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Abstract. A new description model, called the standard model, for dis-
crete linear objects in dimension n is proposed. Standard objects are
tunnel-free and (n-1)-connected. The discrete objects are defined analyt-
ically as union of intersections of half-spaces. The standard 3D polygons
are well suited for polygonalization. This is the main reason why this
model has been developed.

1 Introduction

Polygonalization of discrete objects is one of the major research problems of
the discrete geometry community for many years now. The main approach used
in practice is the “marching cubes” [16] type approach. In this approach, local
neighbourhoods of voxels are replaced by Euclidean polygons. This means that
the resulting number of polygons is proportional to the number of boundary vox-
els of the discrete object. As the number of boundary voxels is usually extremely
important, people tend to apply simplification schemes to reduce that number
of polygons and thus loose approximation quality. For a couple of years now,
another approach, we call a discrete analytical polygonalization, is investigated
by a number of research groups. In this approach, the aim is to decompose the
boundary of discrete objects into discrete analytical polygons and then these
discrete polygons into Euclidean polygons. By discrete analytical polygons we
understand discrete polygons that are not defined as set of discrete points but
by an analytical description that is independent of the number of discrete points
composing it. The aim here is to decompose the boundary of a discrete object
into a number of discrete polygons that isn’t, in general, directly proportional
to the number of boundary voxels. Potential applications can be found in com-
pression, visualization, transformations, medical imaging, ...

Numerous papers have brought new insight and new ideas on how to tackle
this difficult problem. However, only a small part of the problem has been solved.
In this paper we propose a new element to the problem that was missing so far,
the definition of a discrete analytical polygon. Several authors have proposed
algorithms that determine if a given set of discrete points belong to the same
Reveilles analytical discrete plane [I7J2]. At the same time they provide the ana-
lytical description (two inequalities) of the discrete plane [YI3I12]. Some others
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propose a description of the equivalence class of all the possible discrete ana-
lytical planes the set of boundary points belongs to [I1J19]. This only leads to
decompositions of the boundary of discrete object into planar sections. All these
different approaches couldn’t go beyond a planar decomposition since nobody
knew how to define discrete polygon and therefore nobody could propose a com-
plete discrete polygonalization algorithm. Existing discrete polygons such as the
ones proposed by A. Kaufman [14] are well suited for visualization purposes but
can’t be used for polygonalization: they are not planar (points do not all belong
to a same discrete plane), not topologically consistent (sometimes with holes)
and not analytically defined.

As already stated we propose in this paper a definition of a 3D discrete ana-
lytical polygon but also, more generally, a discrete analytical model for all linear
objects in dimension n (discrete points, m-flats and geometrical simplices). To
the best authors knowledge, it is the first time that a discrete model is proposed
that defines discrete objects in arbitrary dimensions. The new discrete analytical
model proposed is called the standard model and is derived from the supercover
model [TJ3J4JI8I5]. In fact, a standard object is obtained by a rather simple
rewriting process of the inequalities defining analytically a supercover object [3].
The name “standard” model derives from the “standard plane” introduced by J.
Frangon [I0]. The standard model is called a discrete analytical model because
the discrete objects (points, m-flats, simplices) are defined analytically by a fi-
nite number of inequalities that is independent of the set of discrete points of the
object. For instance, a 3D standard triangle is defined by 17 or less inequalities
independently of its size.

The model we propose has many interesting properties. It has been shown
that the standard model is in fact a O-discretisation of Brimkov, Andres and
Barneva [6/7] and therefore is (n — 1)-connected and tunnel-free. In our notation,
in 3D, our 2-connectivity corresponds to the classical 6-connectivity. This means
that our model fits particularly well polygonalization approaches such as the one
proposed by L. Papier and J. Frangon [12] in Khalimski-Kovalesky spaces [15]
10]. The model is by definition geometrically consistent: for instance, the vertices
of a 3D standard polygon are 3D standard points, the edges of a 3D standard
polygons are 3D standard line segments and the 3D standard polygon is a piece
of a 3D standard plane.

In section 2, we start by introducing the main notations of the paper, before
briefly recalling the main properties of the supercover model. In section 3, we
introduce the orientation convention that forms the basis of the definition of the
standard model before we formally define the standard model. In section 3.3,
the main properties of the standard objects are presented especially the tunnel-
freeness and the (n — 1)-connectivity. In Section 3.5, we examine the different
classes of standard linear objects to see how the definition is translated in prac-
tice and how the different inequalities defining the objects are established. We
conclude in section 4.
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2 Preliminaries

2.1 Basic Notations

Most of the following notations correspond to those given by Cohen and Kaufman
in [8] and those given by Andres in [5]. We provide only a short recall of these
notions.

Let Z™ be the subset of the nD Euclidean space R™ that consists of all the integer
coordinate points. A discrete (resp. Euclidean) point is an element of Z™ (resp.
R™). A discrete (resp. Fuclidean) object is a set of discrete (resp. Euclidean)
points. A discrete inequality is an inequality with coefficients in R from which
we retain only the integer coordinate solutions. A discrete analytical object is
a discrete object defined by a finite set of discrete inequalities. An m-flat is a
Euclidean affine subspace of dimension m.

Let us consider a set P of m + 1 linearly independent Euclidean points
PY ..., P™ We denote A™ (P) the m-flat induced by P (i.e. the m-flat con-
taining P). We denote S™ (P) the geometrical simplex of dimension m in R"
induced by P (i.e. the convex hull of P). For S = S™ (P) a geometrical simplex,
we denote S = A™ (P) the corresponding m-flat. For a n-simplex S = S™ (P),
we denote E (S, Pi) is the half-space of boundary A"~! (P \ Pi) that contains
P
We denote p; the i-th coordinate of a point or vector p. Two discrete points p
and ¢ are k-neighbours, with 0 < k < n, if |p; —q;] < 1 for 1 < i < n, and
k<n-—>"|pi — ¢l The vozel V(p) C R™ of a discrete nD point p is defined
by V(p) = [pl - %,pl —&—%] X e X [ n — %,pn—i—%]. For a discrete object F,
V(F) = U V(p).

peEF
A k-path in a discrete object A is a sequence of discrete points all in A such that
consecutive pairs of points are k-neighbours. A discrete object A is k-connected
if there is a k-path between two arbitrary points of A. A k-component is a
maximal k-connected set. Let D be a subset of a discrete object E. If E\ D is
not k-connected then D is said to be k-separating in E. Let E be a k-separating
discrete object in Z™ such that Z™\ E has exactly two k-components. A k-simple
point in E is a discrete point p such that E \ p is k-separating. A k-separating
discrete object in Z™ is called k-minimal if it does not contain any k-simple
points.

Let us consider two objects F' of dimension n and G of dimension m. The Carte-
sian product of F' and G is defined by F' x G = {(f,g)|f € F,g € G}. The
Minkowski sum of F and G is defined by F& G = {f+g|f € F,g€ G}. We
denote o™ the set of all the permutations of {1,... ,n}. Let us denote J”, the
set of all the strictly growing sequences of m integers all between 1 and n:
Jn={j €Z™1<j1 <jo<...<jm<n} This defines a set of multi-indices.
Let us consider an object F' in the n-dimensional Euclidean space R™, with
n > 1.
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The orthogonal projection is defined by:

i (F) ={(q1,--- ,Gi-1,Git1,--- @) g €R"}, for 1 <i < m;
7 (F) = (mj, omj,0---om; ) (F), for j e l,.

The orthogonal extrusion is defined by:
&5 (F) = =" (m; (F)) , for j € .
We define an axis arrangement application r;, for j € J7, by:
rj : R" — R"
= (To,1) Toy(2) 2 Toy(m))
where the permutation o; € 0™ is defined by:

_Jfor1<i<m,o;(j;) =1
i else o; (k) =1

so that k. < k41 and k. # js forall 1 < r < n—m and for all 1 < s <
m. The axis arrangement application has been specifically designed so that it
verifies the two following properties: m; (F) = m(1.2,... m) (T;l (F)) and ¢; (F) =
T (5(1’2"“ m) (rj_l (F))) for all F in R™ and j € J7..

2.2 Recalls on Supercover

A discrete object G is a cover of a Euclidean object F if FF C V(G) and Vp €
G,V (p) N F # @. The supercover S (F) of a Euclidean object F' is defined by
S(F)={peZ"|V(p)NF #@}. S(F) is by definition a cover of F'. It is easy to
see that if G is a cover of F' then G C S (F'). The supercover of F' can be defined
in different ways: S (F) = (F & B> (3))NZ" = {p € Z"|d> (p,F) < } } where
B (r) if the ball centered on the origin, of radius r for the distance d*°. This
links the supercover to mathematical morphology [I8].

The supercover has many properties. Let us consider two Euclidean objects
F and G, and a multi-index j € [y, then: S(F) = (J,cpS(a), S(F xG) =
S(F) x $(G), 1, (S(F)) = S (r; (F)), 7 (S (F)) = S (m; (F)) and <, (S (F)) =
S(e; (F)) = r; (Z™ xS (m; (F))) -

Definition 1. (Bubble)
A k-bubble, with 1 < k < n, is the supercover of a Euclidean point that has
exactly k half-integer coordinates.

A half-integer is a real [+ %, with [ an integer. A k-bubble is formed of 2% discrete
points.

Definition 2. (Bubble-free)
The cover of an m-flat is said to be bubble-free if it has no k-bubbles for
k > m. The cover of a simplex S is said to be bubble-free if S is bubble-free.
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There are two types of bubbles in the supercover of an m-flat F'. The k-bubbles,
for k < m, are discrete points that are part of all the covers of F. If we remove
any of these points, the discrete object isn’t a cover anymore. In the k-bubbles,
for £ > m, there are discrete points that are “simple” points. The aim of this
paper is to propose discrete analytical objects that are bubble-free by removing
one of the points as illustrated by the figure.

Lemma 1. A discrete point p belongs to a k-bubble, k > m, of the supercover
of an m-flat F if and only if there exists a point a € F with k half-integer
coordinates such that p € S ().

The proof of this lemma is obvious.

3 Standard Model

The aim of this paper is to propose a new cover class, called the standard cover.
This cover is so far only defined for linear objects in all dimensions. This discrete
analytical model has been designed to conserve most of the properties of the
supercover, to be bubble-free and (n — 1)-connected.

3.1 Orientation Convention

The standard model, contrary to the supercover, is not unique. It depends on
the choice of an orientation convention. We need one orientation convention
per dimension R m > 0. This choice must then remain unchanged for all the
primitives handled. The choice of an orientation convention per dimension has to
be coherent with the operator 7. This means that we want the following property
to be verified: St (7; (F')) = m; (St (F)). If this is not the case, we won’t have
correct modeling properties. In general, with arbitrary orientation conventions
there is no reason for this property to be verified. It can sometimes be tricky
to find a “good” set of orientation conventions. We propose a set of orientation
conventions, denoted O™ and called the basic orientation conventions, that verify
the above mentioned property.

Definition 3. (Standard orientation)
Let us consider a discrete analytical half-space E : Y | C;X; < B and the
basic orientation convention O™. We say that E has a standard orientation if :

Cy > 0;
or if C1 =0 and Cy > 0;

orifCy=---=Cp_1=0and Cp, > 0.

If E has not a standard orientation then we say that E has a supercover
orientation.
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We consider from now on, without loss of generality, only the basic orientation
conventions for all n > 0. All the standard primitives are defined with these
basic orientation conventions. The basic orientation conventions are coherent
with respect to the operators 7. After «;, for j € J7},, the orientation convention
O™ in R™ becomes O™~ ™ in R™*™",

3.2 Standard Model Definition

We now have gathered all the elements we need to define the standard discreti-
sation model of linear objects in R™.

Definition 4. (Standard Model)

Let F be a linear Euclidean object in R™ whose supercover is described an-
alytically by a finite set of inequalities Fy, : Y i C; xX; < By. The standard
model St (F) of F, for the basic orientation convention O™, is the discrete o0b-
ject described analytically by a finite set of discrete inequalities F,; obtained by
substituting each inequality Fy, by F,; defined as follows:

— If F}, has a standard orientation then F,; : Z?:l Ci 1 X; < By;
— else F,; >, CikXi < By.

This definition is algorithmically easy to set up. Once a discrete analytical
description of an object is available, the transition from the supercover model
to the standard model and vice-versa is trivial.

3.3 Properties

We are now going to present the most important properties of standard objects.
Let us consider a Euclidean linear object F' of topological dimension m in R".
We have by definition St (F') C S (F') even more precisely, if p € S(F) \ St (F),
then d* (p, F) = 1. A standard object is a supercover object from which we
have removed some discrete points. These points are all at a distance % from
the Euclidean primitive. We have St (F') = S (F') if no point with at least m + 1
half-integer coordinates belongs to the boundary of F. The differences between
the supercover of F' and the standard model of F' are located in the k-bubbles
of F', for k > m. One of the immediate consequences of this is that the standard
model remains a cover: F' C V (St (F')). It is because of this property that the
standard model is also sometimes called standard cover.

The standard model retains most of the set properties of the supercover. It
is easy to deduce from definition [ that if we have two Euclidean linear objects
F and G in R™, then:

St(FUG) =St(F)USt(G); St(FNG) C St(F)NSt(G)
FCG=St(F)CSt(G); St(FxG)=St(F)xSt(G);
St (m; (F)) =7, (St(F));  St(e; (F)) =¢; (St(F)).
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The first property ensures that we’ll be able to construct complex discrete
objects out of basic elements such as simplices. These last properties are charac-
teristic of correct orientation conventions. The properties are only verified if the
orientation conventions are defined for all dimensions lower or equal to n and if
they are coherent with respect to the operator w. This is the case for the basic
orientation conventions OF, for k < n.

It is important to notice that, in general, St (F') # (J,cp St (o). This prop-
erty of the supercover is not conserved. We have St (F U G) = St (F)USt (G) for
a union of a finite number of objects. This comes simply from the fact that the
standard model is not defined for an analytical description that has an infinite
number of discrete inequalities. One simple example for that is given by the 2D
line D : 21 —x9 = 0. The standard model of the line is St (D) : —1 <z —x9 < 1
while (J,crSt(a) ={z € Z* |21 —22=0}.

One of the main properties of the standard model concerns the connectivity
and the tunnel-freeness:

Theorem 1. (connectivity and tunnel-freeness)
Let F be a Fuclidean linear object of topological dimension m in R™. Its
standard model St (F) is (n — 1)-connected and tunnel-free.

The standard model is a particular case of k-discretisations as introduced by
Brimkov, Andres and Barneva in [6l/7]. It is shown that the standard model is in
fact a O-discretisation (Theorem 3 in [7]) and that O-discretisations are (n — 1)-
connected and tunnel-free (proposition 3 in [6] and theorem 4 in [7]). Another
property proved in [I8]7] is that the standard model minimizes the Hausdorff
distance with the Euclidean object. See [I86[7] for details.

3.4 Description of Standard Primitives

We’ll examine now the discrete analytical description of the different classes of
standard linear primitives (half-space, point, m-flat and m-simplex) and how
they can be computed. Our purpose here is to propose a discretisation scheme
that can be used is practical applications. By definition [, every analytical de-
scription of a standard linear primitive is based on the analytical description
of a standard half-space. That is the one we present first. We deduce from it
the formulas for the standard point, m-flat and m-simplex in the sections that
follow.

Standard Half-space. The standard half-space is given by :

Proposition 1. (Standard half-space)

Let us consider a Buclidean half-space E : Y C;X; < B. The standard
model St (E) of E, according to an orientation convention, is analytically de-
scribed by:
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— If E has a standard orientation then

St(E):{pEZ” ZCz‘pi<B+z:i_§|Ci|};

i=1

— else

>ic1 |Cil
S

St(E) = {pEZn Zcipi§B+

i=1

The proposition is an immediate extension to dimension n of results on the
supercover [[3J4J5] and of definition @l

Standard point. The analytical description of a standard point can easily be
deduced from the one of the standard half-space. It is however interesting to
notice that the standard discretisation of a Euclidean point is always composed
of one and only one discrete point contrary to what happens with a supercover
discretization of a Euclidean point that can be formed of 2¥ points, 0 < k < n.

Proposition 2. (Standard point)
Let us consider a Fuclidean point o € R™ and the basic orientation conven-

tion O™. The standard model St («) of « is the discrete point:

st@) = ([ar— 5] an—3])

The proof is obvious. In figure[ll the cross represents the Euclidean point. The
black dot represents the corresponding discrete standard point. The square with
the doted lines represent the zone covered by the 4 inequalities corresponding to
the analytical description of a standard point.

—o
1
1
1
T
1
1
[

X
L
K
o4
&
B

. R X [T
(a) ib) | (c) (d)

Fig. 1. Different configurations of 2D standard points.
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Standard m-flat. One of the consequences of the properties St (m; (F)) =
7; (St (F)) and St (g; (F)) = €; (St (F)) is that the formulas that lead to the
discrete analytical description of a standard m-flat or standard m-simplex are
simple transpositions of the formulas that have been established for the super-
cover [9].

Proposition 3. (Standard m-flat)
Let us consider an m-flat F in R™ and the basic orientation conventions OF,
for all k > 0.

a) If F is a 0-flat in R™, we apply proposition [,
b) If F is a (n — 1)-flat, we apply twice proposition [1]
¢) else the analytical description of the standard model of F is given by:

St(F)= () Stlg(F) =[] r@Z"xSt(m;(F))
JEIN 1 JEI 1

We reapply then, recursively, propositionBlon St (n; (F)) forallj € Jn_,_,,.

This proposition is composed of several steps corresponding to the algorithm
that yields the analytical description of the standard model of an m-flat. Let us
discuss step ¢). The formula St (F) = (|  St(g; (F)) alone is not sufficient

S
to describe the standard m-flat, with 0 < m < n—1, since €; (F') is not necessarily
a hyperplane in R”. We might even have F' = ¢; (F) for some j € J'_,_,,. The
way around this problem is to examine 7; (F) in R™*!. The new orientation
convention for R™ 1 after m; is O™+,

We have different cases that occur:

— If 7; (F) is a hyperplane in R™*! then ¢; (F) is a hyperplane in R". We
do not actually need to consider 7; (F'). We could directly use case b) on
St (; (F).

— If mj (F) is a point in R™*! then we consider case a) in R™*1, with the basic
orientation convention, and formula r; (Z™ x St (7; (F))).

— If m; (F) is a k-flat, 0 < k < m, in R™"! then we consider again case c),
with the basic orientation convention. We have, by definition, St (7; (F')) =

(\  St(ej (mj(F))). We repeat the operation described in case c¢) for
jreimty

mjr (m; (F)) in RFFL

We know that this process ends since each time we repeat case ¢) we consider a
new object in a space of strictly lower dimension.

Standard Simplex. Let us finish with the formulas describing a standard
simplex. These formulas are a direct transposition of the formulas obtained for
the supercover [5].



322 E. Andres

Fig. 2. Supercover and Standard 3D line.

Proposition 4. (Standard Simplex)
Let us consider a simplex S = {P°,... ,P™} of dimension m and the basic
orientation conventions O, for all k > 0. The standard model of S is defined

by:

a) Ifm = n then SL(S) = (i St(E (5. P'))) 0 (N St (9)))

b) If m=n—1 then St (S) =St (5) N <ﬂ?=1 St (e, (S))) ;
c) Ifm<n-—2thenSt(S)= [ St(g(9)).

jejzfmfl

Let us just recall some notations. If S is a simplex of dimension m then we
denote S the m-flat containing all the points defining S. If S is a simplex of
dimension n in R™ then we denote F (S’, Pi) the half-space that contains P’
and of boundary the (n — 1)-flat {P?,...  P=1 pitl . Pm} Figure[d shows
three views of a standard 3D triangle: Figure[3(a) presents a classical, voxel view,
of the standard triangle; figure B(b) presents the same triangle in a K2-space
representation; finally figure [3(c) represents what we have called the analytical
view and represents the 17 inequalities describing the standard 3D triangle.

4 Conclusion

We have defined in this paper the standard model for half-spaces, m-flats and
m-simplices in dimension n. This is, to the authors best knowledge, one of the
first times that discrete primitives are described analytically in dimension n.
The standard model is geometrically consistent, defined analytically and stan-
dard objects are tunnel-free and (n — 1)-connected. It seems to us that the path
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towards discrete polygonalization will be much easier with standard polygons
than with other notions and this for several reasons: the standard objects are
all topologically consistent. This is not the case for the discrete naive model for
instance. Most planar recognition algorithms have been designed to recognize
discrete naive plane pieces [OI19]. However, it is not very difficult to show that
if the model is geometrical consistent then 3D discrete naive edges of polygons
aren’t connected in general [5] and 3D naive vertices might be composed of zero
discrete points. This will make it very difficult to perform any polygon recon-
struction process. Designing a polygon reconstruction algorithm is the next step
towards polygonalization. Indeed, the following steps need to be accomplished
in order to perform a discrete polygonalization: first we need to decompose the
boundary of the discrete object into discrete plane pieces. This part, as we have
recalled in the introduction, has been realised by several different approaches in
the past. Secondly, one needs to describe the plane pieces as discrete polygons.
This supposes that we know what a discrete polygon is (our paper) and that we
perform some edge and vertex recognition algorithm. This is still an open and
somehow difficult question.

In order to facilitate the implementation and the test of such polygonaliza-
tion algorithms, we are developing a discrete modeling tool, called SpaMod (for
Spatial Modeler), at the University of Poitiers (France). The standard model, as
well as the supercover model, are part of the discrete objects models handled by
Spamod. Spamod is still in the preliminary stages of its development, however
the images of Figure [3 have been produced with this software.

(©)

Fig. 3. Standard triangle with (a) Voxel view (b) K?-space view (c) Analytical view

Acknowledgments. The images of Figure [3 have been produced in Spamod
with help of the algorithms developed by Martine Dexet.
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