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Abstract. Dependency has been identified as the main ingredient un-
derlying many program analyses, in particular flow analysis, secrecy and
integrity analysis, and binding-time analysis. Driven by that insight,
Abadi, Banerjee, Heintze, and Riecke [I] have defined a dependency core
calculus (DCC). DCC serves as a common target language for defining
the above analyses by translation to DCC.

The present work considers the opposite direction. We define a Prototype
Dependency Calculus (PDC) and define flow analysis, secrecy analysis,
and region analysis by translation from PDC.

1 Introduction

Dependency plays a major role in program analysis. There are two broad kinds
of dependency, value dependency and control dependency. A value dependency
from v to v’ states that value v’ is constructed from v, so that there is a direct
influence of v on v'. A typical value dependency arises from the use of a primitive
operation, v = p(v), or from just passing the value as a parameter. A control
dependency from v to v’ describes an indirect influence where v controls the con-
struction of v'. A typical example of a control dependency is “v’ = if v then ...”.
Although v does not contribute to v’, it still controls the computation of v'.

Many program analysis questions are derived from dependency information.
A flow analysis answers questions like: which program points may have con-
tributed to the construction of a value? Hence, a flow analysis is only interested
in value dependencies. A region analysis answers similar questions, but instead
of yielding answers in terms of program points, the analysis computes regions,
which we regard as abstractions of sets of program points. Other analyses, like
secrecy and binding-time analyses, also need to consider control dependencies.
Here, the typical question is: if a particular value changes, which other values
may also change?

The dependency core calculus DCC [I] is an attempt to unify a number of
calculi that rely on dependency information. DCC builds on Moggi’s computa-
tional metalanguage [10]. It formalizes the notion of dependency using a set of
monads Ty, indexed by the elements of a lattice. The idea is that each element
£ of the lattice stands for a certain level of dependency and that computations
up to that level must occur in monad 7T, (an ¢-computation). In particular, the
bind-operator of DCC guarantees that the outcome of an ¢-computation can be
constructed only from the results of #'-computations, where ¢/ C £ in the lattice.
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DCC has a denotational semantics and there are translations from various
calculi — a two-level lambda calculus (binding-time analysis), SLam (secrecy
analysis), a flow-type system (flow analysis) — into DCC. Each translation in-
stantiates L to a suitablelattice— { static, dynamic}, {low-security, high-security},
powerset of the set of program points — and uses a variant of the monadic trans-
lation.

This beautiful approach has a number of drawbacks:

— There is no direct link from DCC to the region calculus [20]. The DCC
authors [4] have made a separate effort to build a DCC-style denotational
model for it.

However, the region calculus is an important program analysis which relies
on dependecy information to reason about memory allocation and memory
reuse.

— DCC does not have a notion of polymorphism and it does not seem easy to
extend it in this way. In particular, while a fixed number of regions can be
tackled with a fixed lattice of dependency levels (viz. the flow-type system),
an extension to region polymorphism does not seem to be possible.

An extension to polymorphism is possible in the denotational model of the
region calculus due to Banerjee et al [4]. But, as the authors point out in the
conclusion, it is not clear how to unify this model with their work on DCC.

The present work approaches the problems from the other side. Instead of
giving a target calculus that can be used as a common meta-language, we start
from a prototypical calculus that collects all sensible dependency information.
Instantiating this calculus to a particular analysis means to chop away part of
the information that it provides. The appeal of this approach is that

— it can provide a common framework for a range of analyses: analyses can
be factored through PDC and exploit PDC’s minimal typing property for
implementing the analyses;

— it scales easily to polymorphism;

— it can be mapped to all the problems that have been translated to DCC;

— it can be mapped to region calculus;

— a non-interference result for the PDC would give rise to corresponding prop-
erties for all analyses that are images of PDC;

— it uncovers an interesting connection between region calculus, dependency
analysis, and flow analysis.

The main novelty of PDC is the modeling of dependency information as a
graphical effect. That is, the effect of evaluating an expression e is a relation
that approximates the data and control flow during the evaluation. The map-
pings from PDC to other calculi are abstraction mappings that cut away excess
information.

There are also drawbacks in this approach. In particular, the evaluation strat-
egy (call-by-value) is built into the calculus and some proofs need to be redone
when changing the strategy. DCC avoids this by being based on the computa-
tional metalanguage. However, for a call-by-value language, the DCC authors
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recommend a modified vDCC calculus that has a slightly different model for
non-interference. It is hard to argue for the completeness of PDC. It might be
that we missed an important kind of dependency in the construction. We cannot
be certain until we encounter an analysis, which is not an image of PDC.

Related Work The present work draws heavily on the large body of work on
type-based program analysis. We cannot aim for completeness here, for a good
overview see the recent survey paper by Palsberg in the PASTE’01 workshop.
Particularly influencing are the works on region calculus [20], on effect systems
[L7)[13L[14], on flow analysis [19], on secrecy and security analysis [8,[16]22,21],
on binding-time analysis [3]9]12]/5]6].

The only unifying efforts that we are aware of are the works of Abadi, Baner-
jee, Heintze, and Riecke [4[T] that we discussed above.

Abadi et al [2] have defined a labeled lambda calculus which enables tracking
of dependencies. From the labels present in a normalized expression they com-
pute a pattern that matches lambda expressions with the same normal form. A
cache maps these patterns to their respective normal forms. While their labeled
expressions only represent the final results, our graphical approach can provide
information about intermediate results, too.

Contributions We introduce the PDC and give its static and dynamic seman-
tics. Next, we prove standard properties about its type system, culminating in
a minimal typing result. We prove the soundness of the static semantics with
respect to an instrumented big-step operational semantics. We define type pre-
serving translations from PDC to the region calculus, to a particular flow anal-
ysis, and to SLam (a calculus of secrecy)l}. Our translations shed some light on
the relation between flow analysis and region analysis: a flow analysis is con-
cerned with program points while a region analysis is concerned with portions
of memory. In our setting, a region is an abstraction for a set of program points
(which shares a common pool of memory to store its results).

2 The Calculus PDC

In this section, we fix the syntax of PDC, define its static semantics, and give an
instrumented dynamic (big-step operational) semantics. Finally, we prove type
preservation with respect to the static semantics.

2.1 Syntax

An expression, Ezpr, is a variable, a recursive function, a function application,

a let-expression, a base-type constant, a primitive operation, or a conditional.
Similar to labeled expressions in flow analysis, all expressions carry a source

label, s € Source. Contrary to labels in flow analysis, these source labels need

! This is found in an extended version of the paper.
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Ezpr> e ==z°|rec’® f(z)e|e@’e|let’ x =€ ine|
¢’ |op°(e) |if* eee
s € Source
AType 3 ¢ == (1,3)
Type> T ::=a|B\q§;>q§
€ € Effect =P(Source x Source x Indicator)
¢ € Indicator ={V,W,C} where VCWandWrCC

TE € Variable fim, AType

Fig. 1. Syntax of PDC

not be unique. In fact, they should be looked upon as variables that may be
substituted later on.

We shall not define explicitly the underlying expressions of an applied lambda
calculus. Rather, we define them intuitively through an erasure mapping | - |,
where |e| is an expression with the same structure as e, but all source annotations
removed.

An annotated type, ¢, is a pair (7,s) where 7 is a type and s is a source
annotation. A type can be a type variable, a base type, or a function type. The
function arrow is decorated with a source annotation and an effect e. An effect
is a labeled graph where the edges are atomic dependencies.

An atomic dependency is either a value dependency (s,s’,V) (written as
(s,8')v), a control dependency (s,s’,C) (written as (s, s’)c), or a weak control
dependency (s, s’, W) (written as (s, s )w). A control dependency is weak, if it
does not lead to the construction or examination of a value. If we do not care
about the kind of dependency, we write (s, s’). Dependency indicators are totally
ordered by V C W and W C C. An effect always stands for the least reflexive
and transitive relation generated by its atomic dependencies, as formalized by
the judgement (s,s,t) € €:

(e-atom)M (e-refl) (s,s,t) €€

(s,s',1) €€

(513527L1) €€ (523537L2) ce
(s1,83,01 Uia) €€

(e-trans)

That is, if there is a single control dependency on the path from s to s’, then
there is a control dependency (s, s’)c. If all atomic steps on the path from s to
s" are value dependencies, then there is a value dependency (s, s')y .

For comparison with the simply-typed lambda calculus, we define:

BType > ¢ s=a|B|(—(
BTE € Variableﬂ BType
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\ TE(x) = (1,5")
var) TE - ST ’ / "o
, ST X .(7'75).{(8,3)‘/1/7(8 75)\/}

(

TE[f — (¢’ e ¢,8 ),z ¢, s'He:ple
TE, s - rec® fl@)e: (¢ e é,8') 1 {(s,8")c}

TE,SF61:(¢'—6>¢,S")!61 TE,skex:¢' e
TE,sFe1@%ex:¢pler UeaUeU{(s,s")c}

(app) ¢=(r,5)

TE,stei:¢1!er TE[z : ¢1],s b ea: pa!lea
TE, st 1let® x =e1 inez: g2 !e1 Ue

(let) ¢2 = (Tv 51)

t\
(ons) e o - (B.5) 1 {(5.5)e ]

TE,ske: (B,s") e
TE, st op® (e): (B,s") e U{(s",s")c}

(op)

TE,stkei:(B,s") el TE, s" Fea: ¢! e TE, s Fes:¢!es
TE,Sl—ifS el ez 63:¢!€1U62U€3

(if) ¢ =(,5")

Fig. 2. Static Semantics of PDC

The set BType is exactly the set of types for a simply-typed lambda calculus.
BTFE ranges over type environments for this calculus, wheras TFE ranges over
annotated type environments for PDC.

We extend the erasure function to types. Type erasure |- | : AType — BType
maps an annotated type to a bare type (BType) by |(«, s)| = «, |(B, s)| = B, and

|(¢ — ¢, s =1¢'| — |¢"|. Technically, we should be using two different

sets of type variables, one ranging over Type and the other ranging over BType,
but context will ensure that no ambiguities arise.

Despite the presence of type variables in the type language, there is no poly-
morphism. The sole purpose of the type variables is to provide a principal typing
property to the type system.

2.2 Static Semantics

The static semantics defines the typing judgement TE, s e : ¢ ! € in Fig. Blin
the style of a type and effect system. The type environment TFE binds variables
to annotated types. The source label s on the left side of the turnstile denotes the
source label of the program location that causes e to evaluate, in the sense of a
control dependency. For example, the condition expression in a conditional causes
one of the “then” or “else” expressions to evaluate. Hence (viz. rule (if)), its
source label drives the evaluation of the branches. The annotated type ¢ = (7, s)
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consists of the real type 7 and the source label of the last expression that either
created the value of e or passed it on. As mentioned before, the effect € is
just a labeled relation, which stands for its least reflexive, transitive closure.
It expresses the relation between the values in the environment, the sources
labels in e, and the value computed by e.

The rule (var) gives rise to one weak control dependency and one value
dependency. The value dependency arises due to “copying” the value from the
environment (with source s”) to the result area of the expression (with source
s'). The control dependency arises from the source s to the left of the turnstile.
No parts of the value are examined or constructed, so it is only a weak control
dependency.

The rule (rec) produces just one control dependency: the allocation of the
closure is caused by s. But it also provides the explanation for the pair s”, ¢
on the function arrow. When applying the function, s’ will be the cause for
applying the function, i.e., the source of the application context. The effect € is
the dependency relation that the function promises to construct. Otherwise, the
rule is just the usual rule for a recursive function.

In the function application rule (app), the source s is the cause for evaluating
e1, eg, and also the body of the closure that is computed by e;. The latter
control dependency is created by the atomic dependency (s, s”)c. There is an
additional control dependency from the creation of the closure s’/ and the result
of the whole expression s’. As usual, the application of a function causes the
release of its latent effect (the dependency relation €). The relations resulting
from the subexpressions are unioned together (and closed under reflexivity and
transitivity).

The let expression has no surprises (let). However, it is important to see that
the evaluation of e; can be independent of the evaluation of e5 if the variable x
does not appear in e;.

The allocation of a constant (const) is caused by the context s, so there is a
control dependency.

A primitive operation, shown in rule (op), is quite similar. The result of the
operation is not part of the argument, but still it depends on the input value.
Hence, it gives rise to a control dependency and collects the dependency relation
from the subexpression.

A conditional expression (if ) evaluates the condition in the outer context s.
The result lives at source s” and it causes the evaluation of either e; or es.

2.3 Subtyping

The most important bit to understand about this section is that the static seman-
tics is not meant to be prescriptive, in the sense that it limits the applicability of
a function. On the contrary, the idea is that every simply-typed program can be
completed to a PDC expression (by adding source annotations), which is type
correct. In order to obtain this descriptive property, we introduce a notion of
subtyping which only works at the level of annotations. This is a typical step in
program analysis [6].
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First, we define the notion of an effect subset, €; C €5 ! €. It means that in
the presence of €, €1 is a subeffect of €.

€, Ceyl € el Cey !l e
Coey! L="2 L =2
PEe!d (fUeY) Cex ! (€ UE)
(575/7L) € €2 (5,8/7L) ¢ €2

{(s,8,0)} Eex 1 {(s,8,0)} Eea 1 {(s,8,0)}

The subtyping judgement is - ¢ < ¢ ! ¢ with the usual typing rule for
subsumption, which includes subeffecting, too:

b\TE,s}—e:gzb!e Fo<g¢ !¢ eUe Cé
(sub) TE,ske: ¢ 1€

Subtyping is more complicated than usual because it adds to the dependency
effect. Subtyping only introduces value dependencies because it only “connects”
different source annotations.

(sub-base gy < B, 5) T {(s.5)v ]

Fgo<orle Fol <gh!ée e1Cele’
(sub-fun) Ly 2 | )
F(é1 1, 51) < (@2 @h,52) eU€e Ue" U{(s1,52)v}

The best reading of a subtyping judgement - ¢ < ¢ ! € is in terms of the
subsumption rule, i.e., as a conversion of a value of type ¢ to the expected type
¢'. The effect € of the subtyping judgement registers the dependencies established
by the conversion. In this reading, the rule (sub-base) is obvious. The rule (sub-
fun) has the usual contravariant behavior in the argument part and covariant
behavior in the result part and in all other components.

2.4 Basic Properties

The static semantics of PDC is closely tied to the simply-typed lambda calculus.
Each expression of the simply-typed lambda calculus can be completed to a
typable PDC expression and, vice versa, the erasure of a PDC expression yields
a simply-typed lambda expression.

Lemma 1 (Erasure). If TE, st e: ¢! € then |TE| by |e| : |@| in the system
of simple types.

Lemma 2 (Type Extension). If || = |¢/|, then there exists a smallest € so
that - ¢ < ¢/ e

Proof. Case B: In this case, ¢ = (B,s) and ¢/ = (B,s'). Clearly, - (B,s) <
(B,s") ! {(s,s')v}, by definition of <.
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Case —: In this case, ¢ = (d14 = b1r,s) and ¢ = (¢, —I— &,,.,5).

Furthermore, |¢14| = |¢),| as well as |¢1,.| = |¢),|- By induction, there exist ¢,
and €, so that F ¢}, < @14 ! €q and F ¢1, < @), ! €. Furthermore, define €' by
€r C ey 1 e Setting € = ¢, Ue, U€e' U {(s,s')v}, we obtain that - ¢ < ¢' l ¢, as
claimed.

Lemma 3 (Completion). If BTE b4 eq : ¢ then for all s and TE where
|TE| = BTE there exist e, ¢, and € such that |e| = eg, |¢| = (, and TE,s - e :
o !e.

Furthermore, for each ¢' and € so that TE, st e: ¢' 1 ¢ and |¢'| = ¢ it holds
that - ¢ < ¢' € and eU e’ C €.

Lemma 4 (Minimal Type). Suppose that BTE Fg e : ¢ is a principal typing
for e in the system of simple types. Then there exist TE, s, e, ¢, and € with
|TE| = BTE, |e| = eq, |¢| = ¢ and TE, st e: ¢ !¢, so that, for all TE, ¢/, €,
and € with |TE'| = BTE, |¢/| = eq, |¢'| = ¢ and TE ;s ¢’ : ¢' | €, it holds that
Fop< ¢! ande C € and ' C €.

Finally, a technical result that shows that the value of an expression depends
on its control dependency. For this result, we need an assumption about the
types in the environment, which is captured by the following definition:

An annotated type is well-formed if the judgement ¢ wft is derivable using
the rules

¢ wit owit (s,s)€ee ¢=(1,9)
(¢/ — o, s') wit

(a, 8) wit (B, s) wft

If TE={x1:¢1,...,2n : ¢} then TE wit holds if ¢; wit, for all 1 <i < n.

Lemma 5 (Output Types). Suppose that TE, st e: (1,5") ! € where TE wit.
Then (s,s') € €.

2.5 Dynamic Semantics

The dynamic semantics of PDC is defined using a big-step operational semantics.
The judgement VE, s e || r states that with variable bindings VF and current
“cause for the evaluation” s, the expression e evaluates to a return value r, where
r is either a value paired with a dependency graph or an error ERR. Values, v,
are either base-type constants or closures. Each value is tagged with a source
annotation, s, that describes where the value has been created or passed through.
The dependency graph tracks the actual dependencies that have occured during
computation. Here is the formal definition of return values:

v u=c| (VE, Az e)
w = v

r u=w,e| ERR
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"

VE(z) = v°
VE, s xS/ 4 ’US/, {(87 S/)W7 (S//7 S/)V}

(ev-var)

7

(ev-rec) VE, sk roc® f(z)el (VE| fv(recsl f(z)e),rec f(z)e)*,{(s,s)c}

’

VE,st e I} (VE rec f(z)e)* e
VE, st ez | wa, €2
(ev-app) VE[f — (VE rec f(z)e)* x> wa],s" Fel v e
VE, st e1@% ey | v* 61 Uea UeU{(s,s")c}

VE, stk e | wi, e VE[mel},sl—eQUvsm,ez

(ev-let) — —
VE,sF1let® x =e1 in ez J v° ;61 Uea

(

- t\ 7 7
ev-const) VE,stc* | c*,{(s,8)c}

VE,skel ¢ e
VE, s+ ops/ (e) (op(c))s/,e u{(s",s)c}

VE,stei e a1 c+#false VE,s" Fex v e
VE, s+ ifs el es es Ufus/,el U e

(ev-op)

(ev-if-true)

’

VE, st e1 |} false® e VE,s" Fes v° s
VE,s ifs/ e1 ez e3 || vsl,el Ues

(ev-if-false)
Fig. 3. Dynamic Semantics

Figure Bl defines the inference rules for the judgement VE, s e || r. Figure @l
shows an excerpt of the error transitions, namely those for the rule (ev-app).
There are two more for (ev-let), two for (ev-op), and three for (ev-if-true) as
well as for (ev-if-false). They are constructed in the usual way, so that evaluation
propagates errors strictly.

2.6 Type Preservation

To establish a connection between the static semantics and the dynamic seman-
tics, we define a typing relation for values F, w : ¢ and value environments as
follows:

ko VE:TE  TE[f: (¢ — ¢,5),2:¢],sFe:ole
Fo (VE,rec f(x)e)® : (¢ R ?,8)

Fo w; @
Fo {x;:wi}: {z;: ¢i}
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VE,skei e e
VE,st e1@% ey || ERR

(ev-app-errl)

(ev-app-err2) VE,s - elllL ERR
VE,st e1@° es | ERR

"

VE,stk e || (VE,s" rec f(z)e)® e
(ev-app-errs) VE,st ez | ERR
VE,st e1@° ex | ERR

"

VE,st e || (VE,s" rec f(z) e)s/ , €1
VE,S F e U’wg,EQ
(ev-app-erry) VE' [z — w2],s”" e | ERR
VE,st e1@Q° e2 | ERR

Fig. 4. Error Transitions (Excerpt)

This enables us to prove the following by induction on the derivation of the
evaluation judgement.

Lemma 6 (Type Preservation). If TE,ste: ¢! e and VE, st e | w,€ and
b, VE: TE thent, w: ¢ and € C e.

3 Translations

In this section, we demonstrate that the region calculus and a calculus for flow
analysis are both images of PDC.

3.1 Region Calculus

We consider a simply-typed variant of the region calculus without region poly-
morphism and without the letregion construct. Polymorphism is out of the scope
of the present work.

Figure[l summarizes syntax and static semantics of the region calculus, where
we take Region as a set of region variables. To simplify the translation, we have
made subeffecting into a separate rule, rather than including it in the rule for
functions (as in [200]).

Suppose now that we are given a derivation for the PDC judgement TE, s
e : ¢ ! e. From this we construct a derivation for a corresponding judgement in the
region calculus in two steps. In the first step, we extract an equivalence relation
on source annotations from the PDC derivation. The equivalence classes of this
relation serve as our region variables. In the second step, we translate a PDC
expressions to an expression of the region calculus and map the type derivation
accordingly. The main step here is the mapping from source annotations to their
equivalence classes.
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p € Region
er =z | rec f(z)e, at p|e,Qe, | let z =e, in e,
c at p|op(er) at p|if e, e, er

¢ == (0,p) .
0:=a|B|l¢p — ¢
e C Region

(r-var) RTE@) = ¢

RTEF, xz:0!0

RTE[f — (¢/ —— ¢.p)a—¢|Fre:dle
RTEF, rec f(x)eat p': (¢ — ¢,0)! {p}

(r-rec)

RTEr, e1:(¢) — ¢,p)ler  RTEF,es:¢ lea
RTEl, e1@Qez: ¢ lei Uea UeU{p}

(r-app)

RTEF, e1:¢1!er RTE[x : ¢p1]bFre2: g2 !le
RTEF, let x =e1 inez: g2l e1 Uee

(r-let)

; \
(r-const) RTEF, cat p' : (B,p) ! {p'}

(1-0p) RTEF, e: (B,p")!e
P RTEF, op(e) at p' : (B,p) e U{p”, o'}

(r if‘RTEhn e1: (B,p") ! er RTEF, ex: ¢ !les RTEVF,e3:¢!es
/ RTEFTifelegegt(ﬁ!&lU&QU&g

RTEF,e:¢ple eCé€
(r-subeff) RTEF, e:ple

Fig. 5. Syntax and Static Semantics of the Region Calculus

For the first step, the computation of the equivalence relation, the function
«a extracts a set of pairs from effects, annotated types, and type environments.
The most important part is that control dependencies are ignored by .

a(0) =0

aleU€) = a(e) Ua(e)
a((s,s')v) ={(s,s)}

o((s, s )w) =0

a((s,s")c) =0

a(B, s) =0

al@ — ¢.5) = al¢) Ua(9) Uale)
ofzr:¢1,..])  =ald)U
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The extract of a type derivation is the union of the results of applying « to each
occurrence of a type environment, an annotated type, and an effect in every step
of the derivation (we sidestep the formal definition, which should be obvious).
Then, we define the relation =C Source X Source as the smallest equivalence
relation containing the extract. We denote the equivalence classes of = by [s]=
or just [s].

In the second step, we translate the parts of an RC type derivation using the
function B=. For expressions it is defined as follows.

B= (-758) =

O=(rec® f(x)e) =rec f(z)pP=(e) at [s]=

f=(e1@%ey) B=(e1)Qp=(e2)

O=(let® z = €1 in eg) = let = f=(e1) in P=(e2)

B=(c*) =c at [s]=

B=(op*(e)) = op(e) at [s]=

B=(1f® e; ez e3) =1if f=(e1) f=(e2) P=(e3)
For types and effects, it is defined by

B=(B,s) = (B, [s]=)

B-(¢) — ) = (5=(¢) =L 5 (9), [5])

p=(0) =0

f=(eU€) = p=(e) U B=(€')

B=((s,s")v) =0

B=((s,5")w) =0

B=((s,5")c) ={ls=}

With these definition, we can show the following correspondence.

Lemma 7. Let TE,sFe: ¢! e and = be defined as described above.
Then B=(TE) -, B=(e) : f=(¢) ! B=(¢€).

Proof. By induction on the derivation of TE,s F e : ¢ ! e. Note that uses of
the subsumption rule can be mapped to the subeffecting rule (r-subeff) because
subtyping only gives rise to value dependencies, which are equated by =.

3.2 Flow Calculus

We consider a simply-typed flow calculus comparable to 0CFA [7} [15,18,[19].
Figure Al summarizes syntax and static semantics of the flow calculus. In this
calculus, each subexpression is labeled by a location £. The calculus uses sub-
typing in the usual way. The type judgement FTEF¢ ey : (6, L) means that the
value of ey is constructed and passed through (at most) the locations mentioned
in L.

The mapping to PDC is straightforward for the flow calculus. Firstly, it
ignores all control dependencies. Next, it maps source annotations to locations



240 Peter Thiemann

£ & Location
ef n=a' | rec’ f(x)es | ef@es | let’ z = e in ey |
¢ op'(es) | if’ e e ey

L C Location

¢ == (0,L)
0 :=a|B|d—¢
FTE() (6,L)

0 S TR, of - (0,{6 U L)

FTE[f — (¢ = ¢, L"),z — ¢'|Fre: ¢
FTEVF; rect f(z)e: (¢ — ¢, {€})
\FTE L er:(¢) — ¢, L) FTEF;es:¢/ el
(-app FTEV; e1@le3 : ¢ ¢

(f-rec)

= (97 Ll)

FTE"feli(ﬁl FTE[.’E:QZsl] |—f€2:¢2

1 04)
(f-let) FTEF; let’ # = €1 in €5 : o

(F-eonst) prm o (B, 1)

FTEVv;e: (B, L)
(f-op) FTE O}fl(e) (B, {£})

FTEvje :(B,L) FTEvjes:¢  FTEbjes:¢ (€L

(F4f) FTEl; it e1 ez e3: ¢ ¢=0,L)
FTEbje:¢ bpo<d¢
PP AN f f
(f-sub) FTEFe: ¢
Lcr Fr 1 < ¢n Froa<¢y LCL
Fr (B, L) < (B,L) Fg (f1 — ¢2, L) < (¢ — ¢, L)

Fig. 6. Syntax and Static Semantics of the Flow Calculus

(without lack of generality, we assume the identify mapping because there is
always a PDC derivation where all source annotations are distinct). Then, to
compute the set L for a type, we take its source annotation and close it under
the current dependency graph.

Hence, define

E(se) ={s"[ (s, 8)v € e}

F((B,s).¢) = (B, F(5,c)

F((¢ —— ¢'.5).6) = (F(p,€) = F(¢/,eU ), F(s,¢))
F([St',‘l : ¢1,...L€) [.’1,‘1 F(¢1,6>7...]

and then we can prove that
Lemma 8. If TE,stke: ¢! € then F(TE, Q) -y e: F(¢,¢).
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4 Conclusion

We have defined a prototype dependency calculus, PDC, which subsumes impor-
tant dependency-based program analyses. It is the first calculus that subsumes
both the region calculus and other calculi like flow analysis and the SLam cal-
culus for secrecy analysis. Other analyses, in particular binding-time analyses,
would also be easy to derive.

We are presenting a number of typed translations into the above calculi.
Taken together with the soundness proofs of these calculi, these results give
some confidence in the construction of PDC, but ultimately we aim at proving
a noninterference result directly for PDC.

On the positive side, the extension to a polymorphic base language and to
polymorphic properties seems straightforward. However, it must be expected
that such an extension loses the principal typing property enjoyed by PDC.

Another interesting extension would be to cover further effect-based analyses,
like side-effects or communication.
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