Automatic Complexity Analysis

Flemming Nielson!, Hanne Riis Nielson!, and Helmut Seidl?

! Informatics and Mathematical Modelling, The Technical University of Denmark,
DK-2800 Kongens Lyngby, Denmark
{nielson,riis}@imm.dtu.dk
2 Fachbereich IV — Informatik, Universitit Trier, D-54286 Trier, Germany
seidl@uni-trier.de

Abstract. We consider the problem of automating the derivation of
tight asymptotic complexity bounds for solving Horn clauses. Clearly,
the solving time crucially depends on the “sparseness” of the computed
relations. Therefore, our asymptotic runtime analysis is accompanied by
an asymptotic sparsity calculus together with an asymptotic sparsity
analysis. The technical problem here is that least fixpoint iteration fails
on asymptotic complexity expressions: the intuitive reason is that O(1)+
O(1) = O(1) but O(1) + - -+ 4+ O(1) may return any value.

Keywords: Program analysis, Horn clauses, automatic complexity analysis,
sparseness.

1 Introduction

A program analyzer workbench should aid the analysis designer in the construc-
tion of efficient program analyses. In particular, the workbench has to provide
a specification language in which the program properties to be analyzed can be
conveniently formalized. Typically, the program analyzer generated from such
a specification consists of a frontend for compiling the input program together
with the specification into a constraint system which then is solved.

Here, we consider an approach where (some fragment of) predicate logic
serves as a specification language for the analysis. Thus, we use predicates to
represent program properties and Horn clause-like implications to formalize their
inter-dependencies. The notion of predicates denoting relations is stronger than
using just classical bit vectors or set constraints as provided by the BANE system
[T] and makes the construction of control-flow analyses very easy (see [TTJ12] for
recent examples). There are three further reasons for the interest in an analyzer
workbench based on this approach:

— The task of the frontend is reduced to the extraction of certain input relations
from the program which then together with the clause specifying the analysis
is supplied to the solver algorithm. Thus, it is possible to rapidly add new
frontends for further languages to be analyzed.

D. Le Métayer (Ed.): ESOP 2002, LNCS 2305, pp. 243-261] 2002.
© Springer-Verlag Berlin Heidelberg 2002

244 Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl

— The task of computing the result is reduced to computing the desired model
of a formula. As minor syntactical variations of formulas can have major
impacts on the efficiency of solving, the task of tuning of the analysis boils
down to tuning of formulas. Transformations along these lines were reported
in [12] and are currently studied in the context of [13]. And finally,

— The generated program analyzers have predictable performance. This is the
topic of the present paper.

Clearly, any good algorithm should be predictable — although only few are suffi-
ciently well understood. Here, by predictability we mean two things. First, the
algorithm should return the expected answers — this has classically been called
correctness. But second, the algorithm also should return the answer in a reliable
amount of time — meaning that the algorithm either always should be fast or,
should allow an easy to understand classification of inputs into those which are
rapidly doable and others which potentially take longer.

Our goal in this paper is to obtain safe estimations for the asymptotic com-
plexities of the generated analyzers. For ease of presentation we explain our
approach for a very simple fragment of predicate logic only, namely, for Horn
clauses. For these, McAllester has presented a complexity meta-theorem [I1]
which reduces the complexity estimation for clause solving to counting of “pre-
fix firings”. These numbers, however, as well as practical clause solving times
crucially depend on the “sparseness” of involved relations. Therefore, we de-
velop an asymptotic sparsity calculus which formalizes this notion and allows to
automate the necessary calculations. We use this calculus both to derive an au-
tomatic complexity estimator and also to design a sparsity analysis which infers
asymptotic sparsity information for predicates for which no sparsity information
has been provided by the user. This is particularly important for auxiliary pred-
icates that are not part of the original formulation of the analysis but have been
introduced during clause tuning (see, e.g., [12J13] for an example).

The technical problem here stems from the observation that classical least
fixpoint iteration fails on asymptotic expressions: O(1)+O(1) = O(1) but O(1)+
-++ 4+ O(1) may return any value. We overcome this difficulty by relying on an
interesting theorem about uniform finite bounds on the number of iterations
needed for “nice” functions to reach their greatest fixpoints — even in presence
of decreasing chains of unbounded lengths.

The paper is organized as follows. We introduce basic notions about Horn
clauses in section Pl In section B we report on McAllester’s complexity meta-
theorem. In sections Bl and [we present the technical ideas onto which our
analysis is based. In section bl we explain the asymptotic sparsity analysis. In
section [l we sketch our implementation and present results for various bench-
mark clauses.

2 Horn Clauses

In this section, we recall the classical notion of Horn clauses (without function
symbols) as our constraint formalism. A Horn clause is a conjunction of impli-
cations of the form:

Automatic Complexity Analysis 245

Js-vosGm = (X1, .., Xk)

where g1,...,gm is a (possibly empty) list of assumptions and r(X7y,..., Xj) is
the conclusion. W.l.o.g. we assume that the argument tuples of predicates in goals
or conclusions are always given by mutually distinct variables. Thus, the goals

gi occurring as assumptions either are queries s(Y7,...,Y,) to predicates or
equality constraints between variables or variables and constants:

g = s,....Y,) | X=Y | X=a
for variables X,Y,Y7,...,Y; and atoms a.

Horn clauses are interpreted over a universe U of atomic values (or atoms).
For simplicity (and by confusing syntax and semantics here), we assume that all
atoms occurring in the clause are contained in U. Then given interpretations p
and o for predicate symbols and (a superset of) occurring variables, respectively,
we define the satisfaction relation (p,o) =t (¢ a goal or clause) as follows.

(p7a-)):T(X17"'7Xk) iff (O’X17...7O'Xk)€p7"
(po) EX =Y iff cX=0Y

(po) EX =a iff oX=a
(P7U)):91,-.-,9m§7"(X1,-.-,Xk) iff (O—X17"'70-Xk)€pr

whenever Vi : (p,0) = ¢;
(po)Eci Ao Aey iff Vj: (p,o) E=c¢

In particular, we call an interpretation p of the predicate symbols in R a solution
of ¢ provided (p, o) | ¢ for all variable assignments o of the free variables in c.

The set of all interpretations of predicate symbols in R over U forms a com-
plete lattice (w.r.t. componentwise set inclusion on relations). It is well-known
that the set of all solutions of a clause is a Moore family within this lattice. We
conclude that for every clause ¢ and interpretation pg there is a least solution p of
c with py C p. An algorithm which, given ¢ and pgy, computes p is called a Horn
clause solver. In the practical application, e.g., of a program analyzer workbench,
the initial interpretation pg assigns to input predicates relations which have been
extracted from the program to be analyzed. Depending on the input predicates,
the clause ¢ (representing the analysis) defines certain output predicates which
return the desired information about the program to be analyzed.

3 Concrete Calculation of Runtimes

In [11], McAllester proposes an efficient Horn clause solver. In particular, he
determines the complexity of his algorithm by means of the number of prefix
firings of the clause. Let p be an interpretation of the predicate symbols. Let
P=gi,...,9m denote a sequence of goals and A = Vars(p) the set of variables
occurring in p. Then the set 7,[p| of firings of p (relative to p) is the set of all
variable assignments for which all goals g; succeed. Thus, this set is given by:

Tolpl ={o: A—=UIVi: (0,p) = 9i}

246 Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl

In particular, if p is empty, then Vars(p) =), and 7,[p] only consists of a single
element, namely, the empty assignment (which we denote by @) as well). The set
Folc] of prefix firings of a clause c is given by the set of all firings of prefixes of
sequences of assumptions occurring in c.

Let us now without loss of generality assume that each implication p =
r(args) is bottom-up bound, i.e., each variable occurring in args also occurs in
the list p of assumptionsﬂ. McAllester’s result then can be stated as follows:

Theorem 1 (McAllester). Let ¢ be a Horn clause of size O(1) and po an ini-
tial interpretation of the predicate symbols occurring in c. Then the least solution
p of ¢ with po T p can be computed in time O(|p| + |F,[c]|), i-e., asymptotically
equals the cardinality of p plus the number of prefix firings relative to p. a

Thus, computing the complexity of Horn clause solving reduces to asymp-
totically counting the number of prefix firings. In simple applications, this can
be done manually by looking at the clause and exploiting background knowl-
edge about the occurring relations. In more complicated applications, however,
this task quickly becomes tedious — making a mechanization of the asymptotic
counting desirable. This is what we are going to do now.

We observe that computing sets of firings can be reduced to the application
of a small set of operations on relations and sets of variable assignments: For sets
of variables A C V', we define an extension operator ext4 y which maps subsets
& C A — U to subsets of V — U by “padding” the variable assignments in all
possible ways, i.e.:

extavE = {o:V —>U]|(o|la) €&}

In particular for A =0 and & = {0}, extav E=V — U.

For sets of variable assignments & C A — U and & C B — U, we define an
extended intersection operation N4 p by extending the variable assignments in
both sets &; to the union V' = AU B first and computing the intersection then:

&1 Na,B &y = (extAy 51) N (extBy gQ)

For simplicity, we omit these extra indices at “N” if no confusion can arise. Using
this generalized intersection operation, we can compute the set of firings of a list
p of assumptions inductively by:

7,0 = {0} Zplp: 91 = Tplp] N T 9]

— given that we are provided with the sets of firings for individual goals. Accord-
ingly, the number C,[t] of prefix firings associated to a list of goals or conjunction
of implications ¢ inductively can be computed by:

Cll =1 Colp=r(-.)] =Cplpl
Colp: 9] = Cplp] + T, [p, 9]l Coler Ao Aen] =370, Coley]

1 Assume that the implication is not bottom-up bound, and X occurs in the conclusion
but not in p. Then we simply add the goal X = X to the list of assumptions.

Automatic Complexity Analysis 247

We conclude that, in order to determine the asymptotic behavior of the number
of prefix firings, we must find a description for possible asymptotic behaviors of
sets of variable assignments which allows us:

1. to get a (hopefully tight) description for the intersection of sets;
2. to extract a safe cardinality estimate for the sets from their descriptions.

We will now proceed in two steps. First, we abstract relations and sets of variable
assignments to a description of their quantitative behavior. The latter then is
used to obtain the asymptotic description.

4 Abstract Calculation of Runtimes

Our key idea is to use (k x k)-matrices to describe the quantitative dependencies
between the components of k-ary relations.

4.1 Sparsity Matrices

For a k-tuple t = (a1,...,ar) and j in the range 1,...,k, let [t]; = a; denote
the j-th component of t. Let r denote a relation of arity k over some universe
U of cardinality N € N. To r, we assign the (k X k)-sparsity matriz B[r] whose
coefficients G[r];; € N are given by:

Blrlij = V{|S;G,a)| |acU} where
Si(i,a) = {ltlj[tent]i=a}

Here, \/ denotes mazimum on integers. Please note that the value 3[r];;, i.e.,
the maximal cardinality of one of the sets S;(i,a), depends on j in a rather
subtle way: for each j we first collect the j-th components from the tuples in
the relation r in which a appears on the i-th place (call each such an element
an j-witness) and then compute the cardinality, i.e., how many different such
j-witnesses at most exist. So, for different j’s these values can be quite different.

As an example, consider the edge relation e of a directed graph. Then S[e]12
equals the maximal out-degree of nodes of the graph, §[e]21 equals the maximal
in-degree. The values f[e];; count the maximal number of i-witnesses given a
fixed i-th component: thus, they trivially equal 1 (for all non-empty relations).
In particular for a binary tree, we obtain the matrix:

(1)

Every sparsity matrix m for a non-empty relation satisfies the following three
metric properties:

my; = 1 for all 4
m” S N fOI' all Z,]
my; < Mg - My for all 7, 5,1 (triangular inequality)

Let M(N); denote the set of all (k x k) sparsity matrices which satisfy the
three metric properties above. We have:

248 Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl

Proposition 1. M(N)y is a complete lattice with the following properties:

1. The least upper bound operation is computed componentwise, i.e.,
(aUb)ij = ai; Vby fora,be M(N), and alli,j=1,...,k.
2. The function B is monotonic, i.e.,
Ry C Ry CU* implies B[R1] T B[Rs] in M(N);. 0

The mapping (induces a Galois connection between (sets of) k-ary relations
and sparsity matrices. Instead of giving a concretization function v (returning
downward closed sets of relations), we here prefer to introduce a description
relation AN) between relations and matrices where for r C U* and m € M(N)y,

r AN m iff Blr] Em

Our next step consists in giving abstract versions of necessary operations on
relations. First we define for a,b € M(N)y, the (k x k)-matrix a ® b by:

1 ifi=j
(a@b)ij{(aij—f—bij)/\Nifi?éj

where “A” denotes minimum. We have:

Proposition 2. 1. The operation & is monotonic;

2. Ifr; AN) a; fori=1,2, then also (r1 Urg) AN (a1 ® as). O
Next, we consider the greatest lower-bound operation which is going to abstract
the intersection operation on relations. Opposed to the least upper bound, the
greatest lower bound cannot be computed componentwise. As a counterexample
consider the two matrices (for N = 100):

1 2100 1100 100
a= | 100 1100 b=1100 1 3
100100 1 100100 1

The componentwise greatest lower bound is given by:

1 2100
aANb=|(100 1 3
100100 1

In particular, (aAb)13=100>6=2-3=(aAb)12-(aAb)as.

In order to obtain the greatest lower bound of two matrices we additionally have
to perform a (reflexive and) transitive closure (rt closure for short).

Let m denote a (k x k)-matrix with entries in {1, ..., N'}. Then the rt closure
vm is defined by (v m);; = 1 and:

(I/m)ij = /\{mijl . mj1j2 et mjgfljg . mjgj ‘ g Z O,j»y S {1, .. 7]43}}
for i # j. In our example, the rt closure of a A b is given by:
1 26

viaAb)y=[100 13
100 100 1

Automatic Complexity Analysis 249

It is well-known that the rt closure of a matrix can be computed efficiently. For
the greatest lower bound we find:

Proposition 3. 1. The greatest lower bound of a,b € M(N)y, is given by

alb =v(aAbd) where
(a/\b)ij:aij/\bij fori,j=1,...k

2. Whenever r; AN) a;, i =1,2, then also (r1Nrg) AW (a1 Mag).]

Our domain M(N)y, is related to the domain of difference bound matrices as
used, e.g., for the verification of finite state systems with clock variables [5] and
for analyzing simple forms of linear dependencies between program variables [14].
In contrast to these applications, we here use positive integers from a bounded
range only and also treat this coefficient domain both additively (namely, for
abstracting union) and multiplicatively (namely, for abstracting intersection).
The key property of our abstraction of relations is that sparsity matrices allow
to estimate cardinalities. For m € M(N); we define:

cardm =N - H{mxy | (z,y) €T}

where ({1,...,k},T) is a minimal cost spanning tree of the complete directed
graph over {1, ..., k} with edge weights (¢, j) — m;;. Consider, e.g., the matrix:

1 26
c=|(100 13
100 100 1

The weighted graph for ¢ is depicted in fig. [(self loops and edges with weight
100 are omitted). A minimal spanning tree of this graph is given by the edges

2 ; 3 :
6

Fig. 1. The weighted graph for the matrix c.

(1,2) and (2, 3). Therefore, we obtain: carde = 100-2 -3 = 600. We have:
Proposition 4. Assume r C U* and m € M(N)y such that r AN) m. Then
also |r| < cardm. O
4.2 Computing with Sparsities

In a similar way as to relations, we can assign sparsity matrices to sets & of
variable assignments o : A — U for some set A of variables. Here, we deliberately

250 Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl

allow to index the entries of sparsity matrices by the Cartesian product A x A.
The sparsity matrix of the non-empty set £ of variable assignments then is given
by:

BEley = \{Hoylo €& ox=a}| [acU}
Let M(N)a denote the complete lattice which consists of all matrices with
entries from {1,..., N} which are indexed with A x A and satisfy the three
metric properties. We introduce an abstract version of the operator ext4 y by

padding the corresponding matrix with the maximally possible value for the so
far missing entries. For A C V', we define ext%’v tM(N)a — M(N)y by:

1 ifz=y
(ext%yv M)y = My if 2,y €A x#y
N otherwise

Accordingly, we define for a € M(N)a, b€ M(N)p and V = AU B:
alapb= (ext%’v a)n (extﬁB’V b)
For convenience, we subsequently drop the subscripts “A, B” at “I'”. We have:

Proposition 5. 1. If r AN a then also (extay r) AN) (ext?4 va).
2. Iffor i=1,2, r; AN a; then also (ri1Nrg) AN) (a1 Mag). O
The greatest matrix T 4 € M(N) 4 maps the pair (X,Y) to 1if X =Y and to
N otherwise. In order to shorten the presentation, we feel free to specify matrices

just by enumerating those entries which deviate from the greatest matrix. Thus
for A={X,Y}and N =100, we write {(X,Y) — 5}4 to denote the matrix:

{(X,X)—1, (X,Y)—5,
(Y, X) 100, (Y, Y)—1 }

Every abstract interpretation p? mapping predicate symbols to corresponding
sparsity matrices, gives rise to an abstract description of sets of firings by:

40 = {3 Thlp, g) = T 1p) N T4 [g]

where for individual goals,

ThIr(X1, - Xe)] = {(X0 X5) = (0 1)i |1 # XX

TAX = V] = {(X,Y) = L, (Y. X) = T} (xy)
T5[X =d] ={hx

The treatment of goals X = a as outlined above would record no information
about X at all! In order to obtain a better precision here, we consider equalities
with constants always together with the preceding goals. We define:

Thlp, X =a] = Thp| N {(Y,X) = 1|Y € A}auxy

Automatic Complexity Analysis 251

where A equals the set of variables occurring in the list p. By taking the subse-
quent extension to the set AU {X} into account we record that for each value
of another variable Y there always can be at most one value of X (namely, a).

Right along the lines of the complexity estimation based on concrete relations
and concrete sets of firings, we use abstract descriptions of sets of firings to
translate the concrete cost calculation into an abstract one:

cil =1 Chlp=r(..)] =Cp
Cgu [p.g] = Cgu [p] + card (%uu [p. g]) Cf,u [t AN en] = Z?:1 Ciu [¢;]

Using the estimation of cardinalities of relations according to proposition [, we
can thus calculate an abstract number Ci” [c] of prefix firings of a clause ¢ given

an assignment pf of predicate symbols to abstract sparsity matrices:

Theorem 2. Assume c is a Horn clause and p an interpretation of the predicate
symbols occurring in c. Then we have:

1. The number of prefix firings of ¢ (relative to p) can be estimated by:

Cold < Cin [c]

whenever the universe has cardinality at most N and
(pr) AN (pFr)

for all predicate symbols r occurring in c.
2. The value Ci“ [c] can be computed in time polynomial in the size of c. a

In other words, our abstraction allows to obtain a safe approximation to the
number of prefix firings of clauses — given that the solution complies with the
assumed sparsity assignment.

5 Asymptotic Calculation of Runtimes

Estimating the runtime of the solver on inputs adhering to a single pre-specified
sparsity information, gives us no information on how the runtime scales up when
the clause is run on larger relations. The crucial step therefore consists in replac-
ing the abstract calculation from the last section by an asymptotic one. For this,
we first introduce the domain of our asymptotic complexity measures. Then we
derive the asymptotic runtime calculation and prove its correctness.

5.1 Asymptotic Values

For measuring asymptotic sparsity and complexity we use the abstract value
n to refer to the size of the universe. In the application of a program ana-
lyzer workbench, the universe typically comprises the set of program points, the
names of variables etc. Thus, its cardinality roughly corresponds to the size of

252 Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl

the program to be analyzed. Expressing complexities in terms of powers of the
cardinality of the universe, however, often is too coarse. Therefore, we introduce
a second value s < n which is accounted for in the analysis. The parameter s
could, e.g., measure the maximal number of successors/predecessors of a node
in a graph. Accordingly, we are aiming at complexity expressions of the form
O(n - s?). In order to be able to compare such expressions, we must fix (an esti-
mation of) the asymptotic functional relationship between s and n. In particular,
we may assume that s7 ~ n for some 7 € N or even s ~ log(n) implying that
s" < n for all n (at least asymptotically). Let us call n the dependency exponent
of our analysis. For the following, let ' denote the set of non-negative integers
extended by a greatest element oo. Thus for every exponent n € N/, we obtain a
linearly ordered lattice I),, of asymptotic complexity measures:

D, ={n" s |0<i,0<j<n}

The least element of I, is given by n%.s® = 1. On I,, we have the binary
operations “-” (multiplication), “LJ” (least upper bound) and “I” (greatest lower
bound) which are defined in the obvious way. Note that ID,, has infinite ascending
chains. Also, the lengths of descending chains, though finite, cannot be uniformly
bounded.

The set Py (n) of all asymptotic (kX k)-matrices consists of all (k x k)-matrices
a with entries a;; € D, such that the following holds:

a;; =1 for all 4
a;; En for all 4, 5
A4 E Q4 - Al for all i,j,l

Similar to M(N)g, Pr(n) forms a complete lattice where the binary least upper
bound “U” and greatest lower bound “M” are defined analogously as for M(N).
In particular, we can use a completely analogous definition for the card function.
The elements in D, should be considered as functions. Thus, given a concrete
argument N € N, an element p can be evaluated to a natural [p], N by:

o Ni.log(N) ifn=o0
[m'S]]WN:{Ni.Nj/n if 1) < oo
Evaluation at a certain point commutes with the operations “”, “LU” and “I”.
Asymptotic statements do not speak about individual elements. Instead, they

speak about sequences of elements. Let z = (x(N))NeN denote a sequence of
integers ™) € N and p € D, . Then we write:

zA,p iff FdeN:YNeN:zW™ <d-(jp], N)

This formalization captures what we mean when we say that z is of order O(p).

5.2 Computing with Asymptotic Values

In order to analyze the asymptotic runtime complexity of the solver, we not only
have to consider sequences of numbers. Besides these, we consider sequences of
other objects (all marked by underlining). We introduce:

Automatic Complexity Analysis 253

— sequences of relations r = (r"))yey where »(N) C (UIN))E for universes
UWN) of cardinalities at most N;

— sequences of matrices m = (m™)) yeny where m®Y) € M(N)y;

— sequences of interpretations p = (,o(N)) ~NeN and abstract interpretations p_ji =

(,oﬁ(N))NeN of predicate symbols.

Also, we establish a description relation between sequences of matrices m and
asymptotic matrices:

m A, aiff (mz(';V))NeN Ay ai; foralli,j
In particular, we have:

Proposition 6. 1. Assume a,b are sequences of sparsity matrices which are
asymptotically described by a* and b*. Then the following holds:

(CL(N) (] b(N))NeN AU a* LUb*
(CL(N) &) b(N))NeN AU a* Ub*
(@M bMyeny A, a1

2. If a is a sequence of sparsity matrices and a A, a* then also
(card (a"™))) nen A4, card (a*)

g

Similarly to section @] we now can use the operations on asymptotic spar-
sity matrices to obtain asymptotic complexity expressions for the runtime of
the solver — given an asymptotic description of the sparsities of the computed
relations. Thus, for an assignment p* of predicate symbols to asymptotic spar-
sity matrices, we first infer asymptotic sparsity matrices 7% [p] for sequences of
sets of firings of pre-conditions and then calculate the corresponding asymptotic
cost functions C;.[t] for the pre-conditions and clauses ¢. We proceed along the
lines for sparsity matrices. The main difference is that we now compute over I,
(instead of N) and that we replace the matrix operation “®” with “U”.
Ezample. In [12], we considered a control-flow analysis My for the ambient
calculus [3] and showed how to derive an optimized clause M; which can be
solved in cubic time. For convenience, we described these analyses by using Horn
clauses extended with explicit quantification and sharing of conclusions — the
same analyses, however, can also be described by pure Horn clauses only. In order
to illustrate our complexity estimation technique, we take the optimized clause
M and pick the abstract description of the In action for ambients. Translating
the Flow Logic specification from [IZ] into plain Horn clauses, we obtain:

in(X, A), father(X,Y), sibling(Y, Z), name(Z, A) = father(Y, 2)

Here, the binary relation in records all pairs (X, A) where A is the label of an
In capability of ambients with name A. The binary relation father describes all

254 Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl

pairs (X,Y) of labels where Y is a potential enclosing environment of X. The
binary relation sibling collects all pairs (Y, Z) which potentially have the same
father. Finally, the binary relation name records all pairs (Z, A) where Z is the
label of an ambient with name A. Thus, the universe I/ consists of the labels
given to ambient expressions and capabilities occurring in the program together
with all occurring names. Therefore, the size n of the universe asymptotically
equals the size of the ambient program. By definition, capabilities and ambients
are uniquely related to names. Therefore, the relations in and name are asymp-

totically described by:
in = p name = L1

The binary relation father represents the result of the analysis, i.e., describes
all places where an ambient may move to. Let us assume that this relation is
“sparse”, meaning that each label has only few sons and few fathers. Bounding
the numbers of fathers and sons, implies upper bounds for the number of siblings
as well. Therefore, we set:

* 1 s w1 52
p* father = (S 1) p* sibling = (52 1)

Let us assume that the exponent n equals co. By varying the exponent 7 from
oo (very sparse) down to 1 (dense), we instead could track the impact also of
other grades of sparseness onto the complexity of the clause. For the complexity
estimation, we first compute the asymptotic descriptions 7 . [p;] for the sets of fir-
ings for the prefixes p1, ..., ps of the pre-condition. The corresponding weighted
graphs are shown in fig. 2 (self loops and edges with weight n are omitted). Then
we calculate their cardinalities. Starting with p; = in(X, A), we find:

Tyl ={(X, 4) = 1}axy

(see the leftmost graph in fig.). A minimal cost spanning tree is given by the
edge (X, A). Therefore, card (7). [p1]) =n-1=n.
Next, consider the prefix ps = in(X, A), hasFather(X,Y). Here, we have:

7;7** [pQ] = {(X7 A) = 1}{A,X} M {(X7 Y) =S, (YvX) = s}{X,Y}
= V{(X’ A) =1, (X’ Y) =S, (KX) = 5}{A,X,Y}
= {(X’ A) =1, (X’ Y) =S, (K A) =S, (Y7X) = 5}{A,X,Y}

(see the second graph in fig. B). A minimal spanning tree of this graph con-
sists of the edges (X, A) and (X,Y) which results in the cardinality estimation:
card (7. [p2]) =n-1-s=mn"s.

Accordingly, we obtain for ps:

Tp**[pg} ={(X,A)—1, (X,)Y)—s, (X,2)— s>
(Y,A) —s, (V,X)—s, (YV,Z)— s?
(Z7 A) = 837 (Z7X> = 837 (Z7Y> = 82 }{A,X,Y,Z}

where a minimal spanning tree is given by the edges (X, 4), (X,Y) and (Y, 2)
(see the third graph in fig.). Therefore, card (T.[ps]) =n-1-5-5>=n-s°

Automatic Complexity Analysis 255

The asymptotic sparsity matrix for py dlﬂers from T [ps] only in the entry
for (Z, A) where it has value 1 (instead of s3) (see fig. d to the right), and the
asymptotic cardinality stays the same. Summarlzmg7 the contribution of the
example clause to the overall complexity is determined as:

* 4 *
Cp* [pa] = |_|i:1 card (Tp*[i])
=nlUn-sUn-s>Un-s® = n-s°

O
For an asymptotic sparsity assignment p*, let card p* equal the least upper
bound of all values card (p* r), r € R. We obtain our main theorem:

Theorem 3. For a Horn clause ¢ of size O(1), let p* denote an asymptotic
sparsity assignment for the predicates occurring in c. Then the following holds:

1. The solutions p of ¢ can be computed in time
O(card p* + C3.[c])
provided that the sequence of interpretations p is asymptotically described by
p* (via B and A,), i.e., for every occurring predicate 1,
Blp™ 1) wven Ay (p7 1)
2. Asymptotic runtime estimates can be computed in time polynomial in the
size of clauses. a

In other words, the runtime analysis predicts correctly the complexity of Horn
clause solving for solutions whose sparsity matrices are asymptotically described
by p*. Moreover, the estimate itself can be computed efficiently.

6 Asymptotic Sparsity Analysis

Horn clauses will update certain relations by means of assertions. In a general
application, we might have knowledge of the (asymptotic) sparsities of some re-
lations whereas others are unknown beforehand or introduced a posteriori during
clause tuning. In the control-flow analysis M; for Mobile Ambients, this is the
case, e.g., for the relation sibling which is defined by the clause:

father(Y,T'), father(Z,T) = sibling(Y, Z)

256 Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl

Clearly, it is both annoying and error-prone if the user has to provide information
also for such auxiliary relations — in particular, if these are introduced by some
fully automatic clause optimizer.

Therefore, we design a sparsity analysis which takes the partial information
provided by the user and tries to infer safe and reasonably precise (asymptotic)
sparsity information also for the remaining predicates. We proceed in two steps.
First, we infer sparsity matrices and then explain how to do that asymptotically.

6.1 Inferring Sparsity Matrices

For a set £ C A — U of variable assignments and a sequence args = Xq,..., Xk
of pairwise distinct variables X; € A, we define
assert (€, args) = {(0Xy,...,0Xy)|0€f}

Each implication p = r(args) gives rise to the following constraint on p:
assert (7,[p], args) < pr

Thus, the function assert extracts from the firings of the list of assumptions the
tuples for the predicate on the right-hand side.

Abstracting this constraint system for solutions of ¢, we obtain an equation
system for the sparsity matrices (,0ti r),r € R as follows. For each predicate r
in R of arity k, we accumulate the contributions of assertions onto the sparsity
matrix of r where the impact of every implication with matching right-hand side
is obtained by abstracting the corresponding concrete constraint. Accordingly,
we define an abstract function assert’ which for m € M(N)4 and a list args =
Xq,..., X} of pairwise distinct variables X; from A, collects the entries from m
according to the variable list args to build a (k X k)-matrix from M (N)g:

assert! (m, args) = {ij— mx, x; |4,j=1,...,k}
For r € R, let Z[r] denote the set of implications in ¢ where occurs on the right-
hand side. Let us furthermore fix an initial interpretation pg and a (possibly

trivial) upper bound p’i to the sparsity matrices of occurring predicate symbols.
Then we obtain an equation system S* for the values pf 7,7 € R, by:

Arnire P easet(Tiklags) = pir
p=r(args) € I[r]

Computing the least model of the clause ¢ is abstractly simulated by the least
fixpoint iteration for S*. This was the easy part. It remains to proceed to asymp-
totic sparsities.

6.2 Inferring Asymptotic Sparsity Matrices

We define a function assert® which, given an asymptotic sparsity matrix m and
a list args = X1,..., Xy of pairwise distinct variables X;, returns

assert” (m, args) = {ij—mx,x,|,j=1,...,k}

Automatic Complexity Analysis 257

Thus, the call assert* (m, args) collects the entries from m according to the vari-
able list args to build a (k x k)-matrix from Py (n). For a given initial asymptotic
assignment p§ and an upper bound p], we obtain an equation system S* for the
values p* r,r € R, by:

pir M (pyr U |_| assert (7,.[p, args)) = p'r
p=r(args) € I[r]

The contributions to p* r from different implications are now combined by the
least-upper-bound operator. Since the left-hand sides of S* are monotonic in the
asymptotic sparsity assignment, the least as well as the greatest solution of S* are
well defined. Choosing the least solution, though, is no longer safe. Intuitively,
this is due to the fact that although O(1) + O(1) = O(1), an arbitrary sum

O1) +...+0(1)

may return any value. This is reflected in proposition[@.1 (line 2) which speaks
about asymptotic descriptions of sequences of binary “@®”-applications only. The
incorrectness of the least solution becomes apparent when looking at the Horn
clause defining the transitive closure ¢t of an input edge relation e:

e(X,Y)=tX,)Y) A eX,Y), t(Y,Z2) = t(X, Z)

If we break down the corresponding system S* for the value (p*t) to equations
for the components t;; = (p* t);;, we obtain the following equation for ¢12:

bialM(e12Uerz-tia) = ti2
Here, b1a = (pjt)12 is the upper bound for t12 specified by the user, and
e12 = (p*e)12 is the asymptotic maximal out-degree of the input graph. Let
us assume that e;s = 1, i.e., the input graph has asymptotically constant out-
degree. Then the equation for ¢15 can be simplified to:

bi2Mt12 = ti2

The least solution of this equation is 12 = 1 — implying that the transitive clo-
sure of e necessarily has constant out-degree as well: which is wrong. In contrast,
the greatest solution gives us t15 = b1 — which is reasonable, as it is the upper
bound provided by the user. Sparsity inference, however, through the greatest
solution of S* will not always infer such trivial results.
Ezample (continued). Consider the definition of the auxiliary predicate sibling
and assume that the matrix:

N 1 s
plfather:(s 1>

has been provided as the asymptotic sparsity matrix of the predicate father.
Then we calculate for p = father(Y,T),father(Z,T) (see fig. B):

7;7** [p] = {(Y7 T) =S, (T7 Y) = s}{Y,T} r {(Z7 T) =S, (T7 Z) = s}{Z,T}
= { (YaT) =S, (T7Y) =S, (YaZ) = 527
(Z’ T) =S, (T7 Z) =S, (Z7Y) 57 }{Y,Z,T}

258 Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl

: s : S :
\/

s2

Fig. 3. The weighted graph for 7, [p].

This gives us the value for left-hand side of the equation of S* for p* sibling :
N 1 s?
ssser” (T30 00 2) = (o 7)
Since this matrix is constant, it provides us with the final value of the greatest
solution of &* for sibling. Indeed, this was precisely the matrix which we had to
assert manually in the complexity computation of section bl a
In summary, we prove:

Theorem 4. Let c denote a Horn clause of size O(1) and p* the greatest solution
of the equation system S*. Let Py denote a sequence of initial interpretations
which is asymptotically described by pg (via B and A,) and p the sequence of
least solutions of ¢ exceeding Py Then the following holds:

1. Whenever the sequence p is asymptotically described by pi (via B and A,),
then it is also asymptotically described by p*. This means that, whenever

Bl) ven Ay (p57)

for every predicate r, then also

Blp™ rl)ven Ay (p* 1)
for every predicate r.
2. Greatest asymptotic sparsity assignments can be computed in time polynomial
in the size of the respective clauses.

In other words, given a safe assertion about the asymptotic sparsities of
(some) predicates, our asymptotic sparsity analysis will provide a possibly better
but still safe assertion about the asymptotic sparsities. Thus, it can be seen as
a narrowing procedure to improve on a given safe information. Theorem @ holds
since, opposed to the least fixpoint, the greatest fixpoint of the system S* is
reached after a uniformly bounded number of iterations.

Proof. The equation system S* can be written as F p* = p* where F is the

joint function of left-hand sides in &*. Then we argue as follows.

(1) We safely may apply one single fixpoint iteration, i.e., given that p* is a
correct asymptotic sparsity assignment, F' p* is still correct.

(2) We safely may apply any constant number of fixpoint iterations, i.e., given
that p* is a correct asymptotic sparsity assignment, F'* p* is still a correct
asymptotic sparsity assignment for any h which may depend on the con-
straint system — but is independent of the universe and the predicates.

(3) The greatest fixpoint is reached after a finite number of iterations. More
precisely, the greatest fixpoint of F is given by F"p%, with h < |R| - a®
where a is the maximal arity of a predicate from R.

Automatic Complexity Analysis 259

Assertion (1) follows by induction on the structure of pre-conditions. Assertion
(2) follows accordingly. Therefore, it remains to prove assertion (3). First, we
observe that each component of F' defining an entry (4,j) of the asymptotic
sparsity matrix for some predicate r is composed of a bounded number of basic
operations on I),,. Then we rely on the following observation:

Let D denote a complete lattice. A function f : D™ — D is called nice iff f
is monotonic and for all pairs of m-tuples (x1,...,2Zm), (Y1,...,ym) € D™, with
x; C y; for all 4, the following holds:

I f@1 @) f@neeeym) then [i @i # yi} C flar,...,2m):

Niceness of functions is a semantical property which generalizes the (partly syn-
tactically defined) property considered by Knuth in [9]. In contrast to Knuth’s
property, niceness is preserved under composition, and least upper bounds:

Proposition 7. 1. Constant functions \z1,...,Tm.c, c € D, the identity Ax.x
as well as the binary operation LI are nice.
2. In case of linear orderings D, also M s nice.
3. Nice functions are closed under composition, greatest and least fixpoints. 0O

A proof of the following theorem is included in the full version of the paper:

Theorem 5. Consider a system of equations fi(x1,...,Tm) =i, i =1,...,m,
where all left-hand sides f; : D™ — D are nice. Let F' : D™ — D™ denote the
function F' = (f1,..., fm). If D is a linear ordering, then the greatest fixpoint
vF of F is reached after m iterations, i.e., vF =F™(T,...,T). O

Let S denote the constraint system over D, which is obtained from S* by
writing the equations componentwise. Thus, the set of variables of & are given
by all (p*7)i;, r € R, where each left-hand side is an expression built up from
constants and these variables by means of applications of the operators “LI”,
“M”, and “-”. Since our operation “” is also nice, we conclude from proposition
[[that all left-hand side expressions in S represent nice functions. Thus, theorem
is applicable. As S has at most |R| - a? many variables (a the maximal arity
of a predicate in R), our assertion (3) follows. This completes the proof. O

7 Practical Implementation and Experimental Results

The key idea of McAllester’s Horn clause solver is to bring clauses into a spe-
cific canonical form which then is easy to solve. In order to do so, he introduces
auxiliary predicates for prefixes of pre-conditions and employs constructor ap-
plications for collecting instantiated variables.

In our applications, we found it rather restrictive to deal with Horn clauses
only. Therefore, we extended the Horn clause framework by explicit quantifica-
tion, conditional clauses and stratified negation. The Horn clause for transitive
closure, e.g., could be written in our logic as:

VXY :e(X,Y) = (HX,Y) A(VZ :t(Y, Z) = t(X, Z)))

260 Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl

The logic which we have implemented is known to Logicians as alternation-free
least fizpoint logic in clausal form [8]. It is more expressive than “Horn clauses
with sharing” [12] or Datalog — even with stratified negation [4]10].

For this richer logic, McAllester’s solving method does not suffice any longer.
Therefore, we developed and implemented an alternative solving algorithm. In
contrast to McAllester’s method, our solving procedure does not rely on pre-
processing. It also abandons special worklist-like data-structures as are typical
for most classical fixpoint algorithms [6]. Still, it meets the same complexity esti-
mation for Horn clauses as McAllester’s. For details about this solver algorithm,
see [13]. Accordingly, we extended and implemented the complexity estimator
described in the preceding sections to this stronger logic and our solver.

Applying the automatic complexity analyzer to the two formulations M, and
M of control-flow analysis for the Ambient calculus, we succeed in refining the
rough complexity estimations from [I2] — provided that further assumptions
about the resulting control-flow are met.

Besides these refinements for the ambient analyses, we report here also on
the results of the complexity estimator on the following benchmarks:

TC: transitive closure of some edge relation;
FL: control-flow analysis of a functional language;
P: control-flow analysis for the pi calculus from [12].

For transitive closure, the results are reported depending on the asymptotic
sparsity of the edge relation e. In the sparse case, we use the asymptotic sparsity
matrix:

For all control-flow analyses, we investigate the impact of different assumptions
on the asymptotic sparsity of the result relation. The clause M is obtained from
the clause M by introduction of various auxiliary predicates [12]. No information
has been provided to the complexity analyzer for these — meaning that their
asymptotic sparsities are inferred by the system. The following table collects the
estimations computed by our analysis:

dense|sparse
TC n n?.s
FL nd n-s?
P n3 n?-s
My ntl n-s
My nd n-s

The simplest clause is the one for transitive closure where the tool returns
the expected complexities. On CFA for functional languages, it nicely assures
that the complexity is low if only few values are found for each expression into
which it may develop. The same holds true for the mobile ambients. Interestingly,
here both the unoptimized and the optimized analysis give the same asymptotic
complexity — provided that the computed relation is sparse.

Automatic Complexity Analysis 261

8 Conclusion

The complexity analysis has benefitted from the pioneering ideas of McAllester
[I1] and Basin and Ganzinger [2] on the complexity of solving Horn clauses.
The contribution of our paper is to fully automate the necessary calculations. In
particular, the idea of asymptotic sparsity matrices for describing the asymptotic
sparseness of relations as well as our narrowing algorithm for inferring asymptotic
sparsity matrices for predicates seems to be new.

McAllester himself [I1] and together with Ganzinger [7] have provided fur-
ther complexity meta-theorems for interesting deductive systems which are also
candidates for integration into a program analyzer workbench. A challenging
open question is whether the necessary complexity calculations for these can be
automated as well.

References

1. A. Aiken. Introduction to set constraint-based program analysis. Science of Com-
puter Programming (SCP), 35(2):79-111, 1999.

2. D.A. Basin and H. Ganzinger. Complexity Analysis Based on Ordered Resolution.
In 11th IEEE Symposium on Logic in Computer Science (LICS), 456-465, 1996.
Long version to appear in JACM.

3. L. Cardelli and A.D. Gordon. Mobile ambients. In Proceedings of FoSSaCS’98,
volume 1378 of LNCS, 140-155. Springer-Verlag, 1998. P53

4. E. Dahlhaus. Skolem normal forms concerning the least fixpoint. In Computation
Theory and Logic, 101-106. LNCS 270, Springer Verlag, 1987.

5. D. L. Dill. Timing assumptions and verification of finite state concurrent systems.
In Automatic Verification Methods for Finite State Systems, 197-212. LNCS 407,
Springer Verlag, 1989.

6. C. Fecht and H. Seidl. A faster solver for general systems of equations. Science of
Computer Programming (SCP), 35(2-3):137-162, 1999.

7. H. Ganzinger and D.A. McAllester. A new meta-complexity theorem for bottom-up
logic programs. In First Int. Joint Conference on Automated Reasoning (IJCAR),
514-528. LNCS 2083, Springer Verlag, 2001.

8. G. Gottlob, E. Grédel, and H. Veith. Datalog LITE: A deductive query language
with linear time model checking. ACM Transactions on Computational Logic, 2001.
To appear.

9. D. E. Knuth. On a generalization of Dijkstra’s algorithm. Information Processing
Letters (IPL), 6(1):1-5, 1977.

10. P.G. Kolaitis. Implicit definability on finite structures and unambiguous computa-
tions (preliminary report). In 5th Annual IEEE Symposium on Logic in Computer
Science (LICS), 168-180, 1990.

11. D. McAllester. On the complexity analysis of static analyses. In 6th Static Analysis
Symposium (SAS), 312-329. LNCS 1694, Springer Verlag, 1999. [R43] 244] 245]
P61,

12. F. Nielson and H. Seidl. Control-flow analysis in cubic time. In European Sympo-
sium on Programming (ESOP), 252-268. LNCS 2028, Springer Verlag, 2001. 243]
£,] 253, (3] (260, (60 (2600, B0

13. F. Nielson and H. Seidl. Succinct solvers. Technical Report 01-12, University of
Trier, Germany, 2001. [B44] 244],

14. R. Shaham, K. Kordner, and S. Sagiv. Automatic removal of array memory leaks
in Java. In Compiler Construction (CC), 50-66. LNCS 1781, Springer Verlag, 2000.
249

	Automatic Complexity Analysis
	Introduction
	Horn Clauses
	Concrete Calculation of Runtimes
	Abstract Calculation of Runtimes
	Sparsity Matrices
	Computing with Sparsities

	Asymptotic Calculation of Runtimes
	Asymptotic Values
	Computing with Asymptotic Values

	Asymptotic Sparsity Analysis
	Inferring Sparsity Matrices
	Inferring Asymptotic Sparsity Matrices

	Practical Implementation and Experimental Results
	Conclusion

