The ForSpec Temporal Logic: A New Temporal
Property-Specification Language*

Roy Armoni!, Limor Fix!, Alon Flaisher!, Rob Gerth2, Boris Ginsburg,
Tomer Kanza®, Avner Landver!, Sela Mador-Haim?, Eli Singerman1 s

Andreas Tiemeyer!, Moshe Y. Vardi**3, and Yael Zbar!

! Intel Strategic CAD Labs
2 TIntel Israel Development Center
3 Rice University

Abstract. In this paper we describe the ForSpec Temporal Logic (FTL), the new
temporal property-specification logic of ForSpec, Intel’s new formal specification
language. The key features of FTL are as follows: itis a linear temporal logic, based
on Pnueli’s LTL, it is based on a rich set of logical and arithmetical operations
on bit vectors to describe state properties, it enables the user to define temporal
connectives over time windows, it enables the user to define regular events, which
are regular sequences of Boolean events, and then relate such events via special
connectives, it enables the user to express properties about the past, and it includes
constructs that enable the user to model multiple clock and reset signals, which is
useful in the verification of hardware design.

1 Introduction

One of the most significant recent developments in the area of formal verification is the
discovery of algorithmic methods, called model checking, for verifying temporal-logic
properties of finite-state systems. Model-checking tools have enjoyed a substantial and
growing use over the last few years, showing ability to discover subtle flaws that result
from extremely improbable events. While until recently these tools were viewed as of
academic interest only, they are now routinely used in industrial applications [Kur97].
Several model-checking tools are widely used in the semiconductor industry: SMV,
a tool from Carnegie Mellon University with many industrial incarnations (e.g., IBM’s
RuleBase); VIS, a tool developed at the University of California, Berkeley FormalCheck,
a tool developed at Bell Labs and marketed by Cadence; and Forecast, a tool developed
in Intel and is used for property and equivalence formal verification.

A key issue in the design of a model-checking tool is the choice of the formal
specification language used to specify properties, as this language is one of the primary
interfaces to the tool. [Kur97]. (The other primary interface is the modeling language,
which is typically the hardware description language used by the designers). In designing
a formal specification language one has to balance several competing needs:

* A longer version of this paper can be found at www.cs.rice.edu/"vardi/papers/
** Supported in part by NSF grants CCR-9700061, CCR-9988322, 11S-9908435, 11S-9978135,
and EIA-0086264, by BSF grant 9800096, and by a grant from the Intel Corporation.

J.-P. Katoen and P. Stevens (Eds.): TACAS 2002, LNCS 2280, pp. 296-B11l 2002.
(© Springer-Verlag Berlin Heidelberg 2002

The ForSpec Temporal Logic 297

— Expressiveness: The language has to be expressive enough to cover most prop-
erties likely to be used by verification engineers. This should include not only
properties of the unit under verification but also relevant properties of the unit’s
environment.

— Usability: The language should be easy to understand and to use for verification
engineers. This rules out expressive languages such as the p-calculus, [Koz83],
where alternation of fixpoints is notoriously difficult to understand. At the same
time, it is important that the language has a rigorous formal semantics to ensure
correct compilation and optimization and enable formal reasoning.

— Compositionality: The language should enable the expression of complex proper-
ties from simpler one. This enables maintaining libraries of properties and property
templates. Thus, we believe that the language should be closed under all of its
logical connectives, both Boolean and temporal, enabling property reuse. The lan-
guage should also enable modular reasoning, since current semiconductor designs
are exceedingly complex and are amenable only to modular approaches.

— Implementability: The design of the language needs to go hand-in-hand with the
design of the model-checking tool. In considering various language features, one
should balance their importance against the difficulty of ensuring that the imple-
mentation can handle these features.

— Dynamic Validation: Once a property is specified, it should be used by both the
formal verification capabilities and by the dynamic validation, i.e., simulation, capa-
bilities. Thus, a property must have the same semantics (meaning) in both dynamic
and formal validation and should also be efficient for both.

In spite of the importance of the formal specification language, the literature on
the topic is typically limited to expressiveness issues (see discussion below). In this
paper we describe FTL, the temporal logic underlying ForSpe, which is Intel’s formal
specification language. The key features of FTL are as follows:

— FTL is a linear temporal logic, based on Pnueli’s LTL, [Eme90],

— it is based on a rich set of logical and arithmetical operations on bit vectors to
describe state properties (since this feature is orthogonal to the temporal features of
the logic, which are the main focus of this paper, it will not be discussed here),

— it enables the user to define temporal connectives over time windows,

— it enables the user to define regular events, which are regular sequences of Boolean
events, and then relate such events via special connectives,

— it enables the user to refer to the history of the computation using past connectives,
and

— itincludes constructs that enable the users to model multiple clocks and reset signals,
which is useful in the verification of hardware design.

— it has a rigorous formal semantics for model verification and simulation, and the
complexity of model checking and reasoning is well understood.

The design of FTL was started in 1997. FTL 1.0, with its associated tools, was
released to Intel users in 2000. FTL 2.0 is currently under design, in collaboration with

! ForSpec includes also a modeling language. It also includes various linguistic features, such as
parameterized templates, which faciliates the construction of standard property libraries.

298 R. Armoni et al.

language design teams from Co-Design Automation, Synopsys, and Verisity Design, and
is expected to be realesed in 2002, The language described in this paper is close to FTL
2.0, though some syntactical and semantical details may change by the final release. The
goal of this paper is not to provide a full documentation of FTL, but rather to describe
its major features, as well as explain the rationale for the various design choices. Our
hope is that the publication of this paper, concomitant with the release of the language
to users, would result in a dialog on the subject of property-specification logic between
the research community, language developers, and language users.

2 Expressiveness and Usability

2.1 The Nature of Time

Two possible views regarding the nature of time induce two types of temporal logics. In
linear temporal logics, time is treated as if each moment in time has a unique possible fu-
ture. Thus, linear temporal formulae are interpreted over linear sequences, and we regard
them as describing the behavior of a single computation of a system. In branching tem-
poral logics, each moment in time may split into various possible futures. Accordingly,
the structures over which branching temporal formulae are interpreted can be viewed as
infinite computation trees, each describing the behavior of the possible computations of
a nondeterministic system.

In the linear temporal logic LTL [Eme90)], formulas are composed from the set of
propositional constants using the usual Boolean connectives as well as the temporal
operators G (“always”), F' (“eventually”), X (“next”), and U (“until”). In the branching
temporal logic CTL [Eme90]], every temporal operator is preceded by the universal
path quantifier A or the existential path quantifier . Most incarnations of SMV, (see
[BBLI98] and [CCGROO]), as well as VIS, use CTL, or extensions of it, as their property
specification logic. In contrast, Cadence SMV uses LTL, while FormalCheck uses a set of
property templates that collectively has the expressive power of w-automata (also a linear-
time formalism) as its property specification language [Kur98]]. Temporal e, a property-
specification language used in simulation, is also a linear-time formalism [Mor99]. Our
first decision in designing a property-specification logic for the next generation Intel
model-checking tool was the choice between the linear- and branching-time approaches.

We chose the linear-time approach after concluding that the branching-time frame-
work suffers from several inherent deficiencies as a framework for property specification
logics (for a more thorough discussion of these issues see [VarO1]):

— Verification engineers find branching time unintuitive. IBM’s experience with Rule-
Base has been that “nontrivial CTL equations are hard to understand and prone to
error” [SBF97].

— The branching-time framework was designed for reasoning about closed systems.
Bran-ching-time modular reasoning is exceedingly hard [VarO1]].

2 See press release at http://biz.yahoo.com/bw/011105/50371_1 . html.

The ForSpec Temporal Logic 299

— Combining formal and dynamic validation (i.e., simulation) techniques for
branching-time model checking is possible only in a very limited fashion, as dynamic
validation is inherently linear.

LTL includes several connectives that handle unbounded time. For example, the for-
mula eventually p asserts that p will hold at some point in the future. There’s, however,
only one connective in LTL to handle bounded time. To assert that p will hold at time 5,
onehastowrite next next next next next p.Asserting that p will hold between time
10 and time 15, is even more cumbersome. By using time windows FTL provides users
with bounded-time temporal connectives. (Bounded temporal connectives are typically
studied in the context of real-time logics, cf. [AH92]]). For example, to express in FTL
that p will hold between time 10 and time 15, one simply writes eventually [10, 15] p.

2.2 w-Regularity

Since the proposal by Pnueli in 1977 to apply LTL to the specification and verification
of concurrent programs, the adequacy of LTL has been widely studied. One of the
conclusions of this research is that LTL is not expressive enough for the task. The first
to complain about the expressive power of LTL was Wolper [WoI83] who observed
that LTL cannot express certain w-regular events (in fact, LTL expresses precisely the
star-free w-regular events [Eme90]).

The weakness in expressiveness is not just a theoretical issue. Even when attempting
to verify simple properties, users often need to express relevant properties, which can be
rather complex, of the environment of the unit under verification. These properties are
the assumptions of the Assume-Guarantee paradigm (cf. [Pnu85]). Assume-guarantee
reasoning is a key requirement at Intel, due to the high complexity of the designs under
verification. Thus, the logic has to be able to express assumptions that are strong enough
to imply the assertion under verification. In other words, given models M and F and a
property v that E|M |= ¢ (we use | to denote parallel composition), the logic should
be able to express a property 1 such that E = @ and M | ¢ — 1. As was shown
later [LPZ835], this makes LTL inadequate for modular verification, since LTL is not
expressive enough to express strong enough assumptions about the environment. It is
now recognized that a linear temporal property logic has to be expressive enough to
specify all w-regular properties [Pnu85]]. Several extensions to LTL have been proposed
with the goal of obtaining full w-regularity: (a) Vardi and Wolper proposed ETL, the
extension of LTL with temporal connectives that correspond to w-automata [Wol83]
VWO4l), (b) Baniegbal and Barringer proposed extending LTL with fixpoint operators
[BBST], yielding a linear p-calculus, (cf. [Koz83]), and (c) Sistla, Vardi, and Wolper
proposed QPTL, the extension of LTL with quantification over propositional variables
[SYWST].

As fixpoint calculi are notoriously difficult for users, we decided against the fixpoint
approach. Keeping the goal of implementability in mind, we also decided against a full
implementation of ETL and QPTL, as full QPTL has a nonelementary time complexity
[SVWS7], while implementing full ETL, which explicily incorporates Biichi automata,
requires a complementation construction for Biichi automata, still a topic under active

300 R. Armoni et al.

research [Fin0O1]. Instead, FTL borrows from ETL, as well as PDL [FL79], by extending
LTL with regular eventsﬁ. As we show later, this extension provides us with full w-
regularity.

2.3 The Past

There are two reasons to add past connectives to temporal logic. The first argument
is that while past temporal connectives do not add any expressive power, the price for
eliminating them can be high. Many natural statements in program specification are much
easier to express using past connectives. In fact, the best known procedure to eliminate
past connectives may cause an exponential blow-up of the considered formulas.

A more important motivation for the restoration of the past is again the use of temporal
logic in modular verification. In global verification one uses temporal formulas that refer
to locations in the program text. This is absolutely verboten in modular verification, since
in specifying a module one can refer only to its external behavior. Since we cannot now
refer to program location we have instead to refer to the history of the computation, and
we can do that very easily with past connectives This lead to the study of extensions of
temporal logic with past connectives (cf. [KPVOI]). These extensions allow arbitrary
mixing of future and past connectives, enabling one to say, for example, “eventually,
sometimes in the past, p holds until ¢ holds”.

For the same motivation, FTL also includes past connectives. Unlike the afore-
mentioned extensions of LTL with past connectives, the usage of past connectives is
circumscribed. We found little practical motivation to allow arbitrary mixing of future
and past connectives, and such mixing has a nonnegligible implementation costt]. In fact,
since the motivation of adding the past is to enable referring to the history of the compu-
tation, FTL’s past connectives allow only references to such history. Thus, FTL allows
references to past values of Boolean expressions and regular sequences of Boolean ex-
pressions. FTL does not allow, however, references to past values of temporal formulas.
Thus, past connectives in FTL are viewed as Boolean rather than temporal connectives.

2.4 Hardware Features

While the limited mechanisms for automata connectives and quantification over propo-
sitional variables are sufficient to guarantee full w-regularity, we decided to also offer
direct support to two specification modes often used by verification engineers at Intel:
clocks and resets. Both clocks and resets are features that are needed to address the
fact that modern semiconductor designs consists of interacting parallel modules. As we
shall see, while clocks and resets have a simple underlying intuition, explained below,
defining their semantics formally is rather nontrivial.

Today’s semiconductor design technology is still dominated by synchronous de-
sign methodology. In synchronous circuits, clocks signals synchronize the sequential

3 For other extensions of LTL with regular events see [ET97IHT99]. These works propose adding
regular events to the until operator. We prefer to have explicit connectives for regular events,
in the style of the “box” and “diamond” modalities of PDL.

* It requires using two-way alternating automata, rather then one-way alternating automata
[KPVOT].

The ForSpec Temporal Logic 301

logic, providing the designer with a simple operational model. While the asynchronous
approach holds the promise of greater speed, designing asynchronous circuits is signifi-
cantly harder than designing synchronous circuits. Current design methodology attempt
to strike a compromise between the two approaches by using multiple clocks. This
methodology results in architectures that are globally asynchronous but locally syn-
chronous. The temporal-logic literature mostly ignores the issue of explicitly supporting
clocks (clocks, however, are typically studied in the context of modelling languages, see
[[CL.MO98]). Liu and Orgun [LO99]] proposed a temporal framework with multiple clocks.
Their framework, however, supports clocks via a clock calculus, which is separate from
the temporal logic. Emerson and Trefler [ET97]] proposed an extension of LTL in which
temporal connectives can be indexed with multiple independent clocks.

In contrast, the way clocks are being used in FTL is via the current clock. Specifically,
FTL has the construct change_on c ¢, which states that the temporal formula ¢ is to
be evaluated with respect to the clock c; that is, the formula ¢ is to be evaluated in the
trace defined by the high phases of the clock c. The key feature of clocks in FTL is that
each subformula may advance according to a different clock.

Another aspect of the fact that modern designs consist of interacting parallel modules
is the fact that a process running on one module can be reset by a signal coming from
another module. Reset control has long been a critical aspect of embedded control design.
FTL directly supports reset signals. The formula accept_on a states that the property
 should be checked only until the arrival of the reset signal a, at which point the check
is considered to have succeeded. In contrast, reject_.on r ¢ states that the property ¢
should be checked only until the arrival of the reset signal r, at which point the check is
considered to have failed. The key feature of resets in FTL is that each subformula may
be reset (positively or negatively) by a different reset signal.

3 Basic Features

Core FTL: Formulae of FTL are built from a set Prop of propositional constants. (Ac-
tually, FTL provides a rich set of logical and arithmetical operations on bit vectors to
describe state properties. All vector expressions, however, are compiled into Boolean
expressions over Prop, so in this paper we suppress that aspect of the language). FTL is
closed under the application of Boolean connectives (we use !, ||, and &&, implies , iff
for negation, disjunction, and conjunction, implication, and equivalence, respectively).
FTL also enables us to refer to future and past values of Boolean expressions. For a
Boolean expression b, we refer to the value of b in the next phasdﬁ by future (b); this
is essentially the “primed” version of b in Lamport’s Temporal Logic of Actions. For a
Boolean expression b, FTL uses past (b, n), where n is a positive integer, to refer to the
value of b, n phases in the past. Note that past and future are Boolean connectives,
so, for example, “ack implies past (send, 10)” is also a Boolean expression. Note also
that the future connective is more limited than the past connective; one cannot write
future (b, 2). The rationale for that is that future is a somewhat nonstandard Boolean
connective, since the value of future (p) is indeterminate at a given point in time. The

3 Note that the notion of next phase is independent from the notion of the next clock tick, which
is discussed later in the paper.

302 R. Armoni et al.

role of future is mostly to define transirions, e.g., (1b)&& future (b) holds at points
at which b is about to rise. FTL is also closed under the temporal connectives next,
wnext, eventually, globally , until and wuntil .

FTL is interpreted over computations. A computation is a function m : N — 2Prop,
which assigns truth values to the elements of Prop at each time instant (natural num-
ber). The semantics of FTL’s temporal connectives is well known. For example, for a
computation 7 and a point ¢ € w, we have that:

- m,i = pforp € Propiff p € 7(3).

- m,i = future (b) iff m,i 4+ 1 | b.

— i = past(b,1)iffi > Oand m,i — 1 }=b.

- 7,1 = past (b,n)iffi >0and 7,i — 1 = past (b,n —1).
Note that the past operator cannot go “before 0”. Thus, 7,0 = past (b,1). In
other words, the default past value is 0.

- 7,1 = ¢ until ¢ iff for some j > 4, we have 7, j = and for all k, i < k < j, we
have 7, k |= ¢.

We say that a computation 7 satisfies a formula o, denoted 7 |= ¢, if 7,0 = . We use
models(p) to denote the set of computations satisfying .

Time windows modify the temporal connectives by specifying intervals in which
certain events are expected to occur. The aim is to enable the expression of assertions
such as globally (req — next [10] ack). The syntax of temporal connectives with
intervals is as follows:

1. next[m] ¢, where 1 < m < co
2. eventually [m,n]ep, globally [m,n]e, ¢ until [m,n]y, and ¢ wuntil [m,n]y
where 0 < m < n < oo (but m = n = oo is not allowed)

The semantics of temporal connectives with time windows is defined by induction
on the window lower bound. For example,

-milE next[l]pifm,i+1lEe

- m,i = next[m] g, form > 1,ifr,i+1FE next[m—1] ¢

- m,i = @ until [0, n] ¢ if for some k, n > k > 0, we have that 7,4 + k |= ¢ and for
all j,0 < j < k, we have that 7,7 + j = .

- miE=euntlmn]yifri+1E=euntlm-1n-1]¢

Clearly, time windows do not add to the expressive power of FTL, since formulae
with time windows can be translated to formulae without windows. Since the lower and
upper bounds of these windows are specified using decimal numbers, eliminating time
windows may involve an exponential blow-up. (See discussion below of computational
complexity.)

The practical implication of this result is that users should be careful with time windows.
The formula next [m] p could force the compiler to introduce m BDD variables, so large
windows could result in “state explosion”.

Regular events: Regular events describe regular sequences of Boolean events, where
Boolean events are simply Boolean expressions in terms of propositional constants.
For example, the regular expression (send, (lack)*, send) (comma denotes concatena-
tion) describes a sequence in which there is no ack event between two send events.

The ForSpec Temporal Logic 303

Thus, the formula globally !(send, (lack)*, send) forbids the occurrence of such se-
quences. Regular events are formed from Boolean events (denoted here with a;, b;, etc.)
using the follwing constructdd: (a) ,: concatenation, (b) \: glue (a1 ...a;,\b1...b, is
ay ... an&&by ... by), (c)||: union, (d) ax: zero or more, (€) a+: one or more, and (f)
e{m,n}: between m and n occurrences of e. With each regular event e we associate, in
the standard way, a language L(e) of finite words over the Boolean events. (It is impor-
tant to note that our semantics refers only to L(e) and not to the syntax of e. Thus, adding
further regular operators can be accomplished without any need to adapt the semantics.
(The ForSpec compiler only requires a translation of regular expression to finite-state
automata.) In this respect FTL differs from other property-specification languages, such
as Sugar [BBDET01]] or Temporal e [Mor99]], where the syntax of regular events is inter-
twined with the semantics of the logic.) We do not allow regular events whose language
contains the empty word (this is checked by the compiler).

We define the semantics of regular events in terms of right satisfaction: 7,1 |= eif for
some j > i wehaver, i, jE e. The intuition of tight satisfaction is that the event e holds
between the points ¢ and j. Formally, 7, 7, j& eifthereisaword w = bgb; ... b, € L(e),
n=j—isuchthatm i+ k |= by forall k, 0 < k < n.

We can also use regular events to refer to the past. If e is a regular expression, then

ended (e) is a Boolean expression saying that the regular event e has just “ended”.
Formally 7, i = ended (e) if there is some j < 4 such that 7, j, if= e. Note that j need
not to unique. For example, ended (true, (true, true)x*) holds at all even (0, 2, . . .) time
points.

Since we have defined 7, ¢ |= e, we can now combine regular events with all other
connectives. Thus, globally !(req, (lack)*, ack) says that the computation cannot con-
tain a sequence of states that match (req, (lack)*, ack) and

globally (p iff ended (regq, (lack)*, ack)

says that p holds precisely at the end of sequences of states that match (req, (lack)*, ack).
FTL has two additional temporal connectives to faciliate assertions about regular events.
The formula e follows_by ¢, where e is a regular event and ¢ is a formula, asserts that
some e sequence is followed by . The formula e triggers ¢, where e is a regular event
and ¢ is a formula, asserts that all e sequence are followed by . The follows_by
and triggers connectives are essentially the “diamond” and “box” modalities of PDL
[EL79]. Formally:

- 7,1 = e follows_by ¢ if for some j > i 7,4, jE eand 7, j = .
- 7,1 = e triggers o if for all j > ¢ such that 7, ¢, j& e we have 7, j = ¢.

For example, the formula
globally ((req, (lack)*, ack) triggers (true™, grant, (Irel)*,rel))

asserts that a request followed by an acknowledgement must be followed by a grant
followed by a release. Note that follows_by and triggers are dual to each other.

Lemma 1. 7,i E=!l(e follows_by ¢) iff 7, |= e triggers (lp).

¢ FTL 2.0 will include some additional regular constructs.

304 R. Armoni et al.

4 Hardware Features

FTL offers direct support to two specification modes often used by verification engineers
atIntel: clocks and resets. While these features do not add to the expressive power of FTL,
expressing them in terms of the other features of the language would be too cumbersome
to be useful. While these features have a clear intuitive semantics, capturing it rigorously
is quite nontrivial, as we show in the rest of this section. Our semantics, however, is
defined in a modular fashion, so users who do not use these advanced features can
continue to use the semantics of Section3l Defining the semantics in a modular fashion
was necessary to achieve a proper balance between expressiveness and usabilty, ensuring
that users do not need to understand complex semantic aspects in order to use the basic
features of the language. (The ForSpec User Guide describes the language at an intuitive
level, while the ForSpec Reference Manual provides the formal semantics in a modular
fashion.)

Clocks: FTL allows formulae of the form change_on c¢ ¢, which asserts that the
temporal formula ¢ is to be evaluated with respect to the clock c; that is, the formula ¢
is to be evaluated in the trace defined by the high phases of the clock c. Every Boolean
expression can serve as a clock. Note that the computation is sampled at the high phases
of crather than at the points where ¢ changes. Focusing on the high phases is simpler and
more general. For example, as we saw earlier the high phases of the Boolean expression
(16)&& future (b) are the points at which b is about to rise.

As soon as we attempt to formalize further this intuition, we realize that there is a
difficulty. How does one guarantee that the clock c actually “ticks”, i.e., has high phases?
We could have required that all clocks are guaranteed to tick infinitely often, but then
this would have to be checked. Since we wanted to give users the ability to use arbitrary
Boolean events as clocks, we decided not to require that a clock be guaranteed to tick.
Instead, we introduced two operators. The formula change_on c ¢ asserts that ¢ does
tick and ¢ holds with respect to ¢, while change_if ¢ ¢ asserts that if c ticks then
 holds with respect to c. Since the concept of “next tick” is now not always defined,
we need to introduce a weak dual wnext to the next connective; next requires the
existence of a next tick, while wnext does not (see formal semantics below).

What should be the formal meaning of “holds with respect to ¢’? Suppose for sim-
plicity that ¢ has infinitely many high phases. It seems intuitive to take the projection
m|[c] of a computation 7 to be the sequence of values 7 (ig), w(i1), m(i2), ... of 7 at the
points ig, i1, 92, . . . at which ¢ holds. We then can say that 7 satisfies change_on ¢ ¢ if
7|[c] satisfies ¢. The implication of such a definition however, would be to make clocks
cumulative. That is, if change_on d v is a subformula of ¢, then ¢ needs to be evalu-
ated with respect to a projection 7[c] . . . [d]. This went against the intuition of our users,
who want to make assertions about clocks without losing access to faster clocks. For
example, the subformula change_on d 1 could be a library property, describing an
environment that is not governed by the clock c. (Recall that multiple clocks are needed
to capture local synchrony in a globally asynchronous design.) This led to the decision to
define the semantics of clocks in a non-cumulative fashion. This is done by defining the
semantics as a four-way relation, between computations, points, clocks, and formulae,
instead of a three-way relation as before. That is, on the left-hand-side of = we have a
triple m, 4, ¢, where c is a clock expression (see below), which is the context in which the

The ForSpec Temporal Logic 305

formula is evaluated[] Before we issue any change_on cor change.if c, the default
clock expression is true. That is, 7,7 = ¢ if 7, i, true = .
The semantics of propositional constants is insensitive to clocks:

- mi,cEpifn,ikEp.

FTL , however, has a special propositional constant clock that enables users to refer
explicitly to clock ticks. To avoid circularity, however, clock expressions are Boolean
expressions that do not refer to clock . Given a clock expression ¢ and a Boolean ex-
pression d, we denote by [¢ — d] the result of substituting ¢ for clock in d. For example
if ¢ is Ip&& future (p) and d is clock &&q, then [c — d] is (Ip&& future (p))&&yq.
Note that [c — d] is a clock expression, since it does not refer to clock . The semantics
of clock is defined as follow:

- m,i,c = clock if 7,1 = c.

In this case we say that c ticks at point ¢ of 7, or, equivalently, that ¢ is a tick point of ¢
on 7. When we refer to tick points i; < ... < ¢; at or after ¢, we assume that no other
point between ¢ and ¢; is a tick point.

We start defining the four-way sematics by defining satisfaction of the future and
past connectives. Recall that the role of future is to define transition constraints.
Consequently, its semantics is insensitive to clocks.

— 7,i,c = future (b)if m,i+ 1 = b.

In contrast, the past operator is extended to allow reference to clocks. For a Boolean
expression b, FTL uses past (b, n, d), where n is a positive integer and d is a Boolean
expression, to refer to the value of b in the phase of the clock d, n ticks in the past.
Formally,

- mi,c = past (b, 1,d) if m, j, [c — d] |= b, where j is the the largest integer less
than i such that , j, [c — d] = d.

- m,i,¢c E past(bn,c)if 7,j,[c — d] = past(b,n — 1,d) where j is the the
largest integer less than ¢ such that 7, j, [c — d] = d.

Note that if there is no j < i such that 7, j, [c — d] = d, then 7, i, ¢ = past (b,n, c).

We continue defining the four-way sematics by defining satisfaction of regular events.
Recall that satisfaction of regular events is defined in terms of tight satisfaction: 7, i, ¢ |=
e if for some j > i we have 7, 7, j, cE e. Tight satisfaction, which is a five-way relation,
is defined as follows: 7,1, j, cE e if

— there are n > 0 tick points iy < ... < i, of c after ¢ such that ¢« = ¢y < i; and
iy = j’

— there is a word B = bgb; ... b, € L(e) such that 7, i, ¢ = by, for 0 < m < n.

"1t is quite common in logic to define satisfaction of a formula with respect to a structuture

and a context. For example, for 1st-order formulas with free variables the context provides an
assignment of domain elements to the free variables.

306 R. Armoni et al.

Note that eveluation of regular events always starts at the present point, just as a Boolean
event is aways evaluated at the present point. Once we have defined tight satisfaction
with clocks, the semantics of ended is as before: 7,7 = ended (e) if there is some
j < i such that 7, j, iE e.

FTL has a special regular event tick , which is an abbreviation for the regular event
((! clock)*, clock). Thus, 7, i, jE tick if j is the first tick point of ¢ at or after i.

We can now define the semantics of the temporal connectives. For example:

- m,i,¢c = next if for some 5 > ¢ + 1 we have that 7,7 + 1, j,¢c|= tick and
7, j, ¢ = .

- 7,i,¢ = wnext @ if for some all j > i + 1 we have that if 7,¢ 4+ 1, j, cE tick,
then 7, j, ¢ = .

- 7,i,¢ = o until ¢ if for some j > i we have that 7, j = cand 7, j, ¢ | v, and
forall k, i < k < j such that 7,k |= ¢, we have 7, k, ¢ |= ¢. (Note that only tick
points of c are taken into consideration here.)

- m,i,c = etriggers pifforalll > k > j > isuchthatm,i,j, cE tick, 7, j,k,cE e
and 7, k, [, cE tick, we have that 7,1, ¢ = ¢. (Note that the evaluation of e starts
at the first tick point at or after ¢, and the evaluation of f starts at the first tick point
at or after the end of e.)

We now define the semantics of change_on and change_on :

- m,i,c = change_on d f if there exists some j > 4, suchthat, i, j, [c — d]E tick
and 7, j,[c—d] E f.

- m,i,c = change.if d f if whenever j > 4 is such that 7, i, j, [c — d]E tick, then
T, j,[c—d],a,r E f.

Both change_on and change._if force the evaluation of the formula at the nearest tick
point, but only change_on requires such a tick point to exist. As one expects, we get
duality between next and wnext and between change_on and change.if .

Lemma 2.

- m,i,c =l(next) iff m,i,c = wnext lp.
- m,i,c E!(change_on c) iff m,i,c = change_if ¢ (l¢).

As an example, the formula change_on ¢l (globally (change._if ¢2 p)) asserts that
the clock cl ticks and p also holds at the first tick, if any, of ¢2 at or after a tick of c1.

Resets: FTL allows formulae of the form accept_on a ¢, which asserts that the property
 should be checked only until the arrival of a reset signal a, at which point the check
is considered to have succeeded, and reject.on r ¢, which asserts that the property
o should be checked only until the arrival of a reset signal r, at which point the check
is considered to have failed. In reset control-design methodology, a local reset signal
does not replace a global reset signal. Thus, while our semantics for multiple clocks was
non-cumulative, our semantics for resets is cumulative. Another important feature of our
semantics is that reset signals are asynchronous, that is, they are not required to occur
at tick points; rather, they are allowed to occur at any point. To capture synchronous
resets, the users can write accept.on (a&& clock) ¢ or reject.on (r&& clock) ¢.
As we shall see, we pay a price for the added expressiveness of asynchronous resets with

The ForSpec Temporal Logic 307

additional complexity of the semantics, as we have to account for resets between tick
points.

As we saw earlier, we capture the semantics of clocks by adding a clock to the context
in which formulae are evaluated, resulting in a four-way semantical relation. To capture
the semantics of resets, we have to add both the accept signal and the reject signal to
the context, resulting in a six-way semantical relation. That is, on the left-hand-side of
= we have a quintuple 7, %, ¢, a, r, where 7, i, ¢ are as before, and a and r are disjoint
Boolean events defining the accept and reject signals, respectively. Before we issue any
accept.on aor reject.on r, the default reset signals are both false, respectively. That
is, m,1 |= @ if m, i, true, false, false = ¢.

The semantics of accept.on and reject_on is defined by:

- mi,¢a,r = acceptonbeifm, i, c = al|(b&&!r) or 7, i, ¢, a||(b&&!r),r = ¢
- 7, i,¢a,r = rejectonbyifr, i, c i r||(b&&la) and 7, i, ¢, a, r||(b&&!a) = ¢

Note how the cumulative semantics ensures that the accept and reject signals are always
disjoint. Also, outer resets have preference over inner ones.

The presence of reset signals requires us to redefine the very basic semantics of
propositions and Boolean connectives. An important issue now is the meaning of negation
in the reset-control design methodology. Since negation switches success and failure, it
should also switch accept and reject signals. We therefore define

- mi,c,a,r = p, for p € Prop if either 7, 4,¢ = a or m,i,¢c = pand 7,i,¢c E
Ir (That is, the accept “signal” always makes a proposition true, while the reject
“signal” always makes it false. It may seem that we are giving the accept signal a
preference over the reject signal, but as the accept and reject signals can never be
true simultaneously, their roles are actually symmetric.)

- mi,ca,r Elpifm i e,ralE p.

We now define satisfaction of regular events. Recall again that satisfaction of regular
events is defined in terms of tight satisfaction: 7, i, ¢, a, r |= e if for some j > ¢ we have
7,1, j, ¢, a, rE e. Tight satisfaction, which is a seven-way relation, is defined as follows:
1,4, ¢ a,rE eif

- 7k, c Ela&&!r fori < k < j,
— there are precisely [> 0 tick points ¢; < ... < ¢; of ¢ such that ¢ = 79 < ¢; and
i <7,
— there is a word B = boby ...b, € L(e), n > [such that 7, i,,,¢c = b, for
0 < m < [, and either
e 7,j,cE=aandi; = j,or
e 7,j,clEaandm, iy c=b,or
e |=n,and i, = j,and 7, j,c = by, and 7, j, ¢ Elr.

Note that in the first case, only the prefix bgb; ... b;—; is checked, in the second case,
only the prefix byb; . ..b; is checked, and in the third case the word B is checked in
full.) As we remarked earlier, the complexity of the semantics is the result of the need
to account for resets between tick points. In the first two cases, the checking of B is
terminated due to an accept signal. We denote this by 7,1, j, ¢, a, rE, e.

Let 7 be a computation, ¢ a point, c a clock expression, and a and r reset expresions.
Then tick(r,i,c,a,r) is the least j such that j > i and 7,14, j, ¢, a, rE tick (note that

308 R. Armoni et al.

there is at most one such j). Note that tick(, i, ¢, a,) need not be defined, since we may
have that 7, 4, j, ¢, a,r £ tick forall j > 4. If itis defined, we write tick(m, i, ¢, a,1) |.
Note that 7, 7, j, ¢, a, 7E tick can hold in two (nonexclusive) ways:

- 7,J [¢, in which case we write tick(r, i, ¢, a,r) |, or
- 7,j,c¢ [E a, in which case we write tick(m, i, ¢, a,7) |4

We write “j = tick(m,i,c,a,r)” as an abbreviation for “tick(m,,c,a,r) | and j =
tick(m,i,c,a,r).”

We now illustrate the semantics of temporal connectives by considering the triggers
connective:

- mi,ca,r = e triggers ¢ if j = tick(w,i,c,r, a) entails that
e tick(m,i,c,r a) |, does not hold and
e forall k > jsuchthat 7, j, k,c,r, aEE e we have that
x 7,7, k,c,r,aE, e does not hold and
- | = tick(m, k, c,r, a) entails that tick(w, k, ¢, r,a) |, does not hold

: W,l,C,a,T":f.

Note that the definition is a direct extension of the earlier definition of triggers . The
impact of resets is through the various conditions of the definition. The events tick,
e, and again tick function as antecedents of an implication, and thus have negative
polarity, which explains why the roles of a and r are reversed in the antecedents.

As asanity check of the not-immediately-obvious semantics of resets we state another
duality lemma.

Lemma 3.
i, ¢ a,7 =l(accept.on d o) iff m,i,c,a,r = rejecton d (lp).

As an example, the formula change_on ¢ (accept.on a (p until ¢)) declares ¢ to be
a strong clock and a to be an accept signal, relative to which p holds until ¢ holds.

5 Expressiveness and Complexity

The addition of regular events and the new connectives (follows_by and triggers) has
both a theoretical motivation and a pragmatic motivation. Regular events were shown
to be useful in the context of hardware verification, cf. [BBL98IMor99]. More funda-
mentally, as noted earlier, it was observed in [Wol83] that LTL cannot express certain
w-regular events, and it was shown in [LPZ85] that this makes LTL inadequate for mod-
ular verification. Let regular LTL be the extension of LTL with regular events and the
connectives follows_by and triggers . Regular LTL, which is strictly more expressive
than LTL, is expressive enough to capture w-regularity.

Theorem 1. Let L be an w-regular set of computations. Then there is a formula ¢y, of
regular LTL such that models(pr) = L.

Proof Sketch: Every w-regular language can be expressed as a finite union of terms of
the form L, - Lo, where L is aregular language (of finite words) and L» is a language of
infinite words defined by a deterministic Biichi automaton. Thus, we can express L as a

The ForSpec Temporal Logic 309

disjunction of formulae of the form e follows_by ¢, provided we can express languages
of deterministic Biichi automata. Such languages can be expressed by disjunctions of
formulae of the form e && (e; triggers es), where both e; and e, are regular events.

O

A consequence of this theorem is that FTL fully supports assume-guarantee reason-
ing, in the following sense. On one hand, we have that, for all models M and E and for all
FTL formulas ¢, v, if E |= g and M |= ¢ — 1) then E|M = 1. On the other hand, for
all models M and E and for every FTL formula ¢ such that E|M |= v, there is an FTL
formula ¢ such that E = ¢ and M = ¢ — 9. Furthermore, every FTL formula can
serve both as an assumption and as an assertion (guarantee), and as assume-guarantee
reasoning is performed via model checking, the complexity of such reasoning is the
same as that of model checking. (Note, however, that full support of assume-guarantee
reasoning is not guaranteed by the mere inclusion of regular events. Sugar adds regular
events to CTL, resulting in a mixed linear-branching semantics [BBDET01], in the style
of CTL* [Eme90]], which makes it rather difficult to fully support assume-guarantee
reasoning [VarO1]]. In Temporal e, the main focus is on describing finite sequences using
regular expressions. It is not clear whether the language has full w-regularity [Mor99],
which is required for full support of assume-guarantee reasoning.)

Reasoning and verification for FTL formulas is carried out via the automata-theoretic
approach [Var96]: to check satisfiability of a formula ¢, one constructs a nondeterministic
Biichi automaton accepting models(p) and check its emptiness, and to model check a
formula one constructs a nondeterministic Biichi automaton for the complementary
formula, intersects it with the model and check emptiness. Because of the richness of
FTL, the construction of the automaton is quite non-trivial, and will be described in full
in a future paper. The ForSpec compiler actually generates a symbolic representation of
the automaton; the size of this representation is linear in the length of the formula and
in the size of the time windows. Since the lower and upper bounds of these windows are
specified using decimal numbers, time windows may involve an exponential blow-up, as
the formula next [2"] pis of length O(n). (It was noted in [AH92] that such succinctness
cause an exponential increase in the complexity of temporal reasoning.)

Theorem 2. The satisfiability problem for FTL without time windows is PSPACE-
complete. The satisfiability problem for FTL is EXPSPACE-complete.

While reasoning in FTL is exponential in terms of the formula size and time windows’
size in the worst case, aggressive optimization by the compiler ensures that the worst case
almost never arises in practice; the computational bottleneck of model checking is due
to the large nummber of design states. (In fact, in spite of the increased expressiveness of
the language, the FTL model checker is much more efficient that Intel’s 1st-generation
model checker.)

The linear-time framework enable us to subject FTL properties to validation by
both formal verification (model checking) and dynamic validation (simulation). The
semantics of FTL is over infinite traces. This semantics induces a 3-valued semantics over
finite traces, which are produced by simulation engines: “pass”, “fail”, and “ongoing”.
A formula ¢ passes (resp., fails) a finite trace 7 if 7 is an informative prefix for ¢ (resp.,
=) [KVOT]]. If it neither passes not fails, it is “ongoing”. For example, eventually !p
passes on the finite trace p, p, p,p and is ongoing on the trace p, p, p, p. The formula

310 R. Armoni et al.

globally p fails on the trace p, p, p, p. The fact that simulation semantics is induced by
the standard semantics means that the language requires only a single compiler, ensuring
consistency between formal and dynamic validation.

6 Discussion

This paper describes FTL, the temporal property-specification logic of ForSpec, Intel’s
formal specification language, which is being used by several formal-verification teams
at Intel. FTL is an industrial property-specification language that supports hardware-
oriented constructs as well as uniform semantics for formal and dynamic validation,
while at the same time it has a well understood expressiveness and computational com-
plexity, and it fully supports modular reasoning. The design effort strove to find an ac-
ceptable compromise, with trade-offs clarified by theory, between conflicting demands,
such as expressiveness, usabilty, and implementability. Clocks and resets, both important
to hardware designers, have a clear intuitive semantics, but formalizing this semantics
is nontrivial.

References

[AH92] R. Alur and T.A. Henzinger. Logics and models of real time: a survey. In J.W.
de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real Time: The-
ory in Practice, Lecture Notes in Computer Science 600, pages 74—106. Springer-
Verlag, 1992.

[BB87] B. Banieqbal and H. Barringer. Temporal logic with fixed points. In B. Banieqgbal,
H. Barringer, and A. Pnueli, editors, Temporal Logic in Specification, volume 398
of Lecture Notes in Computer Science, pages 62—74. Springer-Verlag, 1987.

[BBDET™01] 1. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The
temporal logic sugar. In Proc. Conf. on Computer-Aided Verification (CAV’00),
volume 2102 of Lecture Notes in Computer Science, pages 363-367. Springer-
Verlag, 2001.

[BBLIS] I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL formu-
las. In Computer Aided Verification, Proc. 10th International Conference, volume
1427 of Lecture Notes in Computer Science, pages 184—194. Springer-Verlag, 1998.

[CCGROO] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a new symbolic
model checker. It’l J. on Software Tools for Technology Transfer, 2(4):410-425,
2000.

[CLM98] R. Cleaveland, G. Luttgen, and M. Mendler. An algebraic theory of multiple clocks.
In Proc. 8th Int’l Conf. on Concurrency Theory (CONCUR’97), volume 1243 of
Lecture Notes in Computer Science, pages 166—180. Springer-Verlag, 1998.

[Eme90] E.A. Emerson. Temporal and modal logic. In J. Van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chapter 16, pages 997-1072. Elsevier,
MIT press, 1990.

[ET97] E.A. Emerson and R.J. Trefler. Generalized quantitative temporal reasoning: An
automata theoretic. In Proc. Theory and Practice of Software Development (TAP-
SOFT), volume 1214 of Lecture Notes in Computer Science, pages 189-200.
Springer-Verlag, 1997.

[Fin01]

[FL79]
[HT99]
[Koz83]

[KPVO1]

[Kur97]

[Kur98]
[KVO01]

[LO99]

[LPZ85]

[Mor99]

[Pnu85]

[SBF'97]

[SVW8T7]

[Var96]

[VarO1]

[VW94]

[Wol83]

The ForSpec Temporal Logic 311

B. Finkbeiner. Symbolic refinement checking with nondeterministic BDDs. In
Tools and algorithms for the construction and analysis of systems, Lecture Notes in
Computer Science. Springer-Verlag, 2001.

M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and Systems Sciences, 18:194-211, 1979.

J.G. Henriksen and P.S. Thiagarajan. Dynamic linear time temporal logic. Annals
of Pure and Applied Logic, 96(1-3):187-207, 1999.

D. Kozen. Results on the propositional p-calculus. Theoretical Computer Science,
27:333-354, 1983.

O. Kupferman, N. Piterman, and M.Y. Vardi. Extended temporal logic revisited.
In Proc. 12th International Conference on Concurrency Theory, volume 2154 of
Lecture Notes in Computer Science, pages 519-535, August 2001.

R.P. Kurshan. Formal verification in a commercial setting. In Proc. Conf. on Design
Automation (DAC‘97), volume 34, pages 258-262, 1997.

R.P. Kurshan. FormalCheck User’s Manual. Cadence Design, Inc., 1998.

O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal methods
in System Design, 19(3):291-314, November 2001.

C. Liu and M.A. Orgun. Verification of reactive systems using temporal logics with
clocks. Theoretical Computer Science, 220:377-408, 1999.

O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Logics of Programs,
volume 193 of Lecture Notes in Computer Science, pages 196-218, Brooklyn, June
1985. Springer-Verlag.

M.J. Morley. Semantics of temporal e. In T. F. Melham and F.G. Moller, editors,
Banff’99 Higher Order Workshop (Formal Methods in Computation). University of
Glasgow, Department of Computing Science Technic al Report, 1999.

A. Pnueli. In transition from global to modular temporal reasoning about programs.
In K. Apt, editor, Logics and Models of Concurrent Systems, volume F-13 of NATO
Advanced Summer Institutes, pages 123—144. Springer-Verlag, 1985.

T. Schlipf, T. Buechner, R. Fritz, M. Helms, and J. Koehl. Formal verification made
easy. IBM Journal of Research and Development, 41(4:5), 1997.

A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Biichi au-
tomata with applications to temporal logic. Theoretical Computer Science, 49:217—
237, 1987.

M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller
and G. Birtwistle, editors, Logics for Concurrency: Structure versus Automata, vol-
ume 1043 of Lecture Notes in Computer Science, pages 238-266. Springer-Verlag,
Berlin, 1996.

M.Y. Vardi. Branching vs. linear time: Final showdown. In Proc. Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS), volume 2031 of
Lecture Notes in Computer Science, pages 1-22. Springer-Verlag, 2001.

M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1-37, November 1994.

P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1—
2):72-99, 1983.

	The ForSpec Temporal Logic: A New Temporal Property-Specification Language
	Introduction
	Expressiveness and Usability
	The Nature of Time
	ω-Regularity
	The Past
	Hardware Features

	Basic Features
	Hardware Features
	Expressiveness and Complexity
	Discussion
	References

