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Abstract. In this paper we show how the problem of job-shop scheduling where
the jobs are preemptible can be modeled naturally as a shortest path problem
defined on an extension of timed automata, namely stopwatch automata where
some of the clocks might be freezed at certain states. Although general verification
problems on stopwatch automata are known to be undecidable, we show that due
to particular properties of optimal schedules, the shortest path in the automaton
belongs to a finite subset of the set of acyclic paths and hence the problem is
solvable. We present several algorithms and heuristics for finding the shortest
paths in such automata and test their implementation on numerous benchmark
examples.

1 Introduction

In [AM01] we have described a first step in a research programme intended to re-
formulate scheduling problems using (timed) automata-based formalisms. Apart from
the undeniable joy of re-inventing the wheel, this work is motivated by the belief that
such automata provide timing problems with faithful state-based dynamic models on
which a systematic study of semantic and computational problems can be done — the
reader is referred to [AM01] for some of the motivation and background and to [AM99,
AGP99,NTY00,NY01,BFH+01] for other recent results in this spirit. In this framework
the runs of the timed automaton correspond to feasible schedules and finding a time-
optimal schedule amounts to finding the shortest path (in terms of elapsed time) in the
automaton. In [AM01] we have shown how this works nicely for the job-shop scheduling
problem which can be modeled by a certain class of acyclic timed automata, having
finitely many qualitative1 runs. Each such qualitative run is an equivalence class of a
non-countable number of quantitative runs, but as we have shown, one of those (a “non-
lazy” run which makes transitions as soon as possible) is sufficient to find the optimum
over the whole class. These observations allowed us to apply efficient search algorithms
over single configurations of clocks rather than work with zones.

In this work we extend these results to preemptible jobs, i.e. jobs that can use a
machine for some time, stop for a while and then resume from where they stopped. Such
� This work was partially supported by the European Community Project IST-2001-35304 AME-

TIST http://ametist.cs.utwente.nl
1 By a qualitative run of a timed automaton we mean a sequence of states and transitions without

metric timing information.
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situations are common, for example, when the machines are computers. While extending
the framework of [AM01] to treat this situation we encounter two problems:

1. The corresponding class of automata goes beyond timed automata because clocks are
stopped but not reset to zero when a job is preempted. General reachability problems
for such stopwatch automata (also known as integration graphs) are known to be
undecidable [C92,KPSY99].

2. Due to preemption and resumption, which corresponds to a loop in the underlying
transition graph, the obtained automata are cyclic (unlike the non-preemptive case)
and they have an infinite number of qualitative runs.

We will show however that these problems can be overcome for the class of stopwatch
automata that correspond to preemtible job shop problems, and that efficient algorithms
can be constructed.

The rest of the paper is organized as follows. In section 2 we give a short introduction
to the preemptive job-shop scheduling problem including a fundamental property of
optimal schedules. In section 3 we recall the definition of stopwatch automata and
show how to transform a job-shop specification into such an automaton whose runs
correspond to feasible schedules. In section 4 we describe efficient algorithms for solving
the shortest-path problem for these automata (either exactly or approximately) and report
the performance results of their prototype implementation on numerous benchmark
examples.

2 Preemptive Job-Shop Scheduling

The Job-shop scheduling problem is a generic resource allocation problem in which
common resources (“machines”) are required at various time points (and for given dura-
tions) by different tasks. The goal is to find a way to allocate the resources such that all
the tasks terminate as soon as possible. We consider throughout the paper a fixed set M
of resources. A step is a pair (m, d) where m ∈ M and d ∈ N, indicating the required
utilization of resource m for time duration d. A job specification is a finite sequence

J = (m1, d1), (m2, d2), . . . , (mk, dk) (1)

of steps, stating that in order to accomplish job J , one needs to use machine m1 for d1
time, then use machine m2 for d2 time, etc.

Definition 1 (Job-Shop Specification). LetM be a finite set of resources (machines). A
job specification over M is a triple J = (k, µ, d) where k ∈ N is the number of steps in
J , µ : {1..k} → M indicates which resource is used at each step, and d : {1..k} → N
specifies the length of each step. A job-shop specification is a set J = {J1, . . . , Jn} of
jobs with J i = (ki, µi, di).

In order to simplify notations we assume that each machine is used exactly once by every
job. We denote R+ by T , abuse J for {1, . . . , n} and let K = {1, . . . , k}.
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Definition 2 (Feasible Schedules). LetJ = {J1, . . . , Jn} be a job-shop specification.
A feasible schedule for J is a relation S ⊆ J ×K × T so that (i, j, t) ∈ S indicates
that job J i is busy doing its jth step at time t and, hence, occupies machine µi(j).
We let T ij be the set of time instants where job i ∈ J is executing its jth step, i.e.
T ij = {t : (i, j, t) ∈ S}.2 A feasible schedule should satisfy the following conditions:

1. Ordering: if (i, j, t) ∈ S and (i, j′, t′) ∈ S then j < j′ implies t < t′ (steps of the
same job are executed in order).

2. Covering: For every i ∈ J and j ∈ K
∫
t∈T ij

dt ≥ di(j)

(every step is executed).
3. Mutual Exclusion: For every i 	= i′ ∈ J , j, j′ ∈ K and t ∈ T , if (i, j, t) ∈ S and

(i′, j′, t) ∈ S then µi(j) 	= µi
′
(j′) (two steps of different jobs which execute at the

same time do not use the same machine).

Note that we allow a job to occupy the machine after the step has terminated. The length
|S| of a schedule is the supremal t over all (i, j, t) ∈ S. We say that a step j of job i
is enabled in time t if t ∈ E ij = (maxT ij−1,maxT ij ]. The optimal job-shop scheduling
problem is to find a schedule of a minimal length. This problem is known to be NP-
hard [GJ79]. From the relational definition of schedules one can derive the following
commonly used definitions:

1. The machine allocation function α : M × T → J stating which job occupies a
machine at any time, defined as α(m, t) = i if (i, j, t) ∈ S and µi(j) = m.

2. The task progress function β : J × T →M stating what machine is used by a job
is at a given time, defined as β(i, t) = m if (i, j, t) ∈ S and µi(j) = m.

These functions are partial — a machine or a job might be idle at certain times.
Example 1: ConsiderM = {m1,m2,m3} and two jobs J1 = (m1, 3), (m2, 2), (m3, 4)
and J2 = (m2, 5). Two schedules S1 and S2 appear in Figure 1. The length of S1 is
9 and it is the optimal schedule. As one can see, at t = 3, J1 preempts J2 and takes
machine m2.

We conclude this section with a reformulation of a well-known result concerning
optimal preemptive schedules which will be used later. In essence this result formalizes
the following two intuitive observations: 1) When jobs can be preempted and resumed
at no cost, there is no reason to delay a step not being in a conflict with another. 2) Two
jobs that keep on preempting each other do not contribute to the general progress.

Definition 3 (Conflicts and Priorities). Let S be a feasible schedule. We say that job
i is in conflict with job i′ on machine m in S (denoted by i ∦m i′) when there are two
respective steps j and j′ such that µi(j) = µi

′
(j′) = m and E ij ∩ E i

′
j′ 	= ∅. We say that

i has priority on m over a conflicting job i′ (denoted by i ≺m i′) if it finishes using m
before i′ does, i.e. supT ij < supT i

′
j′ .

2 We may assume further that T ij is can be decomposed into a countable number of left-closed
right-open intervals.
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Fig. 1. Two schedule S1 and S2 visualized as the machine allocation function α and the task
progress function β.

Note that conflicts and priorities are always induced by a schedule S although S is
omitted from the notation.

Definition 4 (Efficient Schedules). A schedule S is efficient if for every job i and a step
j such that µi(j) = m, job i uses m during all the time interval E ij except for times
when another job i′ such that i′ ≺m i uses it.

The following is a folk theorem, whose roots go back at least to [J55] with some refor-
mulation and proofs in, for example, [CP90,PB96].

Theorem 1 (Efficiency is Good). Every preemptive job-shop specification admits an
efficient optimal schedule.

Sketch of Proof: The proof is by showing that every inefficient schedule S can be
transformed into an efficient schedule S′ with |S′| ≤ |S|. Let I be the first interval when
inefficiency occurs for job i and machine m. We modify the schedule by shifting some
of the later use of m by i into I . If m was occupied during I by another job i′ such that
i ≺m i′, we give it the time slot liberated by i. The termination of the step by i′ is not
delayed by this modification because it happens anyway after i terminates its step.

As an illustration consider the schedules appearing in Figure 2 withJ1 ≺m J2 ≺m J3
and where J2 is enabled in the interval [t1, t2]. The first inefficiency in S1 is eliminated
in S2 by letting J2 use the free time slot before the arrival of J1. The second inefficiency
occurs when J3 uses the machine while J2 is waiting, and it is removed in S3. The last
inefficiency where J3 is waiting while m is idle is removed in S4.

This result reduces the set of candidates for optimality from the non-countable set of
feasible schedules to the finite set of efficient schedules, each of which corresponds to
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Fig. 2. Removal of inefficiency, J1 ≺ J2 ≺ J3.

a fixed priority relation.3 There are potentially kn! priority relations but only a fraction
of those needs to be considered because when i and i′ are never in conflict concerning
m, the priority i ≺m i′ has no influence on the schedule.

3 Stopwatch Automata

Timed automata [AD94] are automata augmented with continuous clock variables whose
values grow uniformly at every state. Clocks are reset to zero at certain transitions and
tests on their values are used as pre-conditions for transitions. Hence they are ideal for
describing concurrent time-dependent behaviors. There are however situations, preemp-
tive scheduling being among those, in which we need to measure the overall accumulated
time that a systems spends in some state. This motivated the extension of the model to
have clocks with derivative zero at certain states. Unlike timed automata, the reacha-
bility problem for these automata is undecidable [C92]. Some sub-classes, integration
graphs, were investigated in [KPSY99], where a decision procedure based on reducing
the problem into linear constraint satisfaction was reported. Similar automata were stud-
ied in [MV94] and in [CL00] where an implementation of an approximate verification
algorithm was described.

Definition 5 (Stopwatch Automaton).
A stopwatch automaton is a tupleA = (Q,C, s, f,u, ∆) whereQ is a finite set of states,
C is a finite set of n clocks, u : Q→ {0, 1}n assigns a constant slope to every state and
∆ is a transition relation consisting of elements of the form (q, φ, ρ, q′) where q and q′

are states, ρ ⊆ C and φ (the transition guard) is a boolean combination of formulae of
the form (c ∈ I) for some clock c and some integer-bounded interval I . States s and f
are the initial and final states, respectively.

A clock valuation is a function v : C → R+∪{0}, or equivalently a |C|-dimensional
vector over R+. We denote the set of all clock valuations by H. A configuration of the

3 This might explain the popularity of priority-based approach in computer scheduling.
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automaton is hence a pair (q, v) ∈ Q × H consisting of a discrete state (sometimes
called “location”) and a clock valuation. Every subset ρ ⊆ C induces a reset function
Resetρ : H → H defined for every clock valuation v and every clock variable c ∈ C as

Resetρ v(c) =
{

0 if c ∈ ρ
v(c) if c 	∈ ρ

That is, Resetρ resets to zero all the clocks in ρ and leaves the others unchanged. We use
1 to denote the unit vector (1, . . . , 1), 0 for the zero vector and uq for u(q), the derivative
of the clocks at q.

A step of the automaton is one of the following:

– A discrete step: (q, v) 0−→ (q′, v′), where there exists δ = (q, φ, ρ, q′) ∈ ∆, such
that v satisfies φ and v′ = Resetρ(v).

– A time step: (q, v) t−→ (q, v + tuq), t ∈ R+.

A run of the automaton starting from (q0, v0) is a finite sequence of steps

ξ : (q0, v0) t1−→ (q1, v1) t2−→ · · · tl−→ (ql, vl).

The logical length of such a run is l and its metric length is |ξ| = t1 + t2 + · · · + tl.
Note that discrete transitions take no time.

Next we construct for every job J = (k, µ, d) a timed automaton with one clock such
that for every step j with µ(j) = m there are three states: a state m which indicates that
the job is waiting to start the step, a state m indicating that the job is executing the step
and a state m̃ indicating that the job is preempted after having started. Upon entering m
the clock is reset to zero, and measures the time spent in m. Preemption and resumption
are modeled by transitions to and from state m̃ in which the clock does not progress.
When the clock value reaches d(j) the automaton can leave m to the next waiting state.
Let M = {m : m ∈ M}, M̃ = {m̃ : m ∈ M} and let µ : K → M and µ̃ : K → M̃
be auxiliary functions such that µ(j) = m and µ̃(j) = m̃ whenever µ(j) = m.

Definition 6 (Stopwatch Automaton for a Job). Let J = (k, µ, d) be a job. Its as-
sociated automaton is A = (Q, {c}, u,∆, s, f) with Q = P ∪ P ∪ P̃ ∪ {f} where
P = {µ(1), . . . µ(k)},P = {µ(1), . . . , µ(n)} and P̃ = {µ̃(1), . . . , µ̃(n)}. The slope
is defined as uq = 1 when q ∈ P and uq = 0 otherwise.4 The transition relation ∆
consists of the following types of tuples

type q φ ρ q′

1) begin µ(j) true {c} µ(j) j = 1..k
2) pause µ(j) true ∅ µ̃(j) j = 1..k
3) resume µ̃(j) true ∅ µ(j) j = 1..k
4) end µ(j) c ≥ d(j) ∅ µ(j + 1) j = 1..k − 1

end µ(k) c ≥ d(k) ∅ f

The initial state is µ(1).
4 Note that the slope at statem can be arbitrary because clock c is inactive in this state: it is reset

to zero without being tested upon leaving m.
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The automata for the two jobs in Example 1 are depicted in Figure 3.
For every automaton A we define a ranking function g : Q × R+ → R+ such that

g(q, v) is a lower-bound on the time remaining until f is reached from (q, v):

g(f, v) = 0
g(µ(j), v) =

∑k
l=j d(l)

g(µ(j), v) = g(µ(j), v)−min{v, d(j)}
g(µ̃(j), v) = g(µ(j), v)−min{v, d(j)}

c1 := 0

c1 = 3

c1 := 0

c1 = 4

c1 := 0

c1 = 2 c2 = 5

c2 := 0

m1

m̃1 m1

m2

m2m̃2

f

m2

m2m̃2

m3

m3m̃3

f

Fig. 3. The automata corresponding to the jobs J1 = (m1, 3), (m2, 2), (m3, 4) and J2 =
(m2, 5).

In order to obtain the timed automaton representing the whole job-shop specification
we need to compose the automata for the individual tasks. The composition is rather
standard, the only particular feature is the enforcement of mutual exclusion constraints
by forbidding global states in which two or more automata are in a state corresponding to
the same resourcem. An n-tuple q = (q1, . . . , qn) ∈ (M ∪M ∪M̃ ∪{f})n is said to be
conflicting if it contains two distinct components qi and qi

′
such that qi = qi

′
= m ∈M .

Definition 7 (Mutual Exclusion Composition). Let J = {J1, . . . , Jn} be a job-shop
specification and let Ai = (Qi, Ci, ui, ∆i, si, f i) be the automaton corresponding to
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each J i. Their mutual exclusion composition is the automaton A = (Q,C,u, ∆, s, f)
such thatQ is the restriction ofQ1×. . . Qn to non-conflicting states,C = C1∪. . .∪Cn,
s = (s1, . . . , sn), f = (f1, . . . , fn). The slope uq for a global state q = (q1, . . . qn) is
(uq1 , . . . , uqn) and the transition relation ∆ contains all the tuples of the form

((q1, . . . , qi, . . . , qn), φ, ρ, (q1, . . . , pi, . . . , qn))

such that (qi, φ, ρ, pi) ∈ ∆i for some i and the global states (q1, . . . , qi, . . . , qn) and
(q1, . . . , pi, . . . , qn) are non-conflicting.

Part of the automaton obtained by composing the two automata of Figure 3 appears in
Figure 4. We have omitted the pause/resume transitions for m1 and m3 as well as some
other non-interesting paths.

A run of A is complete if it starts at (s, 0) and the last step is a transition to f .
From every complete run ξ one can derive in an obvious way a schedule Sξ such that
(i, j, t) ∈ Sξ if at time t the ith component of the automaton is at state µ(j). The length
of Sξ coincides with the metric length of ξ.

Claim 1 (Runs and Schedules) Let A be the automaton generated for the preemptive
job-shop specification J according to Definitions 6 and 7. Then:

1. For every complete run ξ of A, its associated schedule Sξ is feasible for J .
2. For every feasible schedule S for J there is a run ξ of A such that Sξ = S.

Corollary 1 (Preemptive Scheduling and Stopwatch Automata).
The optimal preemptive job-shop scheduling problem can be reduced to the problem of
finding the shortest path in a stopwatch automaton.

The two schedules of Figure 1 correspond to the following two runs (we use the
notation ⊥ to indicate inactive clocks):

S1 :
(m1,m2,⊥,⊥) 0−→ (m1,m2, 0,⊥) 0−→ (m1,m2, 0, 0) 3−→ (m1,m2, 3, 3) 0−→
(m2,m2,⊥, 3) 0−→ (m2, m̃2,⊥, 3) 0−→ (m2, m̃2, 0, 3) 2−→ (m2, m̃2, 2, 3) 0−→
(m3, m̃2,⊥, 3) 0−→ (m3,m2,⊥, 3) 0−→ (m3,m2, 0, 3) 2−→ (m3,m2, 2, 5) 0−→
(m3, f, 2,⊥) 2−→ (m3, f, 4,⊥) 0−→ (f, f,⊥,⊥)

S2 :
(m1,m2,⊥,⊥) 0−→ (m1,m2, 0,⊥) 0−→ (m1,m2, 0, 0) 3−→ (m1,m2, 3, 3) 0−→
(m2,m2,⊥, 3) 2−→ (m2,m2,⊥, 5) 0−→ (m2, f,⊥,⊥) 0−→ (m2, f, 0,⊥) 2−→
(m2, f, 2,⊥) 0−→ (m3, f,⊥,⊥) 0−→ (m3, f, 0,⊥) 4−→ (m3, f, 4,⊥) 0−→ (f, f,⊥,⊥)

The job-shop automaton admits a special structure: ignoring the pause and resume
transitions, the automaton is acyclic and its state-space admits a natural partial-order.
It can be partitioned into levels according to the number of begin and end transitions
from s to the state. There are no staying conditions (invariants) and the automaton can
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Fig. 4. The global stopwatch automaton for the two jobs.

stay forever in any given state. Recall that in any automaton extended with auxiliary
variables the transition graph might be misleading, because two or more transitions
entering the same discrete state, e.g. transitions to (m3, f) in Figure 4, might enter it
with different clock valuations, and hence lead to different continuations. Consequently,
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algorithms for verification and quantitative analysis might need to explore all the nodes in
the unfolding of the automaton into a tree. Two transitions outgoing from the same state
might represent a choice of the scheduler, for example, the two transitions outgoing from
(m2,m2) represent the choice of whether or not to preempt J2 and give machine m2 to
J1. On the other hand some duplication of paths are just artifacts due to interleaving, for
example, the two paths leading from (m1,m2) to (m1,m2) are practically equivalent.

Another useful observation is that from every (preemptive or non-preemptive) job-
shop specification J one can construct its reverse problem J ′ where the order of every
individual job is reversed. Every feasible schedule for J ′ can be transformed easily
into a feasible schedule for J having the same length. Doing a forward search on the
automaton for J ′ is thus equivalent to doing a backward search on the automaton for
J .

4 Shortest Paths in Stopwatch Automata

In order to find shortest paths in stopwatch automata we will take advantage of Theorem 1
to restrict the search to runs whose corresponding schedules are efficient.

Definition 8 (Efficient Runs). A run of a stopwatch automaton constructed according
to Definitions 6 and 7 is efficient if all discrete transitions are taken as soon as they are
enabled, and all conflicts are resolved according to a fixed priority relation.

To be more precise, let J1 and J2 be two jobs which are in conflict concerning machine
m and let J1 be the one with the highest priority on m. Table 4 depicts all the potential
conflict situations and how they are resolved.

Table 1. Resolving conflicts when J1 �m J2.

state action new state remark
1 (m,m) start 1 (m,m)
2 (m, m̃) start 1 (m, m̃)
3 (m,m) preempt 2 (m, m̃)
4 (m̃,m) resume 1 (m,m)
5 (m̃, m̃) resume 1 (m, m̃)
6 (m̃,m) (impossible)
7 (m,m) (continue) (m,m)
8 (m, m̃) (continue) (m, m̃)
9 (m,m) (impossible)

In situations 1, 2, 4, and 5 J1 is waiting for the machine which is not occupied and
so it takes it. Such situations could have been reached, for example, by a third job of
higher priority releasing m or by J1 finishing its prior step and entering m. Situation 3
is similar but with J2 occupying m and hence has to be preempted to reach situation 2.
Situation 6, where J1 is preempted and J1 is executing, contradicts the priority and is
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not reachable. In situations 7 and 8, J1 is executing and no preemption action is taken.
Finally situation 9 violates mutual exclusion.

The restriction to efficient runs makes the problem decidable: we can just enumerate
all priority relations, derive the schedules implied by each of them and compare their
lengths. The search algorithm that we employ on the unfolding of the automaton gener-
ates priorities on the fly whenever two jobs come into conflict. In the example of Figure 3
the first conflict is encountered in state (m2,m2) and from there we may choose between
two options, either to continue with time passage or preempt J2. in the first case we fix
the priority J2 ≺ J1 and let J2 finish without considering preemption anymore while in
the second case the priority is J1 ≺ J2, we move to (m2, m̃2) and the transition back
to (m2,m2) becomes forbidden. From there we can only continue to (m2, m̃2) and let
the time pass until J1 releases m2.

To formalize this we define a valid successors relation over tuples of the form
(q, x, Π, θ) where (q, x) is a global configuration of the automaton, Π is a (partial)
priority relation and θ is the total elapsed time for reaching (q, x) from the initial state.
When there are no immediate transitions enabled in (q, x) we have

Succ(q, x, Π, θ) = {(q, x + t · uq, Π, θ + t)}

where t is the minimal time until a transition becomes enabled, that is, the least t such
that a guard on a transition from q is satisfied at x + t · uq.

When there are immediate transition enabled in (q, x) we have

Succ(q, x, Π, θ) = L1 ∪ L2 ∪ L3

where

L1 = {(q′, x′, Π, θ) : (q, x) τ−→ (q′, x′)}

for every immediate transition τ such that τ is non-conflicting or belongs to the job
whose priority on the respective machine is higher than those of all competing jobs. In
addition, if there is a conflict on m involving a new job i whose priority compared to
job i∗, having the highest priority so far, has not yet been determined, we have

L2 = {(q, x, Π ∪ {i∗ ≺ i}, θ)}

and

L3 = {(q, x, Π ∪
⋃

{i′:i′∦mi}
{i ≺ i′}, θ)}.

The successor in L2 represent the choice to prefer i∗ over i (the priority of i relative to
other waiting jobs will be determined only after i∗ terminates), while S3 represents the
choice of preferring i over all other jobs.

Using this definition we can construct a search algorithm that explores all the efficient
runs of A.
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Algorithm 1 (Forward Reachability for Stopwatch Automata)
Waiting:={(s, 0, ∅, 0)};
while Waiting 	= ∅; do

Pick (q, x, Π, θ) ∈Waiting;
For every (q′, x′, Π ′, θ′) ∈ Succ(q, x, Π, θ);

Insert (q′, x′, Π ′, θ′) into Waiting;
Remove (q, x, Π, θ) from Waiting

end

The length of the shortest path is the least θ such that (f, x, Π, θ) is explored by the
algorithm.

This exhaustive search algorithm can be improved into a best-first search as follows
(similar ideas were investigated in [BFH+01]). We define an evaluation function for
estimating the quality of configurations.

E((q1, . . . , qn), (v1, . . . , vn), Π, θ) = θ + max{gi(qi, vi)}ni=1

where gi is the previously-defined ranking function associated with each automatonAi.
Note that max{gi} gives the most optimistic estimation of the remaining time, assuming
that no job will have to wait. It is not hard to see that E(q, x, Π, θ) gives a lower bound
on the length of every complete run which passes through (q, x) at time θ.

The following algorithm orders the waiting list of configurations according to their
evaluation. It is guaranteed to produce the optimal path because it stops the exploration
only when it is clear that the unexplored states cannot lead to schedules better than those
found so far.

Algorithm 2 (Best-first Forward Reachability)
Waiting:={(s, 0, ∅, 0)};
Best:=∞
(q, x, F, θ):= first in Waiting;
while Best > E(q, x, F, θ)
do
(q, x, Π, θ):= first in Waiting;
For every (q′, x′, Π ′, θ′) ∈ Succ(q, x, Π, θ);

if q′ = f then
Best:=min{Best,E((q′, x′, Π ′, θ′))}

else
Insert (q′, x′, Π ′, θ′) into Waiting;

Remove (q, x, Π, θ) from Waiting
end

Using this algorithm we were able the find optimal schedules of systems with up to 8
jobs and 4 machines (128 discrete states and 8 clocks). In order to treat larger problems
we abandon optimality and use a heuristic algorithm which can quickly generate sub-
optimal solutions. The algorithm is a mixture of breadth-first and best-first search with
a fixed number w of explored nodes at any level of the automaton. For every level we
take the w best (according to E) nodes, generate their successors but explore only the
best w among them, and so on.
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In order to test this heuristics we took 16 problems among the most notorious job-
shop scheduling problems.5 For each of these problems we have applied our algorithms
for different choices of w, both forward and backward (it takes, on the average few
minutes for each problem). In Table 5 we compare our best results on these problems to
the most recent results reported by Le Pape and Baptiste [PB96,PB97] where the problem
was solved using state-of-the-art constraint satisfaction techniques. As the table shows,
the results our first prototype are very close to the optimum.

Table 2. The results of our implementation on the benchmarks. Columns #j and #m indicated the
number of jobs and machines, followed by the best known results for non-preemptive scheduling,
the known optimum for the preemptive case, the results of Le Pape and Baptiste, followed by our
results and their deviation from the optimum.

problem non preempt preemptive
name #j #m optimum optimum [PB96,PB97] stopwatch deviation
LA02 10 5 655 655 655 655 0.00 %
FT10 10 10 930 900 900 911 1.21 %
ABZ5 10 10 1234 1203 1206 1250 3.76 %
ABZ6 10 10 943 924 924 936 1.28 %
ORB1 10 10 1059 1035 1035 1093 5.31 %
ORB2 10 10 888 864 864 884 2.26 %
ORB3 10 10 1005 973 994 1013 3.95 %
ORB4 10 10 1005 980 980 1004 2.39 %
ORB5 10 10 887 849 849 887 4.28 %
LA19 10 10 842 812 812 843 3.68 %
LA20 10 15 902 871 871 904 3.65 %
LA21 10 15 1046 1033 1033 1086 4.88 %
LA24 10 15 936 909 915 972 6.48 %
LA27 10 20 1235 1235 1235 1312 5.87 %
LA37 15 15 1397 1397 1397 1466 4.71 %
LA39 15 15 1233 1221 1221 1283 4.83 %

5 Conclusion

We have demonstrated that the automata-theoretic approach to scheduling can be ex-
tended to preemptive scheduling and can be applied successfully to very large systems.
Future work will investigate the applicability of this approach to scheduling of periodic
tasks in real-time systems. In retrospect, it looks as if the undecidability results for arbi-
trary stopwatch automata have been taken too seriously. Timed and stopwatch automata
arising from specific application domains have additional structure and their analysis
might turn out to be feasible (see also recent results in [FPY02]).

5 The problems are taken from ftp://mscmga.ms.ic.ac.uk/pub/jobshop1.txt
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