name and description of the routine. It
contains specifications of name, location and parameters to the callable routine
together with possible conditions on those. Restricting parameters is convenient,
especially with routines that are not designed for parameter control and may
therefore crash without any further information. More about the currently used
syntax and semantics of the description files can be found in the documentation
accompanying Webcut [13].

The description files are then used by a parser, currently implemented in
Perl, that regenerates and modifies the environment to include new routines
or modify old ones. An important aspect is that each description file contains
exactly the information related to one routine. There are no relations to other
parts of the environment so that modifications in single routines keep local.

One weakness with our choice of platform for the server, In the current ver-
sion, most added routines need an additional routine that handles the parameters
in a for the Webcut compatible manner.

Data transfer follows at the moment a simple strategy; input data is supplied
to the standard input stream and output data is read from the standard output
stream. Hence, the input/output behavior of calling routines must satisfy a well-
defined standard.

877Semi-automatic Generation of Web-Based Computing Environments

4 Implementation Details

The implementation of the Webcut environment is mainly done with PHP, a
server side hypertext preprocessing language. PHP is a suitable choice for writing
dynamic web content and it is intuitive and easy to integrate into existing HTML.
Furthermore, a crucial aspect for our project, data bases are well supported. The
overall design of the web computing environment is in a schematic way described
in Fig. 4.

USER DB

3a21c7075a

3a1cea9edd

...

BB01AD

AB01OD

AB01ND

BB02AD

AB01MD

Convert

Parse

ID: 3a3098128caf8 ID: 3a0d5f66e07b6

ID: 3a1cea9edd4a3ID: 3a21c7075a4eb

Copy

...

BB02AD

...

BB01AD

AB01OD

AB01ND

AB01MD

Session−manager

Upload

Download

SLICOT Routines Web interface

Aux. Routines

Script Libraries
SESSION DB

...

3a3098128c

3a0d5f66e0

WORKSPACE_D

Fig. 4. A schematic overview of the Webcut design.

Within Webcut, several PHP libraries have been developed for the tasks
performed by the environment. The following parts are provided.

Layout rendering. Functions that render HTML code and thereby the layout
of Webcut are gathered in one library. The structure of the library makes it
easy to modify parts or the entire layout.

Session Identification. Contains functions that interact with the browser and
maintain the identification of the user during one session.

Invocation and interaction with external routines. Here, the execution of
external routines is handled together with the passing of input parameters
and catching output data.

Session, user and workspace management. The functions of this library
take care of user, session and workspace data by providing high level access
to the corresponding data bases.

Based on these libraries, a wide range of user-interactive pages has been devel-
oped. Those include workspace and user management, interaction with Matlab
and so on. The main part however consists of pages that call external routines.

878 P. Johansson and D. Kressner

As above described in Section 3, the PHP files are generated from the XML-
description files, and included into the environment. Since they are based on the
developed libraries it is easy to change their layout or functionality.

The session life time starts when a web interface is opened for the first time.
The user is then provided with a unique ID that links her/him with a new
session. The session itself consists of information about the user and a workspace
for produced or uploaded data. This session is accessible as long as the user’s
web browser keeps track of the provided ID. Since there is a time limit, the ID
expires after a period of inactivity. Registered users can restore previously used
sessions at any time and at any place.

5 Conclusions and Future Work

In this paper we described tools which automatically generate web computing
environments from given description files and calling routines. The resulting
interfaces are intuitive to use and provide a sound workspace and session man-
agement.

The SLICOT library consists of about 250 user callable routines and bench-
mark collections in various domains of systems and control. Webcut has been
used to provide large parts of this library with web interfaces. For example,
Riccati benchmark collections [14] as well as solvers for the algebraic Riccati
equation [15] can be tested on-line. The SLICOT web computing project can be
found under http://wc2.hpc2n.umu.se.

Future developments will concentrate on the coupling of Webcut with grid
computing environments. The web interfaces will enable users to direct com-
putations to a heterogeneous set of computers. A major step to be taken is
to improve the input/output data management. For instance, the data trans-
fer between computational routines and the web server must be generalized. It
is further planned to apply Webcut to other software libraries relevant to the
engineering community. Of particular interest is software designed for parallel
computations like ScaLapack [16] or PSLICOT [17].

6 Acknowledgments

The authors wish to thank Erik Elmroth, Bo K̊agström and Volker Mehrmann
for not only taking initiative for this project, but also for useful discussions and
help throughout this work. We are also grateful to participate in the NICONET
project [18], which develops and distributes the SLICOT library [10], and to the
High Performance Computing Center North (HPC2N) [19] which provides the
web computing server resources.

879Semi-automatic Generation of Web-Based Computing Environments

[2] The MathWorks, Inc.: MATLAB web server, version 1.2.1. (2001) http://www.

mathworks.com/products/webserver/

[3] Baldeschwieler, J., Blumofe, R., Brewer, E.: ATLAS: An infrastructure for global
computing. Proceedings of the Seventh ACM SIGOPS European Workshop on
System Support for Worldwide Applications (1996)

[4] Souder, D., Herrington, M., Garg, R. P., Deryke, D.: JSPICE: a component-based
distributed Java front-end for SPICE. Concurrency: Practice and Experience 10
(1998) 1131–1141

[5] Günther, O., Müller, R., Schmidt, P., Bhargava, H. K., Krishnan, R.: MMM:
A web-based system for sharing statistical computing modules. IEEE Internet
Computing 1 (1997) 59–68

[6] Brecht, T., Sandhu, H., Shan, M., and Talbot, J.: ParaWeb: Towards word-wide
supercomputing. Proceedings of the Seventh ACM SIGOPS European Workshop,
Connemara, Ireland (1996) 181–188

[7] Kropf, P. G.: Overview of the web operating system (WOS) project. Advanced
Simulation Technologies Conference, San Diego, CA (1999) 350–356

[8] Kapadia, N., Fortes, J.: PUNCH: An architecture for web-enabled wide-area
network-computing. Cluster Computing 2 (1999) 153–164

[9] Arnold, D., Agrawal, S., Blackford, S., Dongarra, J., Miller, M., Sagi, K., Shi, Z.,
Vadhiyar, S.: Users’ Guide to NetSolve V1.4. Computer Science Dept. Technical
Report CS-01-467, University of Tennessee, Knoxville, TN (2001)

[10] Benner, P., Mehrmann, V., Sima, V., Van Huffel, S., Varga, A.: SLICOT—a sub-
routine library in systems and control theory. Applied and computational control,
signals, and circuits, Vol. 1, Birkhäuser Boston, Boston, MA (1999) 499–539

[11] Elmroth, E., Johansson, P., K̊agström, B. Kressner, D.: A web computing envi-
ronment for the SLICOT library. The Third NICONET Workshop on Numerical
Control Software (2001) 53–61

[12] Van Loan, C. F.: Computational frameworks for the fast Fourier transform. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA (1992)

[13] Johansson, P. and Kressner, D.: Webcut - a documentation. Preliminary version
available from http://wc2.hpc2n.umu.se (2001)

[14] Abels, J. and Benner, P.: CAREX - a collection of benchmark examples for
continuous-time algebraic Riccati equations (version 2.0). SLICOT working note
1999-14, WGS (1999)

[15] Laub, A. J.: A Schur method for solving algebraic Riccati equations. IEEE Trans.
Automat. Control, 24 (1979) 913–921

[16] Blackford, S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley,
R. C.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA (1997)

[17] Benner, P., Quintana-Ort́ı, E. S., Quintana-Ort́ı, G.: PSLICOT routines for model
reduction of stable large-scale systems. The Third NICONET Workshop on Nu-
merical Control Software (2001) 39–44

[18] NICONET. Numerics in Control Network. http://www.win.tue.nl/wgs/

niconet.html

[19] HPC2N. High Performance Computing Center North, Ume̊a University, Sweden.
http://www.hpc2n.umu.se.

880 P. Johansson and D. Kressner

References

[1] The MathWorks, Inc.: MATLAB User’s Guide. Natick, MA (1992)

	Introduction
	A User’s Point of View
	A Programmers Point of View
	Implementation Details
	Conclusions and Future Work
	Acknowledgments
	References

