A Generic Component Framework
for System Modeling

Hartmut Ehrig!, Fernando Orejas?,

Benjamin Braatz!, Markus Klein!, and Martti Piirainen’

! Technische Universitit Berlin
Franklinstrasse 28/29, 10587 Berlin, Germany
{ehrig,bbraatz,klein,martti}@cs.tu-berlin.de
2 Universidad Politecnica de Catalunya
Campus Nord, Modul C6, Jordi Girona 1-3, 08034 Barcelona, Spain
orejas@lsi.upc.es

Abstract. The aim of this paper is to present a generic component
framework for system modeling which is especially useful for a large class
of graph- and net-based modeling techniques. Moreover, the framework
is also flexible with respect to a hierarchical connection of components,
providing a compositional semantics of components. This means more
precisely that the semantics and internal correctness of a system can be
inferred from the semantics of its components. In contrast to constructor-
based component concepts for data type specification techniques, our
component framework is based on a generic notion of transformations.
Refinements and transformations are used to express intradependencies,
between the export interface and the body of a component, and inter-
dependencies, between the import and the export interfaces of differ-
ent components. This is shown by a small case study on modeling Java
threads by high-level Petri nets in this paper.

1 Introduction

It is becoming a standard practice in software development to base the design and
implementation of component-based systems on architectures such as CORBA or
COM+. In these architectures, components are generic in the sense that they are,
to some extent, independent of specific programming languages. Unfortunately,
components in these frameworks lack a precise semantics, making difficult to
reason about this kind of systems. This is probably due to the fact that these
approaches are mainly addressed to system implementation, but do not include
the modeling phase.

1.1 Main Concepts and Results of this Paper

The aim of this paper is to present a generic component framework for system
modeling that can be used for a large class of graph- and net-based modeling

R.-D. Kutsche and H. Weber (Eds.): FASE 2002, LNCS 2306, pp. 33-148] 2002.
© Springer-Verlag Berlin Heidelberg 2002

34 Hartmut Ehrig et al.

techniques, but in principle also for other kinds of semi-formal and formal tech-
niques. More precisely, we present in Sect. [2 a component concept based on a
very general notion of specification. According to this concept, a component con-
sists of a body and of an import and an export interface, connected in a suitable
way, such that the import connection defines an inclusion from the import in-
terface to the body, and the export connection defines a suitable transformation
from the export interface to the body. These import and export connections
represent the intradependencies between different parts of a single component.
The interdependencies between import and export of different components are
represented by connectors. Again, we only require connectors to define a suit-
able transformation. Consequently, our framework is also generic concerning the
connection of components. The key concept of our framework is a generic notion
of transformations of specifications, especially motivated by - but not limited to
- rule based transformations in the sense of graph transformation and high-level
replacement systems [SI5T9].

According to the general requirement that components are self contained
units not only on the syntactical but also on the semantical level, we are able
to define the semantics of each component independently of other components
in the system. This semantics is also given in terms of transformations. It must
be pointed out that this semantics can be used to give meaning to components
based not only on a formal, but also on a semi-formal modeling technique. In this
paper, however, we mainly consider graph- and net-based techniques. Moreover,
our transformation semantics is shown to be compositional. More precisely, we
are able to show that the semantics of a system can be inferred from that of its
components.

In order to illustrate our concepts, we present in Sect. Bl a small case study
where Java threads ([11]) are modeled by high-level Petri nets. A larger case
study concerning a component-based telephone service center modeled by low-
level Petri nets is given in [18], where the corresponding component concept is
an instantiation of our generic framework. This and other kinds of instantiation
are discussed in Sect. 4l A short summary and open problems are presented in

Sect. Bl

1.2 Related Work

The generic component concept, presented in this paper, has been mainly moti-
vated by the ideas in [I5] for a component concept in the German BMBF project
“Continuous Software Engineering” and by the module concepts for graph trans-
formation systems in [20] and for Petri nets in [I§]. In contrast to these concepts
and that for UML [3] an important new aspect in our framework is the fact that
we are able to give a self-contained, compositional semantics for each component.
The syntactical level of the approaches in [20/T8] is partly motivated by algebraic
module specifications in [6]. The semantics of algebraic module specifications is
based on free constructions between import and body part. This constructor-
based semantics has been dropped in [I820] for graph- and net-based modules,
where the key concepts are now refinements between export and body parts.

A Generic Component Framework for System Modeling 35

This leads directly to our transformation-based component framework, where
transformations include refinements and abstractions.

Although we mainly focus on our new component framework in this paper,
we think that the concepts introduced here are a good basis for other interesting
architectural issues. In this sense, we think that the papers [923]24/1] could be
considered complementary to ours. In particular, the use of graph transformation
techniques proposed by Fiadeiro in [23] and also by Lowe in [13] for architecture
reconfiguration seems to be most promising, in view of a component concept for
continuous software engineering, including software reconfiguration and evolu-
tionary software development in the sense of [15].

2 Main Concepts for a Generic Component Framework

In this section, we present the main concepts for our generic component frame-
work. We start with some general assumptions concerning our modeling tech-
nique, which is one of the key generic concepts in our framework.

2.1 Generic Modeling Techniques

We propose that a generic modeling technique is a general framework for de-
scribing systems. These descriptions have a syntactical part, consisting of speci-
fications SPEC, and a semantical part, consisting of behavior or models of the
corresponding specification. Moreover, it should be possible to deal with specific
formal or semi-formal modeling approaches as concrete instances of the generic
technique. A modeling technique is called formal, if the syntactical and semanti-
cal parts are mathematically well-defined. For a semi-formal technique we only
require that the syntactical part is formalized, but the semantical part may only
be given by informal documents, like natural language.

In order to express properties of behaviors or of models, we assume that
we have a constraint language, which allows us to formulate constraints in an
informal way, using diagrams or natural language, or in a formal way, based on
some logical formalism. For simplicity we do not consider constraints explicitly
in this paper.

From the software engineering point of view, we also require to have suit-
able horizontal and vertical structuring techniques. Especially in this paper we
require a suitable notion of transformation including abstraction and refinement
of specifications as special cases.

2.2 A Generic Component Concept

Components are self-contained modeling units, where some details are hidden
to the external user. This is usually achieved by providing a clear separation
between the interface of the component (what the external user, or other com-
ponents, can “see”) and the body (the detailed definition or implementation of
the functionality provided by the component). Moreover, the interface can be

36 Hartmut Ehrig et al.

divided into two parts: the import interface, describing what the component
assumes about the environment (e.g. a description of the services provided by
other components) and the export interface, describing the services provided by
the component itself. Obviously, the import and export interfaces are connected
to the body in some well-defined way.

In this sense, given a generic modeling technique with model specifications
in the sense of 2.1], we are now able to define our generic component concept. A
component specification, in short component,

COMP = (IMP,EXP,BOD,imp, exp)

consists of model specifications and connections:

IM P, called import interface,

EXP, called export interface,

BOD, called body,

imp: IM P — BOD, called import connection,
— exp: EXP — BOD, called export connection.

In order to be generic, we do not require any specific type of connections
between interfaces and body. We only require that each export connection,
exp: EXP — BOD, uniquely defines a transformation of model specifications
(see Z3), exp: EXP = BOD, called export transformation. We assume that
this transformation is a refinement describing how the elements presented in the
export interface are implemented by the body. In other words the export is an
abstraction of the body.

With respect to the import connection, we may assume that the body of a
component is an extension of the import interface, in the sense that the func-
tionality defined in the body is built upon the elements of the import interface.
As a consequence, for the sake of simplicity, we assume that each import con-
nection, imp: IMP — BOD, defines an inclusion imp: IM P C BOD, of the
corresponding specifications.

2.3 A Generic Transformation Concept

We need a generic transformation concept in order to formulate properties of
export connections (see Z2) and of connectors between import and export inter-
faces of different components (see 23], below). Again, we will try to be as general
as possible.

We assume that a transformation framework 7 consists of a class of trans-
formations, which includes identical transformations, is closed under compo-
sition and satisfies the following extension property: For each transformation
trafo: SPEC, = SPEC,, and each inclusion i1: SPEC, C SPECY there is a
selected transformation trafo’: SPEC] = SPECY, with inclusion io: SPECy C
SPECY, called the extension of trafo with respect to i1, leading to the extension
diagram in Fig. 1.

A Generic Component Framework for System Modeling 37

SPEC: =2 spEC,

i1 2
!
trafo

SPEC|, —=% SPEC)

Fig. 1. Extension diagram for the extension property

It must be pointed out that, in a given framework, given trafo and i; as
above, there may be several trafo’ and is, that could satisfy this extension
property. However, our assumption means that, in the given framework 7 only
one such trafo’ and one inclusion i3 are chosen, in some well-defined way, as the
extension of trafo with respect to i;.

The idea underlying this extension property is to ask a transformation frame-
work to satisfy, what we may call, a locality assumption: if one can apply a
transformation on a certain specification, then it should be possible to apply
the “same” transformation on a larger specification. This assumption has been
formulated, in a more precise way in [16]. In this paper, for the sake of simplicity,
we have avoided the technical details.

We could have also required that these extensions would only exist when the
given trafo is consistent with 71 in a specific sense. For instance, in the case of
graph transformations, the extension property corresponds to the embedding of
a transformation into a larger context. The corresponding embedding theorem
in [8] requires that the “boundary” of i1 has to be preserved by trafo. Again,
for the sake of simplicity, in this paper we drop this consistency condition.

If transformations and inclusions of specifications can be considered as suit-
able morphisms in a category of specifications, then the extension diagram may
be a pushout in this category. In general, however, the extension diagram is not
required to be a pushout. Especially the embedding of graph transformations
discussed above does not lead to a pushout in general.

2.4 Transformation Semantics of Components

According to general requirements, components should be self-contained units,
with respect to syntax and semantics. Hence, it is necessary to have a semantics
for each single component. Moreover, the semantics of composite components
(and, eventually, the entire system) must be inferred from that of single compo-
nents. In this subsection, we propose a semantics of components satisfying these
requirements.

The most standard way of defining the semantics of a given component con-
cept consists in considering that the meaning of a component is some kind of
function mapping models of the import to models of the export interface like
in the case of algebraic module specifications ([6]). Unfortunately, this kind of
semantics is not adequate for our purposes in this paper. There are two main
problems. On one hand, this kind of semantics assumes that the specifications
involved in a component have a well-defined model semantics. This is true in the

38 Hartmut Ehrig et al.

case of a formal modeling technique, but not in the case of a semi-formal one.
On the other hand, this kind of semantics implicitly assumes that the import
interface of a component is a loose specification having more than one model
(otherwise, if the import has just one model the function associated to a com-
ponent becomes trivial). However, this is not the case for components used in
connection with most graph- and net-based modeling techniques. For instance,
as can be seen in our small case study, the import interface of a Petri net compo-
nent is a Petri net, which one would typically consider to define a single model.
The solution provided for these problems is a semantics that takes into ac-
count the environment of a component, in a similar way as the continuation
semantics of a programming language assigns the meaning of a program state-
ment in terms of the environment of the statement. Here, the idea is to think
that, what characterizes the import interface of a component is not its class of
models, but the possible refinements or transformations of this interface that
we can find in the environment of the component. In this sense, it is natural
to consider that the semantical effect of a component is the combination of
each possible import transformation, trafo: IMP = SPEC, with the export
transformation exp: EX P = BOD of the component. Since I M P is included in
BOD, we have to extend the import transformation from IM P to BOD in order
to be able to compose both transformations. Due to the extension property for
transformations, we obtain trafo’: BOD = SPEC’, as shown in Fig.

trafo’

EXP—2> BOD —=% SPEC’

ﬂniT hnpiT
trafo

IMP—— SPEC

Fig. 2. Transformation semantics

Let us call the class of all transformations trafo: IMP = SPEC from IM P
to some specification SPEC the transformation semantics of IM P, denoted by
Trafo(IMP), and similar for EXP. According to Fig. & the transformation
semantics of the component COM P can be considered as a function

TrafoSem(COMP):Trafo(IMP) — Trafo(EXP)

defined for all trafo € Trafo(IMP), by TrafoSem(COM P)(trafo) = trafo’ o
exp € Trafo(EXP).

It may be pointed out that the two problems mentioned above are now solved.
On one hand, semiformal modeling techniques may include precise notions of
transformation or refinements (the case of visual modeling techniques is briefly
discussed in Sect.). Similarly, a Petri net may have just one model, but it may
be refined in many different ways. Therefore, in both cases, there would not be
a problem to define a transformation semantics for these kinds of components.

A Generic Component Framework for System Modeling 39

2.5 Composition of Components

Several different operations on components can be considered in our generic
framework. Depending on the underlying architecture intended for a given sys-
tem, some specific operations may be needed. For instance, in a hierarchical
system one could need an operation to compose components by matching the
import of one (or more) components with the export of other component(s).
On the contrary, on a non-hierarchical system one may need an operation of
circular composition, where the components of a system are connected in a non-
hierarchical way. Especially connectors in the sense of [I] and the architectural
description language WRIGHT should be considered in this context.

In the following, for the sake of simplicity, we only consider one basic oper-
ation, which allows one to compose components COM P, and COM P, by pro-
viding a connector, connect: IM P, — EX P», from the import interface IM P;
of COM P to the export interface EX P, of COM P,. Similar to an export con-
nection, we only require that the connector uniquely defines a transformation
connect: IMP, = EXP.

Different generalizations and variations of this operation, for instance by al-
lowing to compose (simultaneously) several components, would not pose too
many difficulties, only some additional technical complication. Circular compo-
sition may be more difficult to handle, however previous experience in dealing
with module operations (see e.g. [6]) would provide good guidelines.

Now, we are able to define the composition

COMP3 = COMPl Oconnect COMP2

as follows. Let xconnect = exps o connect. The extension property implies a
unique extension zconnect’: BOD; = BODj3, with inclusion imp}: BODy C
BOD3 in Fig.[3 The composition COM P5 is now defined by

COMP3 = (IMP3, EXP;),, BODg,impg, 6:5])3)

with imps = imp) o imps and exps = xconnect’ o exp;. Since we have IM P3 =
IMP, and EX P; = EX Py, this means especially that the result of the compo-
sition concerning the interfaces is independent of the body parts.

Note, that each connector connect: IM P, — EX P, can also be considered
as a separate component COM Po with expia = connect and impi2 = idpxp,.
This allows to consider COM P in Fig.[3 as the composition of three components
COMP;, COMP,5 and COM P,, where all connectors are identities.

2.6 Compositionality of Transformation Semantics

Given a connector, connect: IMP, — EXP,, between IMP; of COM P, and
EXP, of COM Ps, the composition COM P3 of these components via connect
is well-defined, and we have the following compositionality result:

TrafoSem(COMPs) =
TrafoSem(COMP;y) o Trafo(connect) o TrafoSem(COM Py)

40 Hartmut Ehrig et al.

EXP, = EXPs
expy

M~ BoD,

UCOTLTLECt

EXP; weonnect’

exps

IMPs — IMP—" Bop, "™ _ BoD,

Fig. 3. Composition of Components

where Trafo(connect)(trafo) = trafo o connect. This means that the trans-
formation semantics of the composition COM P5 can be obtained by functional
composition of the transformation semantics of COM P; and COM P, with a
most simple intermediate function

Trafo(connect): Trafo(EX Py) — Trafo(IMPy)

defined above.

In order to prove this important compositionality result, we only need to
require that the extension property for transformations is closed under horizontal
and vertical composition. This essentially means that the horizontal and vertical
composition of extension diagrams, as given in Fig.] is again an extension
diagram. This is very similar — and in some instantiations equal — to the well-
known horizontal and vertical composition of pushouts in Category Theory.

3 Modeling Java Threads with Components in the
Framework of High-Level Nets

As a small case study we will model a few aspects of the behavior of threads in
the programming language Java with algebraic high-level Petri nets. For a larger
case study we refer to [I8]. An overview reference for Java threads is given in
).

We use a notation where an algebraic high-level net N consists of an algebraic
signature Xy = (S, OP, X) with sorts S, operation symbols OP and variables X,
a Yy-algebra Ay and a Petri net, where each place pl has a type type(pl) € S,
the in- and outgoing arcs of a transition ¢r are inscribed with multisets of terms
over X' and a transition tr itself is inscribed with a set of equations over Xy .
In our example, however, we only use single terms as arc inscriptions and do not
use equations for transitions.

We use a transformation concept similar to [I7] based on rules and double
pushouts in a suitable category of high-level nets. In our example we directly
present the corresponding high-level net transformations. The extension property

A Generic Component Framework for System Modeling 41

is satisfied because the redex of a rule applied to a net is preserved by the
inclusion into another net. The application of the rule to the larger net yields
the extended transformation.

Our small case study consists of two components COM P; and COM P, lead-
ing to a composition COM Ps as shown in Fig. Bl

3.1 Implementation of the Run-Method

In the first component COM Py, we define a rough model of the lifecycle of a
thread in the export, and refine it in the body by adding a run-transition that
represents the execution of the thread. This step corresponds to the extension
of the Thread-class by a class implementing a run-method.

The export signature Xgxp, consists of one sort Thread and two constant
symbols thread;: — Thread and threads: — Thread representing two different
threads of control. The net structure of the export interface is shown in Fig. El
The type of all places is Thread and all arcs are inscribed with the variable ¢ of
sort T'hread.

¢ runnable : stop ¢ @

Fig.4. EXP,

The export interface corresponds to the fact that the class Thread has a
start-method which makes a newly created thread runnable and a stop-method
which kills a runnable thread:
public class Thread {

public void start() { ... }
public void stop() { ... }

}

The export transformation exp;: EX Py = BOD; refines the signature by
adding a sort RunState representing the states that can occur during the execu-
tion of run, a sort Object representing the states an arbitrary object can be in,
operations st: Thread Object — RunState and con: — Object and an operation
do: Object — Object representing the run-time changes to the object. The net
structure is refined by removing the stop-transition and adding places started
and finished of type RunState and transitions run and exit. The details can be
found in Fig. Bl We have replaced the stop-transition by an exit-transition be-
cause now the thread can exit normally by completing its task. This is modeled
by the run-transition that transfers the RunState from started to finished.

The addition of the run-transition corresponds to the implementation of the
run-method and the Object in the constructor st of RunState to the existence
of an attribute object that is changed by the run-method:
class MyThread extends Thread {

42 Hartmut Ehrig et al.

t

st(t,con)

v] run o) finished

Fig.5. BOD,

Object anObject;
public void run() { ... }
}
In the import interface (Fig. B) only the run-transition and the adjacent
places are kept, because this transition is useful to be further refined.

t||t

@ st(t,o) run st(t,do(o))@

Fig.6. IMP, = EXP,

3.2 Further Refinement of the Method

In the second component COM P the run-transition is refined by a model with
two phases. The export interface EX P, is the same net as the import interface
IMP; of COM P;. The export transformation exps: EX P, = BODs adds two
new operations dol, do2: Object — Object to the signature. The run-transition is
removed and replaced by two new transitions actl and act2 with an intermediate
place working (see Fig. [[). We assume that the algebra Apop, satisfies the
equation do2(dol(0)) = do(o) because sequential firing of actl and act2 should
still produce the same result as before.

@ st(t,0) actl St(t,dol(ow st(t,0) act2 st(t,do2(0)) finished

Fig.7. BOD;

A Generic Component Framework for System Modeling 43

This replacement corresponds to a further extension of MyThread, where the
run-method is overwritten with a method that does the same by calling two
sequential actions:
class MyThread2 extends MyThread {

public void run() {

act1();

act2();
}
private void act1() { ... }
private void act2() { ... }

The import interface IM P, could consist of the whole body, if both transi-
tions should be refined further, but to make it more interesting, we assume that
actl is already an atomic action and only act2 shall be refined. This leads to an
import (Fig.[B) with only the transition act2 and the adjacent places.

@ st(t,o) act2 st(t,do2(0)) onZSh@d

Fig.8. IM P,

3.3 Composition of the Components

The composition of the two components COM P; and COM P, presented above
with identical connection from IMP; to EX P, yields a component COM P
with EXPs = EX Py, IMP3; = IMP; and a body BOD3 (Fig.[d) resulting from
application of the rule underlying exps to the net BO Dy, replacing the transition
run by actl and act2.

exit : @

st(t,o)

st(t,con)

st(t,0) actl st(t,dol(o))w st(t,0) act2 bt(t,do2(0))

Fig.9. BOD;

finished

started

44 Hartmut Ehrig et al.

4 Instantiations of the Generic Component Framework

We have pointed out, already, that our component framework is generic with
respect to several aspects. First of all, it is generic with respect to the technique
used for system modeling. Secondly, it is generic with respect to the semantics
of components and with respect to the composition operation, using a generic
notion of connector, where the semantics and the connectors are based on a
generic notion of transformation.

In this section, we discuss instantiations of the generic component framework
leading to existing and new component concepts for different kinds of Petri
nets and graph transformations, as well as some ideas for other visual modeling
techniques, like UML.

4.1 Instantiations of Transformations

Transformation and refinement concepts have been developed for a great variety
of data type and process modeling techniques in the literature. In the following,
we will focus on algebraic graph transformation concepts and transformation of
high-level structures [8J5]. The extension property for transformations formu-
lated in Sect. 2 is well-known, as an embedding theorem, in the case of algebraic
graph transformations based on the double pushout approach. This approach has
been generalized to the categorical framework of high-level structures, including
low- and high-level Petri nets. Several concepts and results for algebraic graph
transformations have been generalized to the categorical framework of high-level
structures and replacement systems, including a basic version of the embedding
theorem. The horizontal and vertical composition property, required in can
be shown under suitable assumptions for high-level replacement systems and
instantiated for Petri nets and other modeling techniques. Explicit examples of
transformations in the case of algebraic high-level nets are given in our small
case study in Sect. [

4.2 Component Concepts for Low- and High-Level Petri Nets

Various kinds of Petri nets are suitable for our framework. Rule-based transfor-
mations of Petri nets, in the sense of graph transformations and high-level re-
placement systems, can be used as instantiation of transformations in the generic
component concept of Sect. 2] In fact, two different kinds of Petri nets have been
considered for the formal instantiation: place/transition nets and algebraic high-
level nets. But, also, other kinds of low-level and high-level nets are suitable. A
specific example of components, in the case of algebraic high-level nets, has been
given in Sect. [, including composition of components. This component concept
for high-level Petri nets is closely related to the component concepts for low-level
Petri nets presented in [I8]. In fact, refinements of transitions, in the sense of
[18], are closely related to rule-based transformations of Petri nets, where the
left-hand side of the rule consists of a single transition only. This means that
the larger case study in [1§], in the application domain of telephone services, is
another example of our component concept.

A Generic Component Framework for System Modeling 45

4.3 Component Concepts for Graph Transformation Systems

Similar to the case of Petri nets discussed above, also different kinds of graph
transformation systems are suitable for our framework. M. Simeoni ([20]) has
considered a notion of refinement for graph transformation systems, which is
used as export connection between the graph transformation systems in the ex-
port and in the body part. It should be pointed out that a refinement of graph
transformation systems is conceptually different from a refinement or transfor-
mation of graphs. Actually, the structures to be refined or transformed in the
first case are graph transformation systems, i.e., a set of graph productions,
while the structures are graphs in the second case. In fact the refinements of
graph transformation systems, in the sense of [20], can be considered as trans-
formations in the sense of 23, because they are shown to satisfy the extension
property. More precisely, it is shown in [20] that the corresponding category of
refinements has pushouts, if at least one morphism is an inclusion. This property
is shown for typed algebraic graph transformation systems ([10]) and local action
systems in the sense of [I2]. In both cases this means that the extension dia-
gram is a special kind of pushout considered in [20]. This means that these two
module concepts for graph transformation systems with interesting examples in
[20] can be considered as different instantiations and examples of our generic
component concept. In [7] we discussed already an extension towards attributed
graph transformations ([I4]) which leads now to a new component concept for
this case. It has to be checked how far other module concepts for different kinds
of graph transformation systems fit into our framework.

4.4 Towards a Component Concept for Visual Modeling Techniques

As shown by R. Bardohl [2], a large number of visual modeling techniques can
be formulated in the framework of GENGED, based on attributed graph trans-
formations ([14]). It is shown how attributed graph transformations can be used
to define transformations of visual sentences for different visual modeling tech-
niques. This seems to be a good basis to define a component concept for visual
modeling techniques as instantiations of the general framework presented in this
paper. This applies especially to the different diagram formalisms of the UML
(I22]), where already suitable simplified versions of class diagrams and state-
charts have been considered in the framework of GENGED.

More directly, there are already suitable refinement and transformation con-
cepts for different kinds of UML techniques, which might be used as transforma-
tions in the sense of our generic component concept. However, it remains open
which of these transformation concepts satisfy our extension property in order to
obtain other interesting instantiations of our component concept. In particular,
in [4], a transformation concept for statecharts has been introduced, which can
be considered as an instantiation of transformations for high-level replacement
systems, as discussed in Bl This seems to be a good basis for a component
concept for statecharts.

46 Hartmut Ehrig et al.

5 Conclusion

We have presented a generic component framework for system modeling. This
framework is generic in the sense that it can be instantiated by different sys-
tem modeling techniques, especially by graph- and net-based integrated data
type and process techniques. Moreover, it is based on a generic transformation
concept, which is used to express intra- and interdependencies of interfaces and
bodies of components.

Our proposed framework meets to a large extent the requirements stated in
[15] for a component concept for continuous software engineering. Due to lack
of space, in this paper we just study a simple operation of (hierarchical) com-
position of components. However, we have already studied a union operation for
components and our experience on algebraic specification modules provides good
guidelines to define other more complex operations like, for instance, circular
composition. Moreover, it remains open to extend our framework to architec-
tural issues in the sense of [9123/T32411] discussed in the introduction and Sect.
3.

We have defined components not only as syntactical, but also as self contained
semantical units. This allows to obtain the important result that our semantics
based on transformations is compositional.

In our paper [7] we have given a conceptual and formal framework for the
integration of data type and process modeling techniques. In a forthcoming paper
we will show how this framework can be combined with our component approach
in this paper leading to a component framework for a generic integrated modeling
technique with special focus on different kinds of constraints.

Finally let us point out again that our generic framework is suitable not
only for formal graph- and net-based modeling techniques mainly discussed in
this paper, but also for other formal and semi-formal techniques. However, it
remains open to tailor our framework to specific requirements for visual modeling
techniques including UML and to relate it to existing capsulation, package and
component concepts for some of these techniques ([3]).

Acknowledgments

This work is partially supported by the German DFG project IOSIP within
the DFG priority program “Integration of Software Specification Techniques for
Applications in Engineering”, the German BMBF project on “Continuous Soft-
ware Engineering” and by the Spanish project HEMOSS (TIC 98-0949-C02-01).
We would like to thank the FASE 2002 referees for several valuable comments
leading to a much more comprehensive paper.

A Generic Component Framework for System Modeling 47

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

R. Allen, D. Garlan. A Formal Basis for Architectural Connection. In ACM
TOSEM’97, pp. 213-249.

R. Bardohl. GENGED - Visual Definition of Visual Languages Based on Algebraic
Graph Transformation. PhD Thesis, TU Berlin, Verlag Dr. Kovac, Germany (1999).
J. Cheesman, J. Daniels. UML Components. Addison-Wesley (2001).

H. Ehrig, R. Geisler, M. Klar, J. Padberg. Horizontal and Vertical Structuring for
Statecharts. In Proc. CONCUR’97, Springer LNCS 1301 (1997), pp. 327-343.

H. Ehrig, A. Habel, H.-J. Kreowski, F. Parisi-Presicce. Prallelism and Concur-
rency in High-Level Replacement Systems. In Math. Struct. in Comp. Science 1.
Cambridge Univ. Press (1991), pp. 361-404.

H. Ehrig, B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifica-
tions and Constraints, vol. 21 of EATCS Monographs on Theor. Comp. Science.
Springer Verlag, Berlin (1990).

H. Ehrig and F. Orejas. A Conceptual and Formal Framework for the Integration
of Data Type and Process Modeling Techniques. In Proc. GT-VMT 2001, ICALP
2001 Satellite Workshop. Heraclion, Greece (2001), pp. 201-228. Also in Electronic
Notes in Theor. Comp. Science 50,3 (2001).

H. Ehrig, M. Pfender, H. Schneider. Graph Grammars: An Algebraic Approach.
In Proc. SWAT’73, pp.167 - 180.

J.L. Fiadero, A. Lopes. Semantics of Architectural Connectors. In Proc. TAP-
SOFT’97, Springer LNCS 1214 (1997), pp. 505-519.

R. Heckel, A. Corradini, H. Ehrig, M. Léwe. Horizontal and Vertical Structuring
of Typed Graph Transformation Systems. In MSCS, vol. 6 (1996), pp. 613-648.
Cay S. Horstmann, Gary Cornell. Core Java 2. Volume II — Advanced Features.
Sun Microsystems Press, Prentice Hall PTR, (2000).

D. Janssens, N. Verlinden. A Framework for ESM and NLC: Local Action Systems.
In Springer LNCS 1764 (2000), pp. 194-214.

M. Léwe. Evolution Patterns. In Proc. Conf. on Systemics, Cybernetics and Infor-
matics 1999, vol. II, pp. 110-117.

M. Lowe, M. Korff, A. Wagner. An Algebraic Framework for the Transformation of
Attributed Graphs. In Term Graph Rewriting: Theory and Practice (1993), chapter
14, pp. 185-199.

S. Mann, B. Borusan, H. Ehrig, M. Grofle-Rhode, R. Mackenthun, A. Sinbiil,
H. Weber. Towards a Component Concept for Continuous Software Engineering.
FhG-ISST Report 55/00 (2000).

F. Orejas, H. Ehrig, E. Pino. Tight and Loose Semantics for Transformation Sys-
tems. To appear in Proc. Workshop on Algebraic Development Techniques 2001,
Springer LNCS. Genova, Italy (2001).

J. Padberg, H. Ehrig, L. Ribeiro. Algebraic High-Level Net Transformation Sys-
tems. In Math. Struct. in Comp. Science 5. Cambridge Univ. Press (1995), pp.
217-256.

J. Padberg, K. Hoffmann, M. Buder, A. Siinbiil. Petri Net Modules for Component-
Based Software Engineering. Technical Report, TU Berlin, 2001.

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, Singapore (1997).

M. Simeoni. A Categorical Approach to Modularization of Graph Transformation
Systems using Refinements. PhD thesis, Dip. di Scienze dell’Informazione, Univer-
sita di Roma La Sapienza (2000). Condensed version to appear in JCSS.

48

21

22.

23.

24.

Hartmut Ehrig et al.

. C. Szyperski. Component Software — Beyond Object-Oriented Programming. Addi-
son-Wesley (1997).

Unified Modeling Language — version 1.3 (2000). Available at
http://www.omg.org/uml.

M. Wermelinger, A. Lopes, J.L. Fiadero. A Graph Based Architectural Reconfig-
uration Language. In Proc. ESEC/FSE 2001. ACM Press (2001).

A.M. Zaremski, J.M. Wing. Specification Matching of Software Components. In
ACM TOSEM’97, pp. 333-369.

http://www.omg.org/uml

	A Generic Component Framework for System Modeling
	Introduction
	Main Concepts and Results of this Paper
	Related Work

	Main Concepts for a Generic Component Framework
	Generic Modeling Techniques
	A Generic Component Concept
	A Generic Transformation Concept
	Transformation Semantics of Components
	Composition of Components
	Compositionality of Transformation Semantics

	Modeling Java Threads with Components in the Framework of High-Level Nets
	Implementation of the Run-Method
	Further Refinement of the Method
	Composition of the Components

	Instantiations of the Generic Component Framework
	Instantiations of Transformations
	Component Concepts for Low- and High-Level Petri Nets
	Component Concepts for Graph Transformation Systems
	Towards a Component Concept for Visual Modeling Techniques

	Conclusion

