
Detecting Tables in HTML Documents

Yalin Wang1 and Jianying Hu2

1 Dept. of Electrical Engineering, Univ. of Washington,
Seattle, WA 98195, US

ylwang@u.washington.edu
2 Avaya Labs Research, 233 Mount Airy road,

Basking Ridge, NJ 07920, US
jianhu@avaya.com

Abstract. Table is a commonly used presentation scheme for describing
relational information. Table understanding on the web has many po-
tential applications including web mining, knowledge management, and
web content summarization and delivery to narrow-bandwidth devices.
Although in HTML documents tables are generally marked as <table>
elements, a <table> element does not necessarily indicate the presence
of a genuine relational table. Thus the important first step in table un-
derstanding in the web domain is the detection of the genuine tables.
In our earlier work we designed a basic rule-based algorithm to detect
genuine tables in major news and corporate home pages as part of a web
content filtering system. In this paper we investigate a machine learning
based approach that is trainable and thus can be automatically gener-
alized to including any domain. Various features reflecting the layout
as well as content characteristics of tables are explored. The system is
tested on a large database which consists of 1, 393 HTML files collected
from hundreds of different web sites from various domains and contains
over 10, 000 leaf <table> elements. Experiments were conducted using
the cross validation method. The machine learning based approach out-
performed the rule-based system and achieved an F-measure of 95.88%.

1 Introduction

The increasing ubiquity of the Internet has brought about a constantly increasing
amount of online publications. As a compact and efficient way to present rela-
tional information, tables are used frequently in web documents. Since tables
are inherently concise as well as information rich, the automatic understanding
of tables has many applications including knowledge management, information
retrieval, web mining, summarization, and content delivery to mobile devices.
The processes of table understanding in web documents include table detection,
functional and structural analysis and finally table interpretation [3].

In this paper, we concentrate on the problem of table detection. The web
provides users with great possibilities to use their own style of communication
and expressions. In particular, people use the <table> tag not only for relational
information display but also to create any type of multiple-column layout to

D. Lopresti, J. Hu, and R. Kashi (Eds.): DAS 2002, LNCS 2423, pp. 249–260, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

250 Y. Wang and J. Hu

facilitate easy viewing, thus the presence of the <table> tag does not necessarily
indicate the presence of a true relational table. In this paper, we define genuine
tables to be document entities where a two dimensional grid is semantically
significant in conveying the logical relations among the cells [2]. Conversely,
Non-genuine tables are document entities where <table> tags are used as a
mechanism for grouping contents into clusters for easy viewing only. Examples of
a genuine table and a non-genuine table can be found in Figure 1. While genuine
tables in web documents could also be created without the use of <table> tags
at all, we do not consider such cases in this article as they seem very rare from
our experience. Thus, in this study, Table detection refers to the technique which
classifies a document entity enclosed by the <table></table> tags as a genuine
or non-genuine table.

Several researchers have reported their work on web table detection . Chen
et al. used heuristic rules and cell similarities to identify tables and tested their
algorithm on 918 tables form airline information web pages [1]. Yoshida et al.
proposed a method to integrate WWW tables according to the category of ob-
jects presented in each table [4]. Their algorithm was evaluated on 175 tables.

In our earlier work, we proposed a rule-based algorithm for identifying gen-
uinely tabular information as part of a web content filtering system for content
delivery to mobile devices [2]. The algorithm was designed for major news and
corporate web site home pages. It was tested on 75 web site front-pages and
achieved an F-measure of 88.05%. While it worked reasonably well for the sys-
tem it was designed for, it has the disadvantage that it is domain dependent and
difficult to extend because of its reliance on hand-crafted rules.

To summarize, previous methods for web table detection all relied on heuristic
rules and were only tested on a database that is either very small [2,4], or highly
domain specific [1].

In this paper, we propose a new machine learning based approach for table
detection from generic web documents. While many learning algorithms have
been developed and tested for document analysis and information retrieval appli-
cations, there seems to be strong indication that good document representation
including feature selection is more important than choosing a particular learning
algorithm [12]. Thus in this work our emphasis is on identifying features that best
capture the characteristics of a genuine table compared to a non-genuine one. In
particular, we introduce a set of novel features which reflect the layout as well as
content characteristics of tables. These features are then used in a tree classifier
trained on thousands of examples. To facilitate the training and evaluation of the
table classifier, we constructed a large web table ground truth database consist-
ing of 1, 393 HTML files containing 11, 477 leaf <table> elements. Experiments
on this database using the cross validation method demonstrate a significant
performance improvement over the previously developed rule-based system.

The rest of the paper is organized as follows. We describe our feature set
in Section 2, followed by a brief description of the decision tree classifier in
Section 3. Section 4 explains the data collection process. Experimental results are
then reported in Section 5 and we conclude with future directions in Section 6.

Detecting Tables in HTML Documents 251

2 Features for Web Table Detection

Past research has clearly indicated that layout and content are two important
aspects in table understanding [3]. Our features were designed to capture both of
these aspects. In particular, we developed 16 features which can be categorized
into three groups: seven layout features, eight content type features and one
word group feature. In the first two groups, we attempt to capture the global
composition of tables as well as the consistency within the whole table and across
rows and columns. With the last feature, we investigate the discriminative power
of words enclosed in tables using well developed text categorization techniques.

Before feature extraction, each HTML document is first parsed into a docu-
ment hierarchy tree using Java Swing XML parser with W3C HTML 3.2 DTD [2].
A <table> node is said to be a leaf table if and only if there are no <table>
nodes among its children [2]. Our experience indicates that almost all genuine
tables are leaf tables. Thus in this study only leaf tables are considered candi-
dates for genuine tables and are passed on to the feature extraction stage. In the
following we describe each feature in detail.

2.1 Layout Features

In HTML documents, although tags like <TR> and <TD> (or <TH>) may be as-
sumed to delimit table rows and table cells, they are not always reliable indica-
tors of the number of rows and columns in a table. Variations can be caused by
spanning cells created using <ROWSPAN> and <COLSPAN> tags. Other tags such as

 could be used to move content into the next row. To extract layout features
reliably, we maintain a matrix to record all the cell spanning information and
serve as a pseudo rendering of the table. Layout features based on row or column
numbers are then computed from this matrix.

Given a table T , we compute the following four layout features:

– (1) and (2): Average number of columns, computed as the average number
of cells per row, and the standard deviation.

– (3) and (4): Average number of rows, computed as the average number of
cells per column, and the standard deviation.

Since the majority of tables in web documents contain characters, we compute
three more layout features based on cell length in terms of number of characters:

– (5) and (6): Average overall cell length and the standard deviation.
– (7): Average Cumulative length consistency, CLC.

The last feature is designed to measure the cell length consistency along either
row or column directions. It is inspired by the fact that most genuine tables
demonstrate certain consistency either along the row or the column direction,
but usually not both, while non-genuine tables often show no consistency in
either direction. First, the average cumulative within-row length consistency,

252 Y. Wang and J. Hu

CLCr, is computed as follows. Let the set of cell lengths of the cells from row i
be Ri, i = 1, . . . , r (considering only non-spanning cells), and the the mean cell
length for row Ri be mi:

1. Compute cumulative length consistency within each Ri: CLCi =∑
cl∈Ri

LCcl. Here LCcl is defined as: LCcl = 0.5 − D, where D =
min{ |cl−mi|

mi
, 1.0}. Intuitively, LCcl measures the degree of consistency be-

tween cl and the mean cell length, with −0.5 indicating extreme inconsis-
tency and 0.5 indicating extreme consistency. When most cells within Ri are
consistent, the cumulative measure CLCi is positive, indicating a more or
less consistent row.

2. Take the average across all rows: CLCr = 1
r

∑r
i=1 CLCi.

After the within-row length consistency CLCr is computed, the within-
column length consistency CLCc is computed in a similar manner. Fi-
nally, the overall cumulative length consistency is computed as CLC =
max(CLCr, CLCc).

2.2 Content Type Features

Web documents are inherently multi-media and have more types of content than
any traditional document. For example, the content within a <table> element
could include hyperlinks, images, forms, alphabetical or numerical strings, etc.
Because of the relational information it needs to convey, a genuine table is more
likely to contain alpha or numerical strings than, say, images. The content type
feature was designed to reflect such characteristics.

We define the set of content types T ={Image, Form, Hyperlink, Alphabeti-
cal, Digit, Empty, Others}. Our content type features include:

– (1) - (7): The histogram of content type for a given table. This contributes
7 features to the feature set;

– (8): Average content type consistency, CTC.

The last feature is similar to the cell length consistency feature. First, within-row
content type consistency CTCr is computed as follows. Let the set of cell type
of the cells from row i as Ti, i = 1, . . . , r (again, considering only non-spanning
cells), and the dominant type for Ti be DTi:

1. Compute the cumulative type consistency with each row Ri, i = 1, . . . , r:
CTCi =

∑
ct∈Ri

D, whereD = 1 if ct is equal toDTi andD = −1, otherwise.
2. Take the average across all rows: CTCr = 1

r

∑r
i=1 CTCi.

The within-column type consistency is then computed in a similar man-
ner. Finally, the overall cumulative type consistency is computed as: CTC =
max(CTCr, CTCc).

Detecting Tables in HTML Documents 253

2.3 Word Group Feature

If we look at the enclosed text in a table and treat it as a “mini-document”, table
classification could be viewed as a text categorization problem with two broad
categories: genuine tables and non-genuine tables. In order to explore the the
potential discriminative power of table text at the word level, we experimented
with several text categorization techniques.

Text categorization is a well studied problem in the IR community and many
algorithms have been developed over the years (e.g., [6,7]). For our application,
we are particularly interested in algorithms with the following characteristics.
First, it has to be able to handle documents with dramatically differing lengths
(some tables are very short while others can be more than a page long). Second,
it has to work well on collections with a very skewed distribution (there are many
more non-genuine tables than genuine ones). Finally, since we are looking for a
feature that can be incorporated along with other features, it should ideally pro-
duce a continuous confidence score rather than a binary decision. In particular,
we experimented with three different approaches: vector space, naive Bayes and
weighted kNN. The details regarding each approach are given below.

Vector Space Approach. After morphing [9] and removing the infrequent
words, we obtain the set of words found in the training data, W. We then con-
struct weight vectors representing genuine and non-genuine tables and compare
that against the frequency vector from each new incoming table.

Let Z represent the non-negative integer set. The following functions are
defined on set W.

– dfG : W → Z, where dfG(wi) is the number of genuine tables which include
word wi, i = 1, ..., |W|;

– tfG : W → Z, where tfG(wi) is the number of times word wi, i = 1, ..., |W|,
appears in genuine tables;

– dfN : W → Z, where dfN (wi) is the number of non-genuine tables which
include word wi, i = 1, ..., |W|;

– tfN : W → Z, where tfN (wi) is the number of times word wi, i = 1, ..., |W|,
appears in non-genuine tables.

– tfT : W → Z, where tfT (wi) is the number of times word wi, wi ∈ W
appears in a new test table.

To simplify the notations, in the following discussion, we will use dfG
i , tfG

i ,
dfN

i and tfN
i to represent dfG(wi), tfG(wi), dfN (wi) and tfN (wi), respectively.

Let NG, NN be the number of genuine tables and non-genuine tables in
the training collection, respectively and let C = max(NG, NN). Without loss
of generality, we assume NG �= 0 and NN �= 0. For each word wi in W, i =
1, ..., |W|, two weights, pG

i and pN
i are computed:

pG
i =

{
tfG

i log(dfG
i

NG
NN

dfN
i

+ 1), when dfN
i �= 0

tfG
i log(dfG

i

NGC + 1), when dfN
i = 0

(1)

254 Y. Wang and J. Hu

pN
i =

{
tfN

i log(dfN
i

NN
NG

dfG
i

+ 1), when dfG
i �= 0

tfN
i log(dfN

i

NN C + 1), when dfG
i = 0

(2)

As can be seen from the formulas, the definitions of these weights were derived
from the traditional tf ∗ idf measures used in informational retrieval [6], with
some adjustments made for the particular problem at hand.

Given a new incoming table, let us denote the set including all the words in
it as Wn. Since we only need to consider the words that are present in both W
and Wn, we first compute the effective word set: We = W ∩ Wn. Let the words
in We be represented as wmk

, where mk, k = 1, ..., |We|, are indexes to the words
from set W = {w1, w2, ..., w|W|}. we define the following weight vectors:

– Vector representing the genuine table class:
→
GS=

(
pG

m1
U ,

pG
m2
U , · · · , pG

m|We|
U

)
,

where U is the cosine normalization term: U =
√∑|We|

k=1 p
G
mk

× pG
mk

.

– Vector representing the non-genuine table class:
→
NS=(

pN
m1
V ,

pN
m2
V , · · · , pN

m|We|
V

)
, where V is the cosine normalization term:

V =
√∑|We|

k=1 p
N
mk

× pN
mk

.

– Vector representing the new incoming table:
→
IT =

(
tfT

m1
, tfT

m2
, · · · , tfT

m|We|

)
.

Finally, the word group feature is defined as the ratio of the two dot products:

Wvs =




→
IT ·

→
GS→

IT ·
→
NS

, when
→
IT ·

→
NS �= 0

1, when
→
IT ·

→
GS= 0 and

→
IT ·

→
NS= 0

10, when
→
IT ·

→
GS �= 0 and

→
IT ·

→
NS= 0

(3)

Naive Bayes Approach. In the Bayesian learning framework, it is assumed
that text data has been generated by a parametric model, and a set of training
data is used to calculate Bayes optimal estimates of the model parameters. Then,
using these estimates, Bayes rule is used to turn the generative model around
and compute the probability of each class given an input document.

Word clustering is commonly used in a Bayes approach to achieve more reli-
able parameter estimation. For this purpose we implemented the distributional
clustering method introduced by Baker and McCallum [8]. First stop words and
words that only occur in less than 0.1% of the documents are removed. The
resulting vocabulary has roughly 8000 words. Then distribution clustering is ap-
plied to group similar words together. Here the similarity between two words
wt and ws is measured as the similarity between the class variable distributions
they induce: P (C|wt) and P (C|ws), and computed as the average KL divergence
between the two distributions. (see [8] for more details).

Assume the whole vocabulary has been clustered into M clusters. Let ws

represent a word cluster, and C = {g, n} represent the set of class labels (g

Detecting Tables in HTML Documents 255

for for genuine, n for non-genuine), the class conditional probabilities are (using
Laplacian prior for smoothing):

P (ws|C = g) =
tfG(ws) + 1

M +
∑M

i=1 tf
G(wi)

; (4)

P (ws|C = n) =
tfN (ws) + 1

M +
∑M

i=1 tf
N (wi)

. (5)

The prior probabilities for the two classes are: P (C = g) = NG

NG+NN and

P (C = n) = NN

NG+NN .
Given a new table di, let di,k represent the kth word cluster. Based on the

Bayes assumption, the posterior probabilities are computed as:

P (C = g|di) =
P (C = g)P (di|C = g)

P (di)
(6)

∼ P (C = g)
∏|di|

k=1 P (wi,k|C = g)
P (di)

; (7)

P (C = n|di) =
P (C = n)P (di|C = n)

P (di)
(8)

∼ P (C = n)
∏|di|

k=1 P (wi,k|C = n)
P (di)

. (9)

Finally, the word group feature is defined as the ratio between the two:

Wnb =
P (C = g)
P (C = n)

∏|di|
k=1 P (wi,k|C = g)∏|di|
k=1 P (wi,k|C = n)

=
NG

NN

|di|∏
k=1

P (wi,k|C = g)
P (wi,k|C = n)

. (10)

Weighted kNN Approach. kNN stands for k-nearest neighbor classification,
a well known statistical approach. It has been applied extensively to text cat-
egorization and is one of the top-performing methods [7]. Its principle is quite
simple: given a test document, the system finds the k nearest neighbors among
the training documents, and uses the category labels of these neighbors to com-
pute the likelihood score of each candidate category. The similarity score of each
neighbor document to the test documents is used as the weight for the category
it belongs to. The category receiving the highest score is then assigned to the
test document.

In our application the above procedure is modified slightly to generate the
word group feature. First, for efficiency purpose, the same preprocessing and
word clustering operations as described in the previous section is applied, which
results in M word clusters. Then each table is represented by an M dimensional
vector composed of the term frequencies of the M word clusters. The similarity
score between two tables is defined to be the cosine value ([0, 1]) between the
two corresponding vectors. For a new incoming table di, let the k training tables

256 Y. Wang and J. Hu

that are most similar to di be represented by di,j , j = 1, ..., k. Furthermore, let
sim(di, di,j) represent the similarity score between di and di,j , and C(di,j) equals
1.0 if di,j is genuine and −1.0 otherwise, the word group feature is defined as:

Wknn =

∑k
j=1 C(di,j)sim(di, di,j)∑k

j=1 sim(di, di,j)
. (11)

3 Classification Scheme

Various classification schemes have been widely used in web document processing
and proved to be promising for web information retrieval [11]. For the table
detection task, we decided to use a decision tree classifier because of the highly
non-homogeneous nature of our features. Another advantage of using a tree
classifier is that no assumptions of feature independence are required.

An implementation of the decision tree allowing continuous feature values
described by Haralick and Shapiro [5] was used for our experiments. The decision
tree is constructed using a training set of feature vectors with true class labels.
At each node, a discriminant threshold is chosen such that it minimizes an
impurity value. The learned discriminant function splits the training subset into
two subsets and generates two child nodes. The process is repeated at each
newly generated child node until a stopping condition is satisfied, and the node
is declared as a terminal node based on a majority vote. The maximum impurity
reduction, the maximum depth of the tree, and minimum number of samples are
used as stopping conditions.

4 Data Collection and Ground Truthing

Instead of working within a specific domain, our goal of data collection was to
get tables of as many different varieties as possible from the web. At the same
time, we also needed to insure that enough samples of genuine tables were col-
lected for training purpose. Because of the latter practical constraint we biased
the data collection process somewhat towards web pages that are more likely
to contain genuine tables. A set of key words often associated with tables were
composed and used to retrieve and download web pages using the Google search
engine. Three directories on Google were searched: the business directory and
news directory using key words: {table, stock, bonds, figure, schedule,
weather, score, service, results, value}, and the science directory using
key words {table, results, value}. A total of 2, 851 web pages were down-
loaded in this manner and we ground truthed 1, 393 HTML pages out of these
(chosen randomly among all the HTML pages). The resulting database contains
14, 609 <table> elements, out of which 11, 477 are leaf <table> elements. Among
the leaf <table> elements, 1, 740 (15%) are genuine tables and the remaining
9, 737 are non-genuine tables.

Detecting Tables in HTML Documents 257

5 Experiments

A hold-out method is used to evaluate our table classifier. We randomly divided
the data set into nine parts. The decision tree was trained on eight parts and
then tested on the remaining one part. This procedure was repeated nine times,
each time with a different choice for the test part. Then the combined nine part
results are averaged to arrive at the overall performance measures [5].

The output of the classifier is compared with the ground truth and the stan-
dard performance measures precision (P), recall (R) and F-measure (F) are com-
puted. Let Ngg, Ngn, Nng represent the number of samples in the categories “gen-
uine classified as genuine”, “genuine classified as non-genuine”, and “non-genuine
classified as genuine”, respectively, the performance measures are defined as:

R =
Ngg

Ngg +Ngn
P =

Ngg

Ngg +Nng
F =

R+ P

2
.

For comparison among different features we report the performance measures
when the best F-measure is achieved. The results of the table detection algorithm
using various features and feature combinations are given in Table 1. For both
the naive Bayes based and the kNN based word group features, 120 word clusters
were used (M = 120).

Table 1. Experimental results using various feature groups

L T LT LTW-VS LTW-NB LTW-KNN
R (%) 87.24 90.80 94.20 94.25 95.46 89.60
P (%) 88.15 95.70 97.27 97.50 94.64 95.94
F (%) 87.70 93.25 95.73 95.88 95.05 92.77
L: Layout features only.
T: Content type features only.
LT: Layout and content type features.
LTW-VS: Layout, content type and vector space based word group features.
LTW-NB: Layout, content type and naive Bayes based word group features.
LTW-KNN: Layout, content type and kNN based word group features.

As seen from the table, content type features performed better than layout
features as a single group, achieving an F-measure of 93.25%. However, when the
two groups were combined the F-measure was improved substantially to 95.73%,
reconfirming the importance of combining layout and content features in table
detection.

Among the different approaches for the word group feature, the vector space
based approach gave the best performance when combined with layout and con-
tent features. However even in this case the addition of the word group feature
brought about only a very small improvement. This indicates that the text en-
closed in tables is not very discriminative, at least not at the word level. One
possible reason is that the categories “genuine” and “non-genuine” are too broad
for traditional text categorization techniques to be highly effective.

258 Y. Wang and J. Hu

Overall, the best results were produced with the combination of layout, con-
tent type and vector space based word group features, achieving an F-measure
of 95.88%. Figure 1 shows two examples of correctly classified tables, where
Figure 1(a) is a genuine table and Figure 1(b) is a non-genuine table.

(a) (b)

Fig. 1. Examples of correctly classified tables: (a) a genuine table; (b) a non-genuine
table

Figure 2 shows a few examples where our algorithm failed. Figure 2(a) was
misclassified as a non-genuine table, likely because its cell lengths are highly
inconsistent and it has many hyperlinks which is unusual for genuine tables.
Figure 2(b) was misclassified as non-genuine because its HTML source code
contains only two <tr> tags. Instead of the <tr> tag, the author used <p> tags
to place the multiple table rows in separate lines. This points to the need for a
more carefully designed pseudo-rendering process.

Figure 2(c) shows a non-genuine table misclassified as genuine. A close exam-
ination reveals that it indeed has good consistency along the row direction. In
fact, one could even argue that this is indeed a genuine table, with implicit row
headers of Title, Name, Company Affiliation and Phone Number. This example
demonstrates one of the most difficult challenges in table understanding, namely
the ambiguous nature of many table instances (see [10] for a more detailed anal-
ysis on that).

Figure 2(d) was also misclassified as a genuine table. This is a case where
layout features and the kind of shallow content features we used are not enough –
deeper semantic analysis would be needed in order to identify the lack of logical
coherence which makes it a non-genuine table.

For comparison, we tested the previously developed rule-based system [2] on
the same database. The initial results (shown in Table 2 under “Original Rule
Based”) were very poor. After carefully studying the results from the initial
experiment we realized that most of the errors were caused by a rule imposing a
hard limit on cell lengths in genuine tables. After deleting that rule the rule-based

Detecting Tables in HTML Documents 259

(a) (b)

(c) (d)

Fig. 2. Examples of misclassified tables: (a), (b) genuine tables misclassified as non-
genuine; (c), (d) non-genuine tables misclassified as genuine

system achieved much improved results (shown in Table 2 under “Modified Rule
Based”). However, the proposed machine learning based method still performs
considerably better in comparison. This demonstrates that systems based on
hand-crafted rules tend to be brittle and do not generalize well. In this case,
even after careful manual adjustment in a new database, it still does not work
as well as an automatically trained classifier.

Table 2. Experimental results of the rule based system

Original Rule Based Modified Rule Based
R (%) 48.16 95.80
P (%) 75.70 79.46
F (%) 61.93 87.63

A direct comparison to other previous results [1,4] is not possible currently
because of the lack of access to their system. However, our test database is clearly
more general and far larger than the ones used in [1] and [4], while our precision
and recall rates are both higher.

6 Conclusion and Future Work

We present a machine learning based table detection algorithm for HTML docu-
ments. Layout features, content type features and word group features were used

260 Y. Wang and J. Hu

to construct a feature set and a tree classifier was built using these features. For
the most complex word group feature, we investigated three alternatives: vec-
tor space based, naive Bayes based, and weighted K nearest neighbor based.
We also constructed a large web table ground truth database for training and
testing. Experiments on this large database yielded very promising results and
reconfirmed the importance of combining layout and content features for table
detection.

Our future work includes handling more different HTML styles in pseudo-
rendering and developing a machine learning based table interpretation algo-
rithm. We would also like to investigate ways to incorporate deeper language
analysis for both table detection and interpretation.

Acknowledgment. We would like to thank Kathie Shipley for her help in
collecting the web pages, and Amit Bagga for discussions on vector space models.

References

1. H.-H. Chen, S.-C. Tsai, and J.-H. Tsai: Mining Tables from Large Scale HTML
Texts. In: The 18th Int. Conference on Computational Linguistics, Saarbrücken,
Germany, July 2000.

2. G. Penn, J. Hu, H. Luo, and R. McDonald: Flexible Web Document Analysis
for Delivery to Narrow-Bandwidth Devices. In: ICDAR2001, Seattle, WA, USA,
September 2001.

3. M. Hurst: Layout and Language: Challenges for Table Understanding on the Web.
In: First International Workshop on Web Document Analysis, Seattle, WA, USA,
September 2001, http://www.csc.liv.ac.uk/ wda2001.

4. M. Yoshida, K. Torisawa, and J. Tsujii: A Method to Integrate Tables of the World
Wide Web. In: First International Workshop on Web Document Analysis, Seattle,
WA, USA, September 2001, http://www.csc.liv.ac.uk/ wda2001/.

5. R. Haralick and L. Shapiro: Computer and Robot Vision. Addison Wesley, 1992.
6. T. Joachims: A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for

Text Categorization. In: The 14th International Conference on Machine Learning,
Nashville, Tennessee, 1997.

7. Y. Yang and X. Liu: A Re-Examination of Text Categorization Methods, In: SI-
GIR’99, Berkeley, California, 1999.

8. D. Baker and A.K. McCallum: Distributional Clustering of Words for Text Clas-
sification, In: SIGIR’98, Melbourne, Australia, 1998.

9. M. F. Porter: An Algorithm for Suffix Stripping. In: Program, Vol. 14, no.3, 1980.
10. J. Hu, R. Kashi, D. Lopresti, G. Nagy, and G. Wilfong: Why Table Ground-

Truthing is Hard. In: ICDAR2001, Seattle, WA, September 2001.
11. A. McCallum, K. Nigam, J. Rennie, and K. Seymore: Automating the Construction

of Internet Portals with Machine Learning. In: Information Retrieval Journal, vol.
3, 2000.

12. D. Mladenic: Text-learning and related intelligent agents. In: IEEE Expert, July-
August 1999.

	Detecting Tables in HTML Documents
	Introduction
	Features for Web Table Detection
	Layout Features
	Content Type Features
	Word Group Feature

	Classification Scheme
	Data Collection and Ground Truthing
	Experiments
	Conclusion and Future Work

