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Abstract. Computational results for the microwave heating of a porous
material are presented in this paper. Combined finite difference time do-
main and finite volume methods were used to solve equations that de-
scribe the electromagnetic field and heat and mass transfer in porous
media. The coupling between the two schemes is through a change in
dielectric properties which were assumed to be dependent both on tem-
perature and moisture content. The model was able to reflect the evo-
lution of temperature and moisture fields as the moisture in the porous
medium evaporates. Moisture movement results from internal pressure
gradients produced by the internal heating and phase change.

1 Introduction

Microwaving is a common means of heating foodstuffs as well as an important
industrial process for heating water-based materials and removing moisture from
porous materials such as the drying of textiles, wood, paper and ceramics. Per-
haps the largest consumer of microwave power is the food industry where it is
used for cooking, thawing, pasteurization, sterilization etc. The ability of mi-
crowave radiation to penetrate and interact with materials provides a basis for
obtaining controlled and precise heating. Although microwave heating is most
beneficial when used for materials with a high moisture content, other materials
can still be heated efficiently and quickly.

Because of dielectric losses, microwave absorption provides a volumetrically
distributed source. The temperature and moisture distributions in a material
during microwave heating are influenced by the interaction and absorption of
radiation by the medium and the accompanying transport processes due to the
dissipation of electrical energy into heat.

Dielectric properties of most biomaterials vary with temperature [1]. Torres
at al. proposed in [11] a 3–D algorithm for microwave heating by coupling of
the power distribution with the heat transfer equations in both frequency and
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temperature dependent media. The model was able to predict the locations of hot
spots within the material. The transfer of mass was assumed to be unimportant.

However, if significant drying occurs during heating, mass transfer must be
accounted for too. An one dimensional multiphase porous media model for pre-
dicting moisture transport during intensive microwave heating of wet biomateri-
als was proposed in [8]. The transport properties varied with structure, moisture
and temperature. The model successfully predicted the moisture movement. Ex-
cellent research into drying of wood was carried out by Perre [9]. Their 3–D
algorithms coupled heat and mass transfer with Maxwell’s equations and the
dielectric properties depended both on temperature and moisture.

The present work considers microwave heating of a simple saturated porous
material with temperature and moisture dependent dielectric properties. The
solution of Maxwell’s equations is performed in the time domain using the Finite
Difference Time Domain technique. The 3–D heat and mass transfer equations
are solved using the Finite Volume code PHOENICS [10]. Full coupling between
the two calculations is achieved by mapping the (moisture and temperature
dependent) porous media dielectric properties from the CFD mesh onto the
electromagnetic solver and then mapping the microwave heating function from
the finite difference mesh to the finite volume mesh.

2 Electomagnetic field in microwave enclosures

The distribution of electromagnetic field in space and time is governed by Maxwell’s
equations [13]. When material interfaces are present, boundary conditions must
be imposed to account for discontinuities of charge and current densities. Pro-
vided both media have finite conductivity and there are no sources at the inter-
face, the tangential electric and magnetic fields along the interface are continu-
ous.

2.1 Dielectric Properties

The dielectric properties of materials subjected to microwave heating play a
key role in designing proper microwave applicators. They are: permittivity ε,
permeability µ and conductivity σ. Permittivity describes the interaction of the
material with the high frequency electric field and is defined by the following
equation :

ε = ε0(ε
′
r − ε

′′
eff ) (1)

where ε
′
r is the relative dielectric constant, ε

′′
eff is the effective relative loss

factor and ε0 = 8.85× 1012F/m is the permittivity of air. ε
′
r is a measure of the

polarizability of a material in the electric field, and ε
′′
eff includes the loss factors

which are relevant to high frequency heating.
Both ε

′
r and ε

′′
eff are temperature (T ) dependent and a number of investiga-

tions have been made in order to explain this behaviour [1],[5]. In most cases,
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their values increase as the material thaws and thereafter decrease as the temper-
ature increases. However, these changes for the temperatures up to the boiling
point are relatively small [5].

Since most foodstuffs contain an appreciable amount of water, the variation
of ε

′
r and ε

′′
eff with the moisture content plays an important role in the design

of the microwave heating process. If the temperature dependence in known, the
relative dielectric constant and the electric permittivity can be averaged using
the following representation (see e.g. [9]):

ε(M,T ) = (1− φ)εsolid(T ) + φ(Mεliquid(T ) + (1−M)εgas(T )) (2)

where M is a moisture content and φ porosity.
Losses under the influence of the magnetic field can be described in a similar

way to losses in electric materials. However, most materials used in microwave
processing are magnetically transparent. The magnetic permeability in this work
is assumed to have the value of the free space permeability µ0 = 4π×10−7H/m.

2.2 Finite–Difference Time–Domain (FTDT) Scheme

Yee’s scheme [13] is used to discretize the Maxwell’s equations. The FTDT
Scheme proceeds by segmenting the volume into a three–dimensional mesh com-
posed of a number of finite volumes.

It makes use of finite difference approximations to electric and magnetic
fields components, that are staggered both in time and space. E and H field
components are positioned at half–step intervals around unit volumes and they
are evaluated at alternate half–time steps, effectively giving centered difference
expressions for both time and space derivatives.

Values for ε and σ are specified at cell centres as ε(i, j, k) and σ(i, j, k). Con-
tinuity across the interface of the tangential field is implemented automatically.

This scheme is second order accurate in both time and space on uniform
and non–uniform meshes [7], and can be locally refined [6] without significant
loss of accuracy. The use of (semi)–structured meshes ensures optimally fast
computations for the most time–consuming component of the overall calculations
and is sufficient for our geometric modelling requirements.

3 Heat and Mass Transfer in Porous Media

3.1 Dissipated Power

The dissipated power density is the microwave energy absorbed by the material.
It is eventually converted into thermal energy. The dissipated power density is
influenced by the field intensity distribution and electric properties. The heating,
Q, which will be included as a source term in the heat transfer equation, is
computed from peak field amplitudes as:

Q =
1
2

| Emax |2 . (3)
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3.2 Heat Transfer Equations

There are two energy transfer equations within the processed specimen each
corresponding to one ”phase”. The first phase consists of solid and liquid and
the second one is the gas phase.

ρ1

∂H1(x, y, z, t)
∂t

+∇ · (ρ1u1H1− k1

Cp1

∇H1(x, y, z, t)) = Q(x, y, z, t) + Sint
1 (4)

ρ2

∂H2(x, y, z, t)
∂t

+∇ · (ρ2u2H2 − k2

Cp2

∇H2(x, y, z, t)) = Sint
2 (5)

where the specific heat, Cp is averaged for each phase as follows:

Cp1 = (1− φ)Csolid
p1 + φMCliquid

p1 (6)

Cp2 = φ(1−M)Cgas
p2 (7)

Thermal conductivity k and density ρ are averaged in a similar way. The heating
function is included in the solid-liquid heat transfer equation. There will be an
interphase transfer between the two phases, represents by the interface source
Sint

i defined as:
Sint

i = hijAs(Hint
i −Hi) (8)

where hij is a bulk–to interface heat transfer coefficient, As is the total interface
area and Hint are interface enthalpies.

3.3 Mass transfer equations

Gas phase continuity equation:

∂(ρgrg)
∂t

+∇ · (ρgrgug) = ṁ . (9)

Liquid phase continuity equation:

∂(ρlrl)
∂t

+∇ · (ρlrlul) + ṁ = 0 . (10)

rg and rl are gas and liquid volume fractions respectively. The interface mass
transfer rate, ṁ, is determined from the balance of heat through the interface
between the phases.

3.4 Darcy’s Law Equations

Darcy’s law can be used to represent momentum transfer in the porous medium.
For liquid it can be expressed in the form:

ul = −Kl

λl
(∇Pg + lr∇rl + lT∇T ) (11)
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in which lr = −∂Pc(rl, T )/∂rl and lT = −∂Pc(rl, T )/∂T are terms related to
capillary pressure Pc. Also Kl and λl denote the permeability tensor and the
liquid viscosity, respectively, and Pg gas pressure.

The appropriate version of Darcy’s law for the gas phase is

ug = −Kg

λg
(∇Pg) (12)

where Kg and λg are the permeability tensor and the liquid viscosity, respec-
tively.

3.5 Initial and Boundary Conditions

There are number of surface heat or surface loss mechanisms during the mi-
crowave heating. The general boundary condition on the material’s surface can
be expressed as:

−k
∂T

∂n
= hc(Ts − T∞) + σradεrad(T 4

s − T 4
∞)− ṁL (13)

where Ts is the load surface temperature, T∞ is the convective air temperature, n
represents the normal to the surface, hc is the convective heat transfer coefficient,
σrad is the Stefan–Boltzmann constant, εrad is the radiative surface emissivity
and L is the latent heat of vaporization of the evaporated liquid. The first term
in the equation represent the natural convection by which the load is cooled. The
second term is the surface radiation and is important as a cooling mechanism at
high load temperatures, or as a heating mechanism if susceptors are used. Since
materials with a high moisture content are being observed in this study, the last
term, evaporative cooling will have the strongest impact on the temperature
profile.

Besides, initial conditions for the example considered here also included:

Pg(t = 0) = Patm, T (t = 0) = Tambient . (14)

4 Results and Discussion

4.1 Model Description

The microwave oven model used in this paper consists of a waveguide and a
microwave cavity containing a block of porous material of rectangular cross sec-
tion, Fig. 1. The input plane of the waveguide is excited in the dominant TE10

mode having the spacial distribution corresponding to this mode and with an
amplitude of 100kV

m . The excitation plane is located far away from the junction
where the higher order modes are virtually non-existent. The energy which is
reflected back due to a mismatch between the impedance of the waveguide and
that of the located cavity passes through the excitation plane, which appears
transparent, and is absorbed by the absorbing boundary.
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Fig. 1. Microwave oven model

4.2 Solution Technique

The coupling algorithm can be summarized as follows: the FTDT solver is run
until the steady state (pure time harmonic) is sufficiently well approximated
and the power distribution Q, computed from the peak field amplitudes, has
converged. The temperature distribution and moisture content then evolve ac-
cording to this power distribution until the electric properties of the medium have
changed significantly. The electromagnetic solver is then re–run, taking into ac-
count the new electrical properties. Once the steady state is reached again, the
whole procedure is repeated until the required heating time is reached.

It should be pointed out that the electromagnetic field distribution within the
microwave oven is stabilized by the dielectric properties of the biomaterial on a
timescale that is very small compared with the thermal process. There are many
possible criteria that could be used to determine when the electromagnetic field
components have converged. However the key quantity linking the two models
is the microwave heating function Q. This heating function was determined at
each FTDT time step and the total sum over the biomaterial calculated i.e.

In =
∫

V

dV =
1
2

∑
i,j,k

σi,j,k | Emax
i,j,k |2 ∆xi∆yj∆zk . (15)

The relative change in the total sum was used as a measure of the convergence
of the FTDT scheme to the time–harmonic state.
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The cavity and the waveguide are meshed for the FTDT computation with a
tensor–product cartesian mesh, but only the biomaterial needs to be meshed for
the heat and mass transfer calculations within PHOENICS. Since the two meshes
are independent, a transfer function (conserving the total Q for the biomaterial)
is used to map the heating function Q from the FTDT mesh to the heat and
mass transfer mesh. The time step for the electromagnetic solver is limited by
the stability condition

∆t <
c

( 1
∆x2 + 1

∆y2 + 1
∆z2 )

1
2

(16)

where c = (εµ)−1/2 is the local electromagnetic wave speed. The time step was
set to be 95% of the minimum time step for the mesh and material.

4.3 Discussion

Results are shown for a simple biomaterial with material properties set to those of
mashed potato, with density ρ = 1050 kg

m3 , and porosity φ = 0.55. The dielectric
properties of mashed potato as a function of temperature at 109Hz were taken
from literature [4]. Values for the liquid and gas permeabilities were Kl = 5 ×
10−16m−2 and Kg = 1 × 10−16m−2, respectively. The initial temperature was
taken to be 15◦C. An ambient temperature of 25◦C was assumed together with
a convective heat transfer of 10Wm−2K−1 corresponding to a flow of air of
approximately 0.5ms−1 across the surface via the action of the oven fan. The
slab had dimensions 200mm × 200mm × 4mm and was positioned such that
the planes of the horizontal and vertical symmetry of the load coincided with
those of the waveguide. The load was placed at a distance of 17mm from the
oven–waveguide junction. The total heating time was 120s.

Due to the symmetry of the oven, the maximum values of the heating function
on the face are in the centre, Fig. 2. The calculated temperature distributions
is shown in Fig. 4. Temperature increase will be very steep in the centre cor-
responding to the power distribution, slowing down towards the edges due to
surface cooling.

Microwave heating generates heat constantly, and as the temperature in-
creases a change of phase will occur and the moisture content will decrease
accordingly, Fig. 5. The elevated internal temperature and increasing internal
vapor pressure drive the liquid from the medium quickly and efficiently. The
vectors in Fig. 5 show the transfer of fluid out of the potato due to evaporation.
Further increase of the temperature will further decrease liquid concentrations
and vapour transport will become the dominant migration mechanism.

As the water in the food is transferred into vapour and is lost through the
boundary, energy absorption is reduced because liquid water is the most active
component in absorbing microwave energy. The microwave power distribution
will change as shown in Fig. 3.
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Fig. 2. Heating function,Q, inside the potato at t = 20sec

Fig. 3. Heating function,Q, inside the potato at t = 120sec
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Fig. 4. Temperature profile inside the potato at t = 120sec

Fig. 5. Liquid concentration inside the potato at t = 40sec
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5 Conclusion

Heat and mass processes during the microwave heating of food materials are com-
plicated and require knowledge of several areas. The model, which combines a
three–dimensional transfer code with a three–dimensional electromagnetic com-
putational scheme, was able to predict the overall drying behaviour. The two
calculations have been closely coupled in an optimally cost–efficient manner.
This model can be used as a tool for studying in detail microwave heating for
real cases, provided the exact dependencies of dielectric properties are measured
and implemented in the code.
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