
Online Subpath Profiling

David Oren, Yossi Matias�, and Mooly Sagiv��

School of Computer Science, Tel-Aviv University, Israel
{doren,matias,msagiv}@post.tau.ac.il

Abstract. We present an efficient online subpath profiling algorithm,
OSP, that reports hot subpaths executed by a program in a given run.
The hot subpaths can start at arbitrary basic block boundaries, and
their identification is important for code optimization; e.g., to locate
program traces in which optimizations could be most fruitful, and to
help programmers in identifying performance bottlenecks.
The OSP algorithm is online in the sense that it reports at any point
during execution the hot subpaths as observed so far. It has very low
memory and runtime overheads, and exhibits high accuracy in reports
for benchmarks such as JLex and FFT. These features make the OSP
algorithm potentially attractive for use in just-in-time (JIT) optimizing
compilers, in which profiling performance is crucial and it is useful to
locate hot subpaths as early as possible.
The OSP algorithm is based on an adaptive sampling technique that
makes effective utilization of memory with small overhead. Both memory
and runtime overheads can be controlled, and the OSP algorithm can
therefore be used for arbitrarily large applications, realizing a tradeoff
between report accuracy and performance.
We have implemented a Java prototype of the OSP algorithm for Java
programs. The implementation was tested on programs from the Java
Grande benchmark suite and exhibited a low average runtime overhead.

1 Introduction

A central challenge facing computer architects, compiler writers and program-
mers is to understand a program’s dynamic behavior.

In this paper we develop the first profiling algorithm with the following prop-
erties: (i) it is online, and thus well suited for JIT-like compilation and dynamic
optimizations, where decisions have to be made early in order to control the rising
cost of missed opportunity that results from prediction delay [7]; and (ii) profil-
ing information is recorded for subpaths that start at arbitrary program points.
Related works are described in Section 4.

� Research supported in part by an Alon Fellowship and by the Israel Science Foun-
dation founded by The Academy of Sciences and Humanities

�� Research supported in part by the Israel Science Foundation founded by The
Academy of Science and Humanities

R. N. Horspool (Ed.): CC 2002, LNCS 2304, pp. 78–94, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Online Subpath Profiling 79 

1.1 Hot Subpaths 

Considering arbitrary subpaths presents a considerable performance challenge. 
As the number of subpaths under consideration could be in the hundreds of 
millions, maintaining a full histogram of all subpaths is prohibitively expensive 
both in runtime and in memory overheads. 

Figure 1 presents a situation where several cold paths include a common 
section of code [3456]. This common section is hot, even though the paths that 
contain it are cold. 

Fig. 1. Several cold paths sharing a common hot subpath, [3456]. This code 
segment may be part of a loop, or may be called numerous times from other 
functions 

1.2 Main Results 

In this paper, we present a new online algorithm for Online Subpath Profiling, 
OSP, that records hot subpaths which start at arbitrary basic block boundaries. 
The OSP algorithm can report an estimate of the I; hottest subpaths in a given 
program on a given run. This can be used by a programmer, an optimizing 
compiler or a JIT compiler to locate "hot" areas where optimizations pay off. 
Whereas other profiling algorithms are typically limited to certain path types, 
the OSP algorithm identifies arbitrary hot subpaths in the program. 

The OSP algorithm is online in the sense that it reports at any point during 
program execution the hot subpaths as observed so far. It has very low memory 
and runtime overheads, and exhibits high accuracy in reports. For example, 
consider the JLex [5] program for generating finite state machines from regular 
expressions. The OSP algorithm accurately identifies the 5 hottest subpaths 
when profiling this program on the provided sample input. The memory overhead 



80 David Oren et al.

is 45 kilobytes, compared to 170 kilobytes used by JLex. The runtime overhead
is 64%, and could be as low as 17% with an appropriate implementation of the
profiler.

The online nature of the OSP algorithm is demonstrated for the FFT pro-
gram. At every point during its execution, the hottest subpaths observed so far
are reported with high accuracy. This feature makes the OSP algorithm very
attractive for use in JIT-like compilers, in which profiling performance is crucial
and it is essential to locate hot subpaths as early as possible.

The JLex program generates approximately 22 million subpaths of length
up to 1024 basic blocks. From this input a sample of about 2000 subpaths is
sufficient to correctly identify the 5 hottest subpaths. Results for FFT are even
more favorable, as elaborated in Section 3.

The OSP algorithm is based on an adaptive sampling technique presented by
Gibbons and Matias [8] that makes effective utilization of memory with small
overhead. Both memory and runtime overheads can be controlled, and the OSP
algorithm can therefore be used for arbitrarily large applications, realizing a
tradeoff between accuracy and performance. The accuracy depends on the skew
level of the distribution of the subpaths. The higher the skew the better the
performance, which is an attractive feature as the importance of the profiler is
greater for skewed distributions.

1.3 Prototype Implementation

We have implemented a simple prototype of the OSP algorithm in Java for Java
programs, using the Soot [17] framework for program instrumentation. The ar-
chitecture of the implementation is described in Figure 2. The OSP algorithm is
called by a profiling agent, sitting on top of the JVM. It may accept input param-
eters such as available memory and a limit on runtime overhead; it continuously
reports hot subpaths that can be fed back into the JVM for optimization.

We tested the algorithm on 4 programs from the Java Grande benchmark
suite [9], on JLex [5] and on Sun’s java javac compiler [15].

We measured the runtime overhead, the memory overhead and the accuracy
of the results. The runtime overhead averages less than 20%, and the memory
overhead ranges from 40 to 65 kilobytes, compared to 100 to 170 kilobytes used
by the programs. The OSP algorithm identifies most of the hottest subpaths in

knobs

��
report OSP��

		
Agent




��

input �� JVM





�� output

Fig. 2. The OSP Architecture



Online Subpath Profiling 81

each of the tested programs. This shows that even for low memory and runtime
overhead we can obtain very accurate reports of the program behavior.

1.4 Outline of the Rest of this Paper

Section 2 describes the online subpath profiling algorithm. Section 3 describes
a simple prototype implementation and experimental results. Related works are
discussed in Section 4. Conclusions and further works are discussed in Section 5.

2 The Online Subpath Profiling Algorithm

The OSP algorithm avoids the full cost of counting all subpaths by: (i) sampling
a fraction of the executed subpaths, (ii) maintaining the sample in a concise
manner, obtaining a sample that is considerably larger than available memory,
and (iii) identifying hot subpaths and deriving a highly accurate estimate of
their count from subpaths frequencies in the sample.

2.1 The Algorithm

The OSP algorithm is based on the hot-list algorithm presented in [8]. Given
a sequence of items the hot-list algorithm maintains a uniform random sample
of the sequence items in a concise manner, namely as pairs of (id, count). The
sampling probability depends on the actual skewness of the data, and is adapted
dynamically during execution. We extend the hot-list algorithm for subpaths,
and maintain a concise sample of subpaths. At every sample point the OSP
algorithm determines the length of the subpath to be sampled according to a
predetermined distribution. The sampled subpath is encoded into a subpath id,
and is either inserted into the resulting histogram (if it was not there already),
or the subpath’s count is incremented. If necessary, the sampling probability is
adapted, and the elements in the sampled set are resampled.

Using concise samples ensures efficient utilization of memory. Instead of main-
taining a multiset of ids, each id has a corresponding counter, and thus a fre-
quently occurring element will not require a large memory footprint. With an
allowed memory footprint m, and an average count G, the effective sample size is
m×G. Thus, G can be defined as the gain obtained from using concise samples.
The exact gain depends on the distribution of the elements in the input set.

The OSP algorithm’s pseudo-code is given in Figure 3. The method
enterBlock is triggered for each basic block and determines whether or not
sampleBlock needs to be invoked. The sampleBlock method — the core of the
algorithm — is executed for a very small fraction of the basic blocks, namely
those which are part of a subpath selected to be in the sample. The algorithm
maintains two variables: skip, which holds the number of basic blocks that will
be skipped before the next sampling begins; and length, which holds the length
of the subpath we wish to sample.



82 David Oren et al.

At the beginning of each basic block the enterBlock method is called. If
a path is currently sampled, this method calls sampleBlock. Otherwise, if the
next block is to be sampled (skip is 0), the length of the next sampled subpath
is selected at random from a predetermined probability distribution.

The sampleBlock method appends the current basic block to the subpath
which is currently sampled, using an implementation specific encoding. When
this subpath is of the required length, the sampled set is updated by calling the
updateHotList method.

The sampling probability determines the selection of skip in the
chooseSkipValuemethod. The updateHotList method is responsible for main-
taining the hot-list.

void enterBlock(BasicBlock b) {
if (sampling)

sampleBlock(b);

else {
if (--skip == 0) {

length = choosePathLength();

sampling = true;

}
}

}

void sampleBlock(BasicBlock b) {
subpath.appendBlock (b);

if (--length == 0) {
updateHotList(subpath.id);

skip = chooseSkipValue();

subpath = new SubPath();

sampling = false;

}
}

(length)
sampled blocks

(skip) (length)
sampled blocks

(skip)

Fig. 3. The basic OSP algorithm

Note that the probability selections of skip, length and the resampling
parameters are chosen so that at any given point the maintained histogram
consists of a random sample representing the subpaths observed so far. The
sampling can be uniform, or it can be appropriately biased, e.g., the probability
of a subpath being sampled can be a function of its length.

Let us consider an example of the algorithm in action on the fragment of the
control flow graph shown in Figure 1. At program startup, the OSP algorithm
decides how many basic blocks should be skipped before sampling begins (using
the chooseSkipValue function), and assigns this value to the skip variable. Let
this value be 2. The algorithm is then called at the beginning of basic blocks 1
and 2a, each time decreasing the value of skip by one.

When skip becomes 0, at the beginning of block 2a, the algorithm decides
how long a path should be sampled (using the choosePathLength function), and
goes into sampling mode. Let us assume the algorithm has decided to sample
a path of length 4. The next four times it is called (blocks 3, 4, 5 and 6), the
algorithm will append the identifier of the current basic block to the identifier of
the path being generated. Once the identifier for path [3456] has been generated,



Online Subpath Profiling 83

the algorithm will update the sampled set with this new subpath id. Finally, the
algorithm will decide how many blocks are to be skipped before sampling begins
again, and will switch into skipping mode.

Every time subpath [3456] is sampled, its count in the sample is incremented.
Note that it will be sampled at a rate about 3 times the rate of subpath [4567b],
about 6 times the rate of subpath [4567a], and over 20 times the rate of subpaths
[12b34] and [2b345]. Also note that even for a sampling probability of about 1

40 ,
it is expected to be sampled approximately 150 times, enabling a very accurate
estimate of its count.

2.2 Complexity Analysis

The skipping overhead, in the enterBlock method, is O(1) operations per block,
with a constant depending on the exact implementation of the skipping process.
The sampling overhead, in the sampleBlockmethod, is O(1) operations per sam-
pled block. The cost of table resampling is controlled by setting the new sampling
probability, and can be made to be amortized O(1) per sampled block [8]. Since
the number of sampled blocks is a small fraction of the total number of executed
blocks, the total sampling overhead is o(n), where n is the number of executed
blocks, and is o(1) amortized per executed block. A more detailed analysis is
given in [12,13].

2.3 Special Considerations

Sampling and Skipping The sampling and counting are performed using a
hot-list algorithm [8]. The hot-list algorithm is given an estimate of the input
size, and a permissible memory footprint. From these values an initial sampling
frequency f is computed, and each subpath is sampled with probability 1

f .
Let m be the permissible memory footprint, G the expected gain and n the

expected input size, then

f =
n

m × G
(1)

Instead of deciding for each subpath whether it should be sampled or not,
a skip value is computed [18]. This value represents how many subpaths must
be skipped before one should be sampled. The skip values are chosen so that
their expected value is f , and for large values of f the performance gain can be
important.

Subpaths For performance reasons, we observe that it is advantageous to only
consider subpaths whose length is a power of two. Since the number of subpaths
increases (quadratically) with the number of basic blocks, and the number of
subpaths in the input affects accuracy for a given sample size, we improve per-
formance by limiting the input set. Our choice provides significant reduction in
the noise that exists in the sample set. Moreover, for any hot subpath of length k,
we can find a subpath of length at least k

2 which is part of the sample space.



84 David Oren et al.

Path Length Bias Once we have decided a subpath should be sampled, we
have to decide how long a subpath should be sampled. It has been suggested that
shorter hot subpaths will yield better possibilities for optimization (see [10] and
its definition of minimal hot subpaths). Thus, in the current implementation
we have decided to prefer shorter paths. Paths are sampled with a geometric
probability distribution, with a path of length 2n, n ≥ 1 being sampled with
probability 1

2n .
Preferring shorter subpaths also increases the probability of finding minimal

subpaths. In the case of loops, for instance, sampling longer subpaths will often
yield the concatenation of several iterations of the loop.

An important feature of the algorithm is that it can accommodate other
biases towards path lengths. Path length could be selected by any probability
distribution; e.g., geometric (as above), uniform, or one which provides bias to-
wards longer paths. The random selection of length is performed by the method
choosePathLength and the algorithm works correctly for any selected distribu-
tion.

Concise Samples and Resampling The hot-list algorithm maintains a list
of concise samples of the sampled subpaths. This list can be thought of as a
histogram: for each sampled subpath we hold an identifier, and a count repre-
senting how many times it has been sampled so far. Since each sampled subpath
uses the same amount of memory even if it is sampled numerous times, the use
of concise samples increases the effective sample size.

The benefit resulting from the use of concise samples depends on the program
being profiled. Profiling a program having a small number of very hot subpaths
will benefit greatly from the use of concise samples. At the other extreme, pro-
filing a program where the subpaths are evenly distributed will not benefit from
them.

If at some point during execution the sample exceeds its allocated memory
footprint, f is increased, all elements in the sample are resampled with a prob-
ability f ′

f (where f ′ is the previous sampling probability), and all new elements
are sampled with the new probability. This ensures that the algorithm uses a
limited amount of memory, which can be determined before the program starts.

Encoding Each basic block can be assigned a unique integer identifier. We now
need a function f that given a path P = b1b2 · · · bn where bi are basic blocks,
will generate a unique identifier for the path.

Ideally, we could find a function f that is sensitive to permutation, but not to
rotation. Formally, given two paths, P1 = b1b2 · · · bn and P2, then f(P1) = f(P2)
iff there is some j such that P2 = bj · · · bnb1 · · · bj−1.

Reporting the Results At any point during program execution the subpaths
in the sample can be reported. It is important to remember that not all sub-
paths in the sample have the same accuracy. Intuitively, the higher the count of



Online Subpath Profiling 85

the subpath in the sampled set, the higher the accuracy of the count, and the
probability that this subpath is hot.

We can either report only subpaths whose count in the sampled set exceeds
some threshold, or report the k hottest subpaths in the sampled set. For each
reported subpath, an estimate of its accuracy is given [8].

2.4 A Framework for Profilers

The description of the algorithm given here is very general. The behavior of the
algorithm can be modified extensively by changing certain elements. Hence, the
algorithm can serve as a framework for profiling under various preferences or
constraints.

It is very important to remember that many of the decisions presented here
— limiting ourselves to paths of length 2n, giving a higher sampling probability
to shorter paths, for instance — are implementation details, and do not stem
from any limitation in the algorithm itself.

It would be very easy to collect information on paths of arbitrary length, or
on any different subset of paths — for instance, paths of length 1.5n. Another
possibility is to modify the counting method to more accurately identify changes
in the working set of the profiled program. This could be done using a sliding
window that would take into account just the latest encountered subpaths, or
with an aging function that would give more weight to more recent subpaths.

3 Prototype Implementation

We have implemented a prototype in Java, using the Soot framework [17].
In the prototype implementation, profiling a program consists of two steps:

first, the program to be profiled is instrumented. The class files are processed,
and calls to the subpath profiler are added at the beginning of each basic block.
Once the program is instrumented, it can be run and profiled on any given
input. Instrumentation could also be performed dynamically, by modifying the
Java class loader.

Multi-threaded programs are handled by associating a different subpath pro-
filer with each running thread. This guarantees that subpaths from different
threads are kept separately, and also reduces synchronization overhead between
the different threads. The invocations to the updateHotList method are syn-
chronized. Our initial experience indicates that this does not create synchroniza-
tion overhead, since this method is rarely invoked.

Since we are not notified when a thread ends, we periodically check whether
the thread associated with each subpath profiler is still active, and if not, we
make the subpath profiler eligible for garbage collection.

In the prototype implementation, we did not implement JIT-like optimiza-
tions. Instead, when the JVM exits, a report is generated. For each path in the
sampled set, its description and count are displayed.



86 David Oren et al.

In the current implementation the enterBlock method is part of the Java
code. Hence it becomes the dominant factor in the total runtime overhead. A
preferred implementation would be to have this method run in the JVM itself, in
which case the sampling overhead is expected to become dominant. Therefore,
in the measurements we have considered these two overheads separately.

Path Representation For the reference implementation, we did not focus on
path representation, and only implemented a simple path representation scheme.
Path description is kept as a list of strings, each string describing a basic block.
The lists are generated dynamically and entail some overhead, especially for long
paths.

It is important to remember that these descriptions are not strictly necessary.
If the OSP algorithm is used in a JIT compiler, no output is necessary, and
the descriptions of the hot subpaths are of no interest — each subpath can be
identified with a unique integer id.

However, even is these descriptions are required, they are not needed during
program execution, but only when the report is displayed. Therefore, if memory
becomes an issue, a possible solution would be to keep the path description not
in memory, but in secondary storage. Each path description would have to be
written to the disk only once, thus maintaining time overhead at acceptable
levels.

More complete solutions would involve developing a memory efficient repre-
sentation of the paths: for instance, a naive subpath description could contain a
description of the block where it begins, and for each subsequent branch a bit
signifying whether this branch was taken or not. A path of length n would thus
require c+(n− 1) bits for its description, where c is the number of bits required
to store the identifier of the starting basic block. Since the Java bytecode con-
tains multiple branch instructions (used with the switch construct) the actual
encoding would have to be more complex.

A different solution altogether would be to represent the subpaths using tries.
With tries it will be possible to efficiently check whether a subpath is already
part of the sampled set, increase the count of an existing subpath, and add
a new subpath. Using tries will require a way to convert paths to a canonical
form, to make sure the trie is not sensitive to rotation. More details can be found
in [12,13].

Encoding The encoding of subpaths determines how subpaths are grouped
together for purposes of counting and reporting. The current implementation
uses an encoding consisting of the subpath length, and of running the exclusive-
or operator over block identifiers. This encoding is simple, efficient, and groups
together different permutations of the same path.

The exclusive-or encoding has a significant drawback: it disregards blocks
that occur an even number of times. In order to evaluate the quality of the
results, we have run the profiler with a different encoding as well. These tests



Online Subpath Profiling 87

have shown that the results obtained by the exclusive-or encoding are correct,
in spite of its drawback.

The implications of this encoding and other possible encodings are presented
in [12,13].

3.1 Results

We have run the profiler on four programs from the Java Grande benchmark
suite [9], on the JLex utility [5] and on the javac Java compiler [15]. All programs
were run on a computer with a 1.2GHz Athlon processor, and 512MB of memory
running Sun’s JDK 1.3.1 on Windows 2000.

Table 1 shows the sizes of those programs. It is important to remember that
from the profiler’s view, what matters is not the number of lines of code in the
program, but the program’s dynamic size (its trace length).

Table 1. For each program we show the number of basic blocks encountered
during execution, the number of subpaths of length 2n where 2 ≤ n ≤ 5 and
the number of distinct subpaths. For JLex there are two separate entries, one
showing the number of subpaths of length up to 32, the other the number of
subpaths of length up to 1024

Program Basic blocks Subpaths Distinct subpaths

JLex (1024) 2,212,208 22,120,044 828,772

JLex (32) 2,212,208 11,060,983 37,985

FFT 169,867,487 849,337,378 870

HeapSort 124,039,672 620,198,303 1,095

MolDyn 1,025,640,629 5,128,203,088 6,316

RayTrace 1,367,934,068 6,839,670,283 6,800

javac 9,838,697 49,191,773 462,813

The table also displays the number of subpaths encountered during program
execution, as well as the number of distinct subpaths encountered. The subpaths
are those of length 2n, where n ≤ 5. For JLex, it was also possible to obtain
accurate results for paths of length up to 1024. This was not done for the other
programs, since extremely long runtimes would have been needed.

These results show the size of the input data set over which the OSP algo-
rithm works. It is also interesting to note that, even for a very limited subpath
length, obtaining accurate results required an extremely large amount of time
— more than an hour for FFT and HeapSort, almost ten hours on MolDyn and
RayTrace.

Runtime Overhead Table 2 shows the runtime overhead of the profiler. The to-
tal runtime overhead ranges from 31% to 286%. The sampling overhead (the over-
head generated by the sampleBlock method) is much smaller, ranging from 3%
to 56%.



88 David Oren et al.

Most of the runtime overhead is created by the skipping process. If the profiler
is incorporated into the JVM — for instance, in order to use it for JIT compiling
— the skipping process will have much lower overhead. In such a case, the total
runtime overhead will be similar to the sampling overhead presented here.

Further understanding of the overhead created by the profiler can be gained
by examining the first section of the Java Grande benchmark suite. These bench-
marks check raw performance of the JVM, by measuring how many operations
of various kinds are performed per second. For instance, a loop containing addi-
tions of ints will see a ten fold slow-down. On the other hand, a loop containing
divisions of longs will slowdown only by a factor of 1.18. Creating an array of
128 longs will have an even smaller slowdown factor of 1.04.

Table 2. The running time in seconds of the original and the instrumented
programs, and the time the algorithm spent in sampling mode. The two last
columns display the total runtime overhead, and the overhead generated by the
sampling process itself, without taking into account the cost of deciding when
to sample a path

Program Time Instrumented Only-sampling Total Overhead Sampling Overhead

JLex 0.390 0.640 0.070 64.10% 17.95%

FFT 21.080 27.649 2.123 31.16% 10.07%

HeapSort 1.982 6.238 1.111 214.73% 56.05%

MolDyn 10.064 33.878 1.101 236.63% 10.94%

RayTrace 11.997 46.356 0.450 286.40% 3.75%

javac 1.31 3.63 0.230 177.10% 17.55%

Sampling and Efficiency Tradeoff Table 3 displays the number of sampled
subpaths as recorded by our implementation of the OSP algorithm. The second
and third columns are the number of sampled subpaths with and without repe-
titions. The Gain column displays the average count of a subpath in the sampled
set, i.e., the gain obtained by using concise samples. The f column shows the
sampling frequency, as defined in Equation 1.

We impose a minimum limit on f , since low values of f generate high over-
head and do not contribute to the accuracy of the results being obtained. This
was important for the FFT program, where the gain is very high. In the original
FFT run, for instance, the sampling probability was one in 40. The results were
similar, but the total runtime overhead was 145% (compared to 31% in the final
run), and the sampling overhead was 102% (compared to 10%).

As has already been mentioned, the OSP overhead does not depend only
on the sampling probability. The HeapSort program performs very simple op-
erations on integers (comparisons and assignments). Since the cost of sampling,
relative to these simple operations, is high, the sampling overhead is higher for
this program than for others.



Online Subpath Profiling 89

Table 3. The number of subpaths in the sample with and without repetition,
the gain obtained by using concise samples (the ratio between columns two and
three), and the sampling frequency f at the end of the program

Program # subpaths # distinct subpaths Gain f

JLex 2,183 891 2.45 1,000

FFT 168,885 314 537.85 1,000

HeapSort 10,217 475 21.50 12,304

MolDyn 2,530 353 7.17 400,000

RayTrace 5,276 443 11.90 260,000

javac 281 263 1.07 32,000

Memory Overhead Table 4 shows the memory overhead of the profiler. The
programs’ memory footprint (for both the instrumented and the uninstrumented
versions) was measured at the end of the execution. The programs’ memory foot-
print varies between 100 and 200 kilobytes, and the profiler’s is about 50 kilo-
bytes. For simplicity, we used a straightforward representation of sampled sub-
paths. Thus, the actual memory required during a profiling run may be higher.
With a different implementation this can be avoided, as suggested earlier in this
section.

Table 4. Memory usage of the different programs. The instrumented memory
does not take into account the memory needed for maintaining the output of the
algorithm

Program Program footprint Instrumented footprint Overhead

JLex 169,728 213,032 43,304

FFT 107,416 147,168 39,742

HeapSort 107,400 156,360 48,960

MolDyn 111,800 152,664 40,864

RayTrace 108,016 173,816 65,800

Accuracy of Results Table 5 compares the results obtained by the OSP im-
plementation with results obtained for a profiler, that collects information about
all subpaths (with no sampling). For brevity, we only show the results for FFT.
Similar results were obtained for JLex.

For each subpath, an estimated count was computed, by multiplying its count
in the sample by the sampling probability and by the a priori probability of
sampling a path of that length. The table shows, for each of the ten hottest
subpaths in the sample, its rank in the accurate results. We can see that the
estimated count is very close to the accurate one. For example, the count of
the hottest subpath was estimated with a precision of 0.94%, and of the second
hottest with a precision of 0.11%.



90 David Oren et al.

Table 5. For the hottest paths in the sample we show their true rank as obtained
by counting all subpaths, their count in the sample and in the full results, their
estimated count and the error in the estimation. For each path we also show its
length. The table is sorted by estimated count

Sample rank Exact rank Sample count Est. count Exact count Error Length

1 1 27,006 108,024,000 109,051,898 0.94% 4

2 2 6,479 103,664,000 103,782,188 0.11% 16

3 3 12,841 102,728,000 101,713,904 1.00% 8

4 4 39,545 79,090,000 79,691,780 0.76% 2

5 6 2,372 18,976,000 14,679,016 29.27% 8

6 11 4,322 8,644,000 8,388,604 3.04% 2

7 12 4,226 8,452,000 8,388,520 0.76% 2

8 10 4,200 8,400,000 8,388,608 0.14% 2

9 9 4,155 8,310,000 8,388,608 0.94% 2

10 8 4,022 8,044,000 8,388,608 4.11% 2

Table 6. Stops after every 10 millions blocks. At each stop point, we show the
rank in the sample of the 5 highest ranking subpaths in the full count. Note that
the 5 highest ranking subpaths are not necessarily the same at each stop point

True Rank 6% 12% 18% 24% 30% 36%

1 2 6 1 2 2 1

2 3 4 2 1 1 2

3 1 2 3 3 3 4

4 4 1 8 4 4 3

5 5 5 7 5 5 5

In spite of the profiler’s preference for short paths, we can see that the hottest
paths were of non-trivial length.

Incremental Results The algorithm can, at any point during program exe-
cution, give an estimate of the hottest subpaths encountered so far. In order to
test this capability, we have stopped the FFT example at several equally spaced
points. At each of these points, we took the 5 hottest subpahts in the accurate
subpath count, and checked their rank in the report of the sampling profiler.
We can see in Table 6 that during program execution the intermediary results
obtained by the sampling profiler match the “true” results obtained by a full
count of all subpaths with high accuracy. Similar results were obtained for JLex.

Arbitrary Length In order to perform a sanity check on our decision to limit
ourselves to paths of length 2n, we have run a different version of the profiler,
which is able to sample paths of arbitrary lengths. The length of the paths
sampled varies from 2 to 1024, with the probability of selecting a path of length n
being approximately 1

10n .



Online Subpath Profiling 91

As expected, the results were much more noisy, with the hottest subpaths
being sampled no more than 3 times. In spite of this, the results are acceptable,
with the hottest subpaths corresponding to those obtained when the path lengths
where limited to 2n.

Still, the low count of the results means they are not accurate with high
probability. Therefore, running the OSP algorithm with arbitrary path length
would require a larger sampling probability, and a larger memory overhead, to
make sure paths are sampled often enough for results to be meaningful.

4 Related Work

The original Ball-Larus path profiling algorithm recorded the execution fre-
quency of intraprocedural, acyclic paths [4]. The program was instrumented
in such a way that each path would generate a unique identifier during program
execution.

Ammons, Ball and Larus extended acylic path profiling [1]. They associ-
ated hardware metrics other than execution frequency with paths. They also
introduced a runtime data structure to approximate interprocedural paths. In
practice [10] these linkages were imprecise, and this method does not connect
paths across loop iterations.

Another interprocedural extension of the Ball-Larus path profiling technique
is described by Melski and Reps [11]. Paths in this technique do not cross loops.
Interprocedural paths are assigned a unique identifier statically.

Larus [10] later described a new approach to path profiling, which captures a
complete picture of the program’s dynamic behavior. He introduced whole pro-
gram paths, which are a complete compact record of a program’s entire control
flow. A whole program path crosses both loop and procedure boundaries, and
so provides a practical basis for interprocedural path profiling. Since the whole
program path can be quite large (hundreds of megabytes), it has to be com-
pressed, and compression is achieved by representing the WPP as a grammar.
The grammar is over an alphabet of symbols representing acyclic paths, but the
algorithm can be adapted to run over an symbols representing vertices or edges.

Once the WPP for a program has been collected and compacted, it is possible
to run different analyses on this representation of program flow. Larus presents
one such analysis, which identifies hot subpaths. The WPP approach requires
two stages: data collection and analysis. Hence, it cannot be used by a JIT
compiler to locate hot subpaths during program execution.

Duesterwald and Bala [7] analyze online profiling and its application to JIT
compilation. Online profiling is a different challenge than offline profiling: the
longer the program execution is profiled, the later will predictions be made and,
consequently, the lower will be the potential benefit of the predictions. They
have shown that prediction delay is a significant factor in evaluating the quality
of a prediction scheme. Thus, while intuition may call for longer and more elab-
orate profiling, the opposite is true: less profiling actually leads to more effective



92 David Oren et al.

predictions. We believe it would be interesting to combine hot subpath profiling
with their results.

Taub, Shechter and Smith present an idea for reducing profiling overhead [16].
This approach produces binaries that can to periodically record aspects of their
executions in great detail. It works because program behavior is predictable, and
it suffices to collect information during only part of the program run-time. After
a specified number of executions, the instrumentation can remove itself from the
program code, and generate no more overhead.

In [2], Arnold and Ryder proposed to maintain two versions of the program
in memory — one instrumented, and one almost uninstrumented. The program
execution can then jump between these two versions, collecting enough data for
effective profiling, but keeping the overhead low. The technique as presented
there is different from the OSP algorithm in several details — back-edges return
to the uninstrumented code, independently of the profiler — but their framework
could be adapted for use by the OSP algorithm.

Bala, Duesterwald and Banerjia present in [3] a dynamic optimization system
called Dynamo. Dynamo is implemented as a native code interpreter that runs
on top of the native processor. Once hot traces are located they are aggressively
optimized, and the next occurrences of those traces will run natively. Hot traces
may begin only at certain predetermined points, so the results obtained by the
OSP algorithm, where no such restriction exists, are more general in nature (as
can be seen in Figure 1). It would be interesting to integrate the OSP algorithm
into Dynamo, in order to evaluate its benefits and to compare both methods.

A different approach of using sampling for profiling using a combined software
and hardware solution is described in [14]. Adaptive sampling techniques have
been used in related fields, such as value profiling [6].

5 Conclusions

In this paper we demonstrated an efficient technique for online subpath profiling,
which is based on an adaptive sampling technique.

The OSP algorithm has been implemented as a prototype, and has been
successfully tested on several Java programs.

If the profiler is incorporated into the JVM, the skipping process can be
incorporated into the JVM as well. As was mentioned, the profiler overhead
consists of two parts — the one caused by the skipping process, and the one
caused by the sampling process. Once the skipping process is part of the JVM,
its overhead could be lowered. For a discussion of possible optimizations when
incorporating profiling into a JVM, see [2]. Once the OSP algorithm is fully
integrated into a JVM, its output could be used to locate possible candidates
for JIT compilation.

It is possible to modify the profiler so that it will take the context of subpaths
into account. For example, enterBlock can be modified to prefer paths starting
at a back edge, or any other paths interesting to the user.



Online Subpath Profiling 93

One of the main advantages of the OSP algorithm over other methods is that
it can cross loop and procedure boundaries. The Ball-Larus path profiler loses
information about the context of a path and its correlation to other paths.

For example, consider a loop which contains an if-clause, which separates
odd from even iterations. The subpath profiler will sample two hot subpaths,
one for the behavior occurring for odd iterations, one of the behavior occurring
for ones. However, the subpath profiler will do more than that. Another hot
subpath that will be sampled is the subpath consisting of the concatenation
of these two behaviors. An optimizing compiler could use this information to
create a specialized unrolled version of the loop that would not contain branching
instructions.

The algorithm can also be extended to give a priori costs to paths, and to
use this costs to affect the probability of sampling paths. For a more in-depth
description see [12,13].

Acknowledgments

We would like to thank Evelyn Duesterwald, Jim Larus, David Melski, Ran
Shaham and Eran Yahav for their helpful comments and Alex Warshavski for
his assistance in using Soot.

References

1. G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters
with flow and context sensitive profiling. ACM SIGPLAN Notices, 32(5):85–96,
1997. 91

2. M. Arnold and B. G. Ryder. A framework for reducing the cost of instrumented
code. In SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 168–179, 2001. 92

3. V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent dynamic opti-
mization system. In SIGPLAN Conference on Programming Language Design and
Implementation, pages 1–12, 2001. 92

4. T. Ball and J. R. Larus. Efficient path profiling. In International Symposium on
Microarchitecture, pages 46–57, 1996. 91

5. E. Berk and C. S. Ananian. JLex – A lexical analyzer generator for Java. Available
at http://www.cs.princeton.edu/˜appel/modern/java/JLex. 79, 80, 87

6. M. Burrows. Efficient and flexible value sampling. In Proceedings of the 9th Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
November 2000. 92

7. E. Duesterwald and V. Bala. Software profiling for hot path prediction: Less is
more. In Ninth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 202–211, 2000. 78, 91

8. P. B. Gibbons and Y. Matias. New sampling-based summary statistics for im-
proving approximate query answers. In Proceedings of the ACM SIGMOD, pages
331–342, 1998. 80, 81, 83, 85

9. JGF. The java grande forum benchmark suite. Available at
http://www.epcc.ed.ac.uk/javagrande. 80, 87



94 David Oren et al.

10. J. R. Larus. Whole program paths. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 256–269, 1999. 84, 91

11. D. Melski and T. W. Reps. Interprocedural path profiling. In International Con-
ference on Compiler Construction, pages 47–62, 1999. 91

12. D. Oren. Online subpath profiling. Master’s thesis, Tel-Aviv University, 2002. 83,
86, 87, 93

13. D. Oren, Y. Matias, and M. Sagiv. Online subpath profiling. Technical report, Tel
Aviv University, 2002. 83, 86, 87, 93

14. S. Sastry, R. Bodik, and J. Smith. Rapid profiling via stratified sampling. In the
28th International Symposium on Computer Architecture, July 2001. 92

15. Sun. The Java2 Platform Standard Edition. Available at
http://java.sun.com/j2se/1.3. 80, 87

16. O. Taub, S. Schechter, and M. D. Smith. Ephemeral instrumentation for lightweight
program profiling. Technical report, Harvard University, 2000. 92

17. R. Vallee-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and V. Sundare-
san. Optimizing java bytecode using the soot framework: Is it feasible? In Pro-
ceedings of the International Conference on Compiler Construction, pages 18–34,
2000. 80, 85

18. J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathemat-
ical Software, 11(1):37–57, 1985. 83


	Online Subpath Profiling
	Introduction
	Hot Subpaths
	Main Results
	Prototype Implementation
	Outline of the Rest of this Paper

	The Online Subpath Profiling Algorithm
	The Algorithm
	Complexity Analysis
	Special Considerations
	Sampling and Skipping
	Subpaths
	Path Length Bias
	Concise Samples and Resampling
	Encoding
	Reporting the Results

	A Framework for Profilers
	Prototype Implementation
	Path Representation
	Encoding



	Results
	Runtime Overhead
	Sampling and Efficiency Tradeoff
	Memory Overhead
	Accuracy of Results
	Incremental Results
	Arbitrary Length

	Related Work
	Conclusions
	Acknowledgments
	References




