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Abstract. We present a new methodology based on the stochastic or-
dering, algorithmic derivation of simpler Markov chains and numerical
analysis of these chains. The performance indices defined by reward func-
tions are stochastically bounded by reward functions computed on much
simpler or smaller Markov chains. This leads to an important reduction
on numerical complexity. Stochastic bounds are a promising method to
analyze QoS requirements. Indeed it is sufficient to prove that a bound
of the real performance satisfies the guarantee.

1 Introduction

Since Plateau’s seminal work on composition and compact tensor representation
of Markov chains using Stochastic Automata Networks (SAN), we know how to
model Markov systems with interacting components and large state space [29,30,
31]. The main idea of the SAN approach is to decompose the system of interest
into its components and to model each component separately. Once this is done,
interactions and dependencies among components can be added to complete the
model. The stochastic matrix of the chain is obtained after summations and
Kronecker (or tensor) products of local components. The benefit of the SAN ap-
proach is twofold. First, each component can be modeled much easier compared
to the global system. Second, the space required to store the description of com-
ponents is in general much smaller than the explicit list of transitions, even in
a sparse representation. However, using this representation instead of the usual
sparse matrix form increases the time required for numerical analysis of the
chains [6,15,37,33]. Note that we are interested in performance indices R defined
as reward functions on the steady-state distribution (i.e. R =

∑
i r(i)π(i)) and

we do not try to compute transient measures. Thus the numerical computation
of the analysis is mainly the computation of the steady-state distribution and
then the summation of the elementary rewards r(i) to obtain R. The first step
is in general the most difficult because of the memory space and time require-
ments (see Steward’s book [34] for an overview of usual numerical techniques for
Markov chains). The decomposition and tensor representation has been general-
ized to other modeling formalisms as well : Stochastic Petri nets [13], Stochastic
Process Algebra [20]. So we now have several well-founded methods to model
complex systems using Markov chains with large state space.

Despite considerable works [7,12,15,37], the numerical analysis of Markov
chains, is still a very difficult problem when the state space is too large or the
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eigenvalues badly distributed. Fortunately enough, while modeling high speed
networks, it is often sufficient to satisfy the requirements for the Quality of Ser-
vice (QoS) we expect. Exact values of the performance indices are not necessary
in this case and bounding some reward functions is often sufficient.

So, we advocate the use of stochastic bounds to prove that the QoS re-
quirements are satisfied. Our approach differs from sample path techniques and
coupling theorem applied to models transformation (see [27] for an example on
Fair Queueing delays comparison based on sample-paths), as we only consider
Markov chains and algorithmic operations on stochastic matrices. Assume that
we have to model a problem using a very large Markov chain. We need to compute
its steady-state distribution in order to obtain reward functions (for instance,
the cell loss rates for a finite capacity buffer). The key idea of the methodol-
ogy is to design a new chain such that the reward functions will be upper or
lower bounds of the exact reward functions. This new chain is an aggregated or
simplified model of the former one. These bounds and the simplification criteria
are based on some stochastic orderings applied to Markov processes (see Stoyan
[35] and other references therein). As we drastically reduced the state space or
the complexity of the analysis, we may now use numerical methods to efficiently
compute a bound of the rewards.

Several methods have been proposed to bound rewards : resolution of a linear
algebra problem and polyhedra properties by Courtois and Semal [8,9], Markov
Decision Process by Van Dijk [38] and various stochastic bounds (see [35,22,32]
and references therein). Here we present recent results based on stochastic orders
and structure-based algorithms combined with usual numerical techniques. Thus
the algorithms we present can be easily implemented inside software tools based
on Markov chains. Unlike former approaches which are either analytical or not
really constructive, this new approach is only based on simple algorithms. These
algorithms can always be applied, even if the quality of the bounds may be
sometimes not enough accurate.

We survey the results in two steps : first how to obtain a bounding matrix and
a bound of the distributions and in a second step how to simplify the numerical
computations. We present several algorithms based on stochastic bounds and
structural properties of the chains and some examples to show the effectiveness
of the approach. In section 2, we define the “st” and “icx” stochastic orderings
and we give the fundamental theorem on the stochastic matrices. We also present
Vincent’s algorithm [1] which is the starting point of all the algorithms for the
“st” ordering presented here. Then we present, in section 3, several algorithms
for “st” bounds based on structures: upper-Hessenberg, lumpability, stochastic
complement [26], Class C Matrices. Section 4 is devoted to the analysis of a real
problem: the loss rates of a finite buffer with batch arrivals and modulation,
Head of Line service discipline and Pushout buffer management. Such systems
have been proposed for ATM networks [18]. The example here is only slightly
simplified to focus on the algorithmic aspects. The reduction algorithms we have
used on this example has divided the state-space by ten for several analysis.
Finally, in section 5, we present some algorithms for “icx” ordering.
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2 Strong Stochastic Bounds

For the sake of simplicity, we restrict ourselves to Discrete Time Markov Chains
(DTMC) with finite state space E = {1, . . . , n} but continuous-time models can
be considered after uniformization. Here we restrict ourselves to “st” stochastic
ordering. The definitions and results for “icx” ordering are presented in section
5. In the following, n will denote the size of matrix P and Pi,∗ will refer to row
i of P .

First, we give a brief overview on stochastic ordering for Markov chains and
we obtain a set of inequalities to imply bounds. Then we present a basic al-
gorithm proposed by Vincent and Abuamsha [1] and we explain some of its
properties.

2.1 A Brief Overview

Following [35], we define the strong stochastic ordering by the set of non-
decreasing functions or by matrix Kst.

Kst =




1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1




Definition 1 Let X and Y be random variables taking values on a totally or-
dered space. Then X is said to be less than Y in the strong stochastic sense, that
is, X <st Y if and only if E[f(X)] ≤ E[f(Y )] for all non decreasing functions
f whenever the expectations exist.

If X and Y take values on the finite state space {1, 2, . . . , n} with p and
q as probability distribution vectors, then X is said to be less than Y in the
strong stochastic sense, that is, X <st Y if and only if

∑n
j=k pj ≤

∑n
j=k qj for

k = 1, 2, . . . , n, or briefly: pKst <st qKst.

Important performance indices such as average population, loss rates or tail
probabilities are non decreasing functions. Therefore, bounds on the distribution
imply bounds on these performance indices as well. It is important to know that
st-bounds are valid pour the transient distributions as well. We do not use this
property as we are mainly interested in performance measures on the the steady-
state. To the best of our knowledge, such a work has still to be done to link
st-bounds and numerical analysis for the computation of transient distributions.

It is known for a long time that monotonicity [21] and comparability of
the one step transition probability matrices of time-homogeneous MCs yield
sufficient conditions for their stochastic comparison. This is the fundamental
result we use in our algorithms. First let us define the st-comparability of the
matrix and the st-monotonicity.
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Definition 2 Let P and Q be two stochastic matrices. P <st Q if and only if
PKst ≤ QKst. This can be also characterized as Pi,∗ <st Qi,∗ for all i.

Definition 3 Let P be a stochastic matrix, P is st-monotone if and only if for
all u and v, if u <st v then uP <st vP .

Hopefully, st-monotone matrices are completely characterized (this is not the
case for other orderings, see [4]).

Definition 4 Let P be a stochastic matrix. P is <st-monotone if and only if
K−1st PKst ≥ 0 component-wise.

Thus we get:

Property 1 Let P be a stochastic matrix, P is st-monotone if and only if for
all i, j > i, we have Pi,∗ <st Pj,∗

Theorem 1 Let X(t) and Y (t) be two DTMC and P and Q be their respective
stochastic matrices. Then X(t) <st Y (t), t > 0, if

• X(0) <st Y (0),
• st-monotonicity of at least one of the matrices holds,
• st-comparability of the matrices holds, that is, Pi,∗ <st Qi,∗ ∀i.

Thus, assuming that P is not monotone, we obtain a set of inequalities on
elements of Q :

{∑n
k=j Pi,k ≤

∑n
k=j Qi,k ∀ i, j∑n

k=j Qi,k ≤
∑n

k=j Qi+1,k ∀ i, j
(1)

2.2 Algorithms

It is possible to derive a set of equalities, instead of inequalities. These equalities
provides, once they have been ordered (in increasing order for i and in decreasing
order for j in system 2), a constructive way to design a stochastic matrix which
yields a stochastic bound.

{∑n
k=j Q1,k =

∑n
k=j P1,k∑n

k=j Qi+1,k = max(
∑n

k=j Qi,k,
∑n

k=j Pi+1,k) ∀ i, j
(2)

The following algorithm [1] constructs an st-monotone upper bounding
DTMC Q for a given DTMC P . For the sake of simplicity, we use a full matrix
representation for P and Q. Stochastic matrices associated to real performance
evaluation problems are usually sparse. And the sparse matrix version of all the
algorithms we present here is straightforward. Note that due to the ordering of
the indices, the summations

∑n
j=l qi−1,j and

∑n
j=l+1 qi,j are already computed
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when we need them. And they can be stored to avoid computations. How-
ever, we let them appear as summations to show the relations with inequalities 1.

Algorithm 1 Construction of the optimal st-monotone upper bounding
DTMC Q:
q1,n = p1,n;
for i = 2, 3, . . . , n do qi,n = max(qi−1,n, pi,n); od
for l = n− 1, n− 2, . . . , 1, do q1,l = p1,l;

for i = 2, 3, . . . , n, do qi,l = max(
∑n

j=l qi−1,j ,
∑n

j=l pi,l)−
∑n

j=l+1 qi,j ; od
od

Definition 5 We denote by v(P ) the matrix obtained after application of Algo-
rithm 1 to a stochastic matrix P .

First let us illustrate Algorithm 1 on a small matrix. We consider a 5 × 5
matrix for P1 and we compute matrix Q, and both steady-state distributions.

P1 =




0.5 0.2 0.1 0.2 0.0
0.1 0.7 0.1 0.0 0.1
0.2 0.1 0.5 0.2 0.0
0.1 0.0 0.1 0.7 0.1
0.0 0.2 0.2 0.1 0.5


 Q = v(P1) =




0.5 0.2 0.1 0.2 0.0
0.1 0.6 0.1 0.1 0.1
0.1 0.2 0.5 0.1 0.1
0.1 0.0 0.1 0.7 0.1
0.0 0.1 0.1 0.3 0.5




Their steady-state distributions are respectively πP1 =
(0.180, 0.252, 0.184, 0.278, 0.106) and πQ = (0.143, 0.190, 0.167, 0.357, 0.143).
Their expectations are respectively 1.87 and 2.16 (we assume that the first state
has index 0 to compute the reward f(i) = i associated to the expectation).
Remember that the strong stochastic ordering implies that the expectation of f
on distribution πP1 is smaller than the expectation of f on distribution πQ for
all non decreasing functions f .

It may happen that matrix v(P ) computed by Algorithm 1 is not irreducible,
even if P is irreducible. Indeed due to the subtraction operation in inner loops,
some elements of v(P ) may be zero even if the elements with the same indices
in P are positive. We have derived a new algorithm which try to keep almost all
transitions of P in matrix v(P ) and we have proved a necessary and sufficient
condition on P to obtain an irreducible matrix (the proof of the theorem is
omitted for the sake of readability):

Theorem 2 Let P be an irreducible finite stochastic matrix. Matrix Q computed
from P by Algorithm 2 is irreducible if and only if every row of the lower triangle
of matrix P contains at least one positive element.

Even if matrix v(P ) is reducible, it has one essential class of states and the
last state belongs to that class. So it is still possible to compute the steady-
state distribution for this class. We do not prove the theorem but we present an
example of a matrix P2 such that v(P2) is reducible (i.e. states 0, 1 and 2 are
transient in matrix v(P2)).



An Algorithmic Approach to Stochastic Bounds 69

P2 =




0.5 0.2 0.1 0.2 0.0
0.1 0.7 0.1 0.0 0.1
0.2 0.1 0.5 0.2 0.0
0.0 0.0 0.0 0.7 0.3
0.0 0.2 0.2 0.1 0.5


 Q = v(P2) =




0.5 0.2 0.1 0.2 0.0
0.1 0.6 0.1 0.1 0.1
0.1 0.2 0.5 0.1 0.1
0.0 0.0 0.0 0.7 0.3
0.0 0.0 0.0 0.5 0.5




In the following, ε is an arbitrary positive value. And we assume that a
summation with a lower index larger than the upper index is 0.

Algorithm 2 Construction of an st-monotone upper bounding DTMC with-
out transition deletion:
q1,n = p1,n;
for i = 2, 3, . . . , n do qi,n = max(qi−1,n, pi,n); od
for l = n− 1, n− 2, . . . , 1, do q1,l = p1,l;

for i = 2, 3, . . . , n, do
qi,l = max(

∑n
j=l qi−1,j ,

∑n
j=l pi,l)−

∑n
j=l+1 qi,j);

if (qi,l = 0) and (pi,l > 0) and (
∑n

j=l+1 qi,j < 1) then
qi,l = ε× (1−∑n

j=l+1 qi,j)
od

od

2.3 Properties

Algorithm 1 has several interesting properties which can be proved using a max-
plus formulation [10] which appears clearly in equation 2.

Theorem 3 Algorithm 1 provides the smallest st-monotone upper bound for a
matrix P : i.e. if we consider U another st-monotone upper bounding DTMC for
P then Q <st U [1].

However bounds on the probability distributions may still be improved. The
former theorem only states that Algorithm 1 provides the smallest matrix. We
have developed new techniques to improve the accuracy of the bounds on the
steady-state π which are based on some transformations on P [10].

We have studied a linear transformation for stochastic matrices α(P, δ) =
(1−δ)I+δP , for δ ∈ (0, 1). This transformation has no effect on the steady-state
distribution but it has a large influence on the effect of Algorithm 1. We have
proved in [10] that if the given stochastic matrix is not row diagonally dominant,
then the steady-state probability distribution of the optimal st-monotone upper
bounding matrix corresponding to the row diagonally dominant transformed
matrix is better in the strong stochastic sense than the one corresponding to
the original matrix. And we have established that the transformation P/2 +
I/2 provides the best bound for the family of linear transformation we have
considered. More precisely:

Theorem 4 Let P be a DTMC of order n, and two different values δ1, δ2 ∈ (0, 1)
such that δ1 < δ2, Then πv(α(P,δ1)) <st πv(α(P,δ2)) <st πv(P ).
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One may ask if there is an optimal value of δ. When the matrix is row diagonal
dominant (RDD), its diagonal serves as a barrier for the perturbation moving
from the upper-triangular part to the strictly lower-triangular part in forming
v(P ).

Definition 6 A stochastic matrix is said to be row diagonally dominant (RDD)
if all of its diagonal elements are greater than or equal to 0.5.

Corollary 1 Let P be a DTMC of order n that is RDD. Then v(P ) and v(α(P ))
have the same steady-state probability distribution.

Corollary 1 implies that one cannot improve the steady-state probability
bounds by choosing a smaller δ value to transform an already RDD DTMC.
And δ = 1/2 is sufficient to transform an arbitrary stochastic matrix into a
RDD one. This first approach was then generalized to transformations based on
a set of polynomials which gives better (i.e. more accurate) bounds [5]. Let us
first introduce these transformations and their basic properties.

Definition 7 Let D be the set of polynomials Φ() such that Φ(1) = 1, Φ different
of Identity, and all the coefficients of Φ are non negative.

Proposition 1 Let Φ() be an arbitrary polynomial in D, then Φ(P ) has the
same steady-state distribution than P

Theorem 5 Let Φ be an arbitrary polynomial in D, Algorithm 1 applied on Φ(P )
provides a more accurate bound than the steady-state distribution of Q i.e.:

πP <st πv(Φ(P )) <st πv(P )

For a stochastic interpretation of this result and a proof based on linear
algebra see [5]. Corollary 1 basically states that the optimal transformation if
we restrict ourselves to degree 1 polynomials is φ(X) = X/2+1/2. Such a result
is still unknown for arbitrary degree polynomials, even if it is clear that the
larger the degree of Φ, the more accurate the bound v(Φ(P )). This is illustrated
in the example below. Let us consider stochastic matrix P3 and we study the
polynomials φ(X) = X/2 + 1/2 and ψ(X) = X2/2 + 1/2.

P3 =




0.1 0.2 0.4 0.3
0.2 0.3 0.2 0.3
0.1 0.5 0.4 0
0.2 0.1 0.3 0.4




First, let us compute φ(P3) and ψ(P3).

φ(P3) =




0.55 0.1 0.2 0.15
0.1 0.65 0.1 0.15
0.05 0.25 0.7 0
0.1 0.05 0.15 0.7


 ψ(P3) =




0.575 0.155 0.165 0.105
0.08 0.63 0.155 0.135
0.075 0.185 0.65 0.09
0.075 0.13 0.17 0.625



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Then, we apply operators v to obtain the bounds on matrices :

v(φ(P3)) =




0.55 0.1 0.2 0.15
0.1 0.55 0.2 0.15
0.05 0.25 0.55 0.15
0.05 0.1 0.15 0.7


 v(ψ(P3)) =




0.575 0.155 0.165 0.105
0.08 0.63 0.155 0.135
0.075 0.185 0.605 0.135
0.075 0.13 0.17 0.625




And,

v(P3) =




0.1 0.2 0.4 0.3
0.1 0.2 0.4 0.3
0.1 0.2 0.4 0.3
0.1 0.2 0.3 0.4




Finally, we compute the steady-state distributions for all matrices:


πv(P3) = (0.1, 0.2, 0, 3667, 0.3333)
πv(φ(P3)) = (0.1259, 0.2587, 0, 2821, 0.3333)
πv(ψ(P3)) = (0.1530, 0.2997, 0, 2916, 0.2557)
πP3 = (0.1530, 0.3025, 0, 3167, 0.2278)

Clearly, bounds obtained by polynomial ψ are more accurate than the other
bounds.

2.4 Time and Space Complexity

It must be clear at this point that Algorithm 1 builds a matrix Q which is, in
general, as difficult as P to analyze. This first algorithm is only presented here to
show that inequalities 1 have algorithmic implications. Concerning complexity
of Algorithm 1 on sparse matrix, we do not have positive results. Indeed, it may
be possible that matrix Q has many more positive elements than matrix P and
it may be even completely filled. For instance:

P4 =




0.5 0.2 0.1 0.1 0.1
1.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0


 Q = v(P4) =




0.5 0.2 0.1 0.1 0.1
0.5 0.2 0.1 0.1 0.1
0.5 0.2 0.1 0.1 0.1
0.5 0.2 0.1 0.1 0.1
0.5 0.2 0.1 0.1 0.1




More generally, it is easy to build a matrix P with 3n positive elements resulting
in a completely filled matrix v(P ). Of course the algorithms we survey in the
next section provide matrices with structural or numerical properties. Most of
them do not suffer the same complexity problem.

3 Structure Based Bounding Algorithms for “st”
Comparison

We can also use the two sets of constraints of system 1 and add some structural
properties to simplify the resolution of the bounding matrix. For instance, Al-
gorithm 3 provides an upper bounding matrix which is upper-Hessenberg (i.e.
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the low triangle except the main sub-diagonal is zero). Therefore the resolution
by direct elimination is quite simple. In the following we illustrate this princi-
ple with several structures associated to simple resolution methods and present
algorithms to build structure based st-monotone bounding stochastic matrices.
Most of these algorithms do not assume any particular property or structure for
the initial stochastic matrix.

3.1 Upper-Hessenberg Structure

Definition 8 A matrix H is said to be upper-Hessenberg if and only if Hi,j = 0
for i > j + 1.

The paradigm for upper-Hessenberg case is the M/G/1 queue. The resolution
by recursion for these matrices requires o(m) operations [34].

Property 2 Let P be an irreducible finite stochastic matrix such that every
row of the lower triangle of P contains at least one positive element. Let Q be
computed from P by Algorithm 3. Then Q is irreducible, st-monotone, upper-
Hessenberg and an upper bound for P .

The proof is omitted. The algorithm is slightly different of Algorithm 2.
The last two instructions create the upper-Hessenberg structure. Note that the
generalization to block upper-Hessenberg matrices is straightforward.

Algorithm 3 An upper-Hessenberg st-monotone upper bound Q:
q1,n = p1,n;
for i = 1, 2, . . . , n do q1,i = p1,i; qi+1,n = max(qi,n, pi+1,n); od
for i = 2, 3, . . . , n do

for l = n− 1, n− 2, . . . , i do
qi,l = max(

∑n
j=l qi−1,j ,

∑n
j=l pi,l)−

∑n
j=l+1 qi,j ;

if (qi,l = 0) and (pi,l > 0) and (
∑n

j=l+1 qi,j < 1) then
qi,l = ε× (1−∑n

j=l+1 qi,j)
od
qi,i−1 = 1−∑n

j=i qi,j
for l = i− 2, i− 3, . . . , 1 do qi,l = 0 od

od

The application of this algorithm on matrix P1 already defined leads to:

Q =




0.5 0.2 0.1 0.2 0.0
0.1 0.6 0.1 0.1 0.1
0.0 0.3 0.5 0.1 0.1
0.0 0.0 0.2 0.7 0.1
0.0 0.0 0.0 0.5 0.5



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3.2 Lumpability

Ordinary lumpability is another efficient technique to combine with stochastic
bounds [36]. Unlike the former algorithms, lumpability implies a state space
reduction. The algorithms are based on Algorithm 1 and on the decomposition
of the chain into macro-states. Again we assume that the states are ordered
according to the macro-state partition. Let r be the number of macro-states.
Let b(k) and e(k) be the indices of the first state and the last state, respectively,
of macro-state Ak. First, let us recall the definition of ordinary lumpability.

Definition 9 (ordinary lumpability) Let Q be the matrix of an irreducible
finite DTMC, let Ak be a partition of the states of the chain. The chain is
ordinary lumpable according to partition Ak, if and only if for all states e and f
in the same arbitrary macro state Ai, we have:

∑
j∈Ak

qe,j =
∑
j∈Ak

qf,j ∀ macro− state Ak

Ordinary lumpability constraints are consistent with the st-monotonicity and
they provide a simple characterization for matrix Q.

Theorem 6 Let Q be an st-monotone matrix which is an upper bound for P .
Assume that Q is ordinary lumpable for partition Ak and let Qm,l and Pm,l be
the blocks of transitions from set Am to set Al for Q and P respectively, then
for all m and l, block Qm,l is st-monotone.

Indeed, since Q is st-monotone we have:

n∑
j=a

Q(i, j) ≤
n∑

j=a

Q(i + 1, j) (3)

But as Q is ordinary lumpable, if i and i + 1 are in the same macro-state we
have: ∑

j∈Ar
Q(i, j) =

∑
j∈Ar

Q(i + 1, j) ∀r

So we can subtract in both terms of relation 3 partial sums on the macro state
which are all equal due to ordinary lumpability. Therefore, assume that a, i and
i + 1 are in the same macro state Ak, we get

∑
j≥a,j∈Ak

Q(i, j) ≤
∑

j≥a,j∈Ak
Q(i + 1, j)

The algorithm computes the matrix column by column. Each block needs two
steps. The first step is based on Algorithm 1 while second step modifies the
first column of the block to satisfy the ordinary lumpability constraint. More
precisely, the first step uses the same relations as Algorithm 1 but it has to
take into account that the first row of P and Q may now be different due to
the second step. The lumpability constraint is only known at the end of the
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first step. Recall that ordinary lumpability is due to a constant row sum for
the block. Thus after the first step, we know how to modify the first column of
the block to obtain a constant row sum. Furthermore due to st-monotonicity,
we know that the maximal row sum is reached for the last row of the block. In
step 2, we modify the first column of the block taking into account the last row
sum. Once a block has been computed, it is now possible to compute the block
on the left.

Algorithm 4 Construction of an ordinary lumpable st-monotone upper
bounding DTMC Q:
q1,n = p1,n;
for x = r, r − 1, . . . , 1 do

for l = e(x)..b(x) do q1,l =
∑n

j=l p1,l −
∑n

j=l+1 q1,j ;
for i = 2, 3, . . . , n do

qi,l = max(
∑n

j=l qi−1,j ,
∑n

j=l pi,l)−
∑n

j=l+1 qi,j ;
od
for y = 1, 2, . . . , r do

c =
∑e(y)

j=b(y) qe(y),j ;

for i = b(y), . . . , e(y)− 1 do qi,b(y) = c−∑e(y)
j=b(y)+1 qi,j ; od

od
od

od

Let us illustrate the two steps on a simple example using matrix P1 formerly
defined. Assume that we divide the state-space into two macro-states: (1, 2) and
(3, 4, 5). We show the first block after the first step (the matrix on the left) and
after the second step.




0.1 0.2 0.0
0.1 0.1 0.1
0.5 0.1 0.1







0.5 0.2 0.0
0.5 0.1 0.1
0.5 0.1 0.1




This algorithm is used in the next section for the analysis of a mechanism for
high speed networks. Most of the algorithms presented here may be applied but
the best results, for this particular problem, were found with this last approach.

3.3 Class C Stochastic Matrices

Some stochastic matrices also have a closed form steady-state solution, for in-
stance, the class C matrices defined in [4].

Definition 10 A stochastic matrix Q = (qi,j)1≤i,j≤n belongs to class C, if for
each column j there exists a real constant cj satisfying the following conditions:
qi+1,j = qi,j + cj , 1 ≤ i ≤ n − 1. Since Q is a stochastic matrix, the sum of
elements in each row must be equal to 1, thus

∑n
j=1 cj = 0.
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For instance, the matrix


0.45 0.15 0.4

0.35 0.20 0.45
0.25 0.25 0.5


 is in class C. It is also st-

monotone. These matrices have several interesting properties and we also con-
sider this class for “icx” ordering in section 5. First the steady-state distribution
of Q can be computed in linear time:

πj = q1,j + cj

∑n
j=1 j q1,j − 1

1−∑n
j=1 j cj

(4)

The st-monotonicity characterization is also quite simple in this class:

Proposition 2 Let P be a stochastic matrix belonging to class C. P is st-
monotone if and only if

∑n
k=j ck ≥ 0, ∀j ∈ {1, . . . , n}.

The algorithm to obtain a monotone upper bound Q of class C for an
arbitrary matrix P has been presented in [4]. First remark that since the
upper bounding matrix Q belongs to class C, we must determine its first row
q1,j , 1 ≤ j ≤ n, and the columns coefficients cj , 1 ≤ j ≤ n rather than
all the elements of Q. Within former algorithms the elements of Q are linked
by inequalities but now we add the linear relations which define the C class.
For instance we have qn,n = q1,n + n × cn. Therefore we must choose carefully
q1,n and cn to insure that 0 ≤ qn,n ≤ 1. Note that x+ denotes as usual max(x, 0).

Algorithm 5 Construction of a st-monotone upper bounding DTMC Q
which belongs to class C:
q1,n = max1≤i≤n−1

[
(n−1)pi,n−(i−1)

n−i
]

cn =
[
max2≤i≤n

(
pi,n−q1,n

i−1
)]+

for j = n− 1, n− 2, . . . , 2 do

αj = max2≤i≤n

[∑n

k=j
pi,k−

∑n

k=j
q1,k

i−1

]

gi = n−1
n−i

[∑n
k=j pi,k −

∑n
k=j+1 qi,k

]
+ i−1

n−i
[∑n

k=j+1 qn,k − 1
]

q1,j = [max1≤i≤n−1 gi]
+

cj = max(−q1,j
n−1 , α+

j −
∑n

k=j+1 ck)
od
q1,1 = 1−∑n

j=2 q1,j

Again consider an example: let P5 be a matrix which does not belong to
class C, and Q its upper bounding matrix computed through algorithm 5.

P5 =


0.5 0.1 0.4

0.7 0.1 0.2
0.3 0.2 0.5


 Q =


0.5 0.1 0.4

0.4 0.15 0.45
0.3 0.2 0.5



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Since c3 = 0.05, c2 = 0.05 c1 = −0.1, Q belongs to class C. The steady-state
distributions are :

πP5 = (0.4456, 0.1413, 0.4130) πQ = (0.3941, 0.1529, 0.4529) and πP5 <st πQ

3.4 Partition and Stochastic Complement

The stochastic complement was initially proposed by Meyer in [26] to uncouple
Markov chains and to provide a simple approximation for steady-state. Here we
propose a completely different idea based on an easy resolution of the stochastic

complement. Let us consider a block decomposition of Q:
(
A B
C D

)
, where A, B,

C, and D are matrices of size n0∗n0, n0∗n1, n1∗n0 and n1∗n1 (with n0+n1 = n).
We know that I −D is not singular if P is not reducible [26]. We decompose π
into two components π0 and π1 to obtain the stochastic complement formulation
for the steady-state equation:




π0 R = 0
π0 r = 1
π1 = π0 H

(5)

where H = B(I −D)−1, R = I −A−HC and r = e0 + He1.
Following Quessette [17], we chose to partition the states such that matrix D

is upper triangular with positive diagonal elements. It should be clear that this
partition is not mandatory for the theory of stochastic complement. However it
simplifies the computation of H. Such a partition is always possible, even if for
some cases it implies that n1 is very small [17].

It is quite simple to derive from Algorithm 1 an algorithm which builds a
matrix of this form once the partition has been fixed. The algorithm has two
steps. The first step is Algorithm 1. Then we remove the transitions in the
lower triangle of D and sum up their probabilities in the corresponding diagonal
elements of D.

3.5 Single Input Macro State Markov Chain

Feinberg and Chiu [14] have studied chains divided into macro-states where
the transition entering a macro-state must go through exactly one node. This
node is denoted as the input node of the macro-state. They have developed an
algorithm to efficiently compute the steady-state distribution by decomposition.
It consists of the resolution of the macro-state in isolation and the analysis of
the chain reduced to input nodes. Unlike ordinary lumpability, the assumptions
of the theorem are based on the graph of the transitions and do not take into
account the real transition rates.

It is very easy to modify Algorithm 1 to create a Single Input Macro State
Markov chain. We assume that for every macro state, the input state is the last
state of the macro state. Thus the matrix Q looks like this:
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


. . . . . . . . . . . .
A . . . 0 . . . . . . 0 . . .

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . 0 . . . B . . . 0 . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . 0 . . . . . . 0 . . . C
. . . . . . . . . . . .




The algorithm is based on the following decomposition into three types of
block : diagonal blocks, upper triangle and lower triangle. The elements of diag-
onal blocks are computed using the same equalities as in Algorithm 1:


Q1,j =

∑n
k=j P1,k −

∑n
k=j+1 Q1,k

Qi+1,j = max(
∑n

k=j Qi,k,
∑n

k=j Pi+1,k)−∑n
k=j+1 Qi+1,k

(6)

The elements of blocks in upper and lower triangles have the “single input”
structure : several columns of zero followed by a last column which is positive.
Furthermore, lower and upper triangles differ because the elements of lower
triangle of Q must follows inequalities which take into account the diagonal
blocks of Q. Let us denote by f(i) the lower index of the set which contains state
i. Then for all i, j in the upper triangle, we just have to sum up the elements of
P (take care of the lower index f(j) on the summation of the elements of P ):




Q1,n =
∑n

k=f(n) P1,k

Q1,j =
∑n

k=f(j) P1,k −
∑n

k=j+1 Q1,k

Qi+1,j = max(
∑n

k=j Qi,k,
∑n

k=f(j) Pi+1,k)−∑n
k=j+1 Qi+1,k

(7)

And for all i, j in the lower triangle (here the lower index f(j) is also also
used in the summation of the elements in the former row of Q):{

Qi+1,j = max(
∑n

k=f(j) Qi,k,
∑n

k=f(j) Pi+1,k)−∑n
k=j+1 Qi+1,k (8)

The derivation of the algorithm is straightforward. Again let us apply this
algorithm on matrix P1 with partition into two sets of size 2 and 3 to obtain
matrix Q (we also give the values of f for all the indices):

f = (1, 1, 3, 3, 3) Q =




0.5 0.2 0.0 0.0 0.3
0.1 0.6 0.0 0.0 0.3
0.0 0.3 0.4 0.0 0.3
0.0 0.1 0.1 0.5 0.3
0.0 0.2 0.0 0.3 0.5




This structure have been used by several authors even if their proofs of compar-
ison are usually based on sample-path theorem [19,24,25].



78 J.M. Fourneau and N. Pekergin

3.6 Quasi Birth and Death Process

Finally, we have to briefly mention QBD matrices. They have a well-known
algorithmic solution [23] but clearly it is not always possible to build an upper
bounding st-monotone matrix which is block-tridiagonal. However, it is possible
to derive some generalization of Algorithm 1 to get a QBD is the initial matrix
has upper bounded transitions to the right (i.e., there exist a small integer k
such that for all indices, if j − i > k then P (i, j) = 0). The example presented
in [24] is partially based on such a structure.

4 A Real Example with Large State Space

As an example, we present the analysis of a buffer policy which combines the
PushOut mechanism for the space management and a Head Of Line service
discipline. We assume that there exist two types of packets with distinct loss
rate requirements. In the sequel, we denote as high priority, the packets which
have the highest requirements, i.e., the smallest loss ratio. A low priority packet
which arrives in a full buffer is lost. If the buffer is not full, both types of packets
are accepted. The PushOut mechanism specifies that when the buffer is full,
an arriving high priority packet pushes out of the buffer a low priority one if
there is any in the buffer. Otherwise the high priority packet is lost. For the
sake of simplicity, we assume that packet size is constant. This is consistent with
ATM cells but it is clearly a modeling simplification for other networks. Such a
mechanism has been proposed for ATM networks [18]. We further assume that
the low priority packets are scheduled before high priority packets (recall that
the priority level is based on the access). We assume that the departure due to
service completion always takes place just before the arrivals.

cell is lost

      

        Batch Bernouilli
arrivals of high
and low priority cells

the low priority

a high priority cell
"pushes-out" a low priority cell

Deterministic 
service time

L L H H H L LH H

Fig. 1. Push-Out mechanism description

As the buffer size is B, the number of states is (B + 1)(B + 2)/2 if the
arrivals follow a simple batch process. For the sake of simplicity we assume that
the batch size is between 0 and 2. We use the following representation for the
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state space (T,H) where T is the total number of packets and H is the number
of high priority packets. The states are ordered according to a lexicographic
non decreasing ordering. It must be clear at this point that the ordering of
the state is a very important issue. First, the rewards have to be non decreasing
functions of the state indices. Furthermore, as the st-monotone property is based
on the state representation and ordering, the accuracy of the results may depend
on this ordering. Here, we are interested in the the expected number of lost
packet per slot. Let us denote by Ri

M this expectation for type i packets and let
R = RH + RL. The difficult problem here is the computation of RH . Indeed R
can be computed with a smaller chain since the Pushout mechanism does not
change the global number of losses. It is sufficient to analyze the global number
of packets (i.e without distinction). Such a chain has only B + 1 states if we use
a simple batch arrival process. For realistic values of buffer size (i.e. 1000), such
a chain is very simple to solve with usual numerical algorithms. However for
the same value of B, the chain of the HOL+Pushout mechanisms has roughly
5 105 states. So, we use Algorithm 4 to get a lumpable bounding matrix. And
we analyze the macro-state chain. First let us describe the ordering of the states
and the rewards. Let pHk be the probability of k arrivals of high priority packets
during one slot.

RH =
∑
(T,H)

Π(T,H) pH2 max(0, (H + 2−B − 1T=H))

Where 1T=H is an indicator function which states if one high priority packet
can leave the buffer at the end of the slot after service completion (T = H that
there is no low priority packet). Thus max(0, (H +2−B−1T=H)) is the number
of packets exceeding the buffer size. For this particular case, due to scheduling
of arrivals and service, RH can be computed in a more simpler expression :

RH = pH2 ×Π(B,B)

Clearly, we have to estimate only one probability and the reward is a non
decreasing function which is zero everywhere except for the last state where its
value is one. For more general arrival process, the reward function is only slightly
different.

The key idea to shorten the state space is to avoid the states with large value
of low priority packets. So, we bound the matrix with an ordinary lumpable
matrix Q with o(B ×F ) macro-states where the parameter F allows a trade-off
between the computational complexity and the accuracy of the results. More
precisely, we define macro-states (T, Y ) where Y is constrained to evolve in the
range T..T −F . If Y = T −F , then the state (T, Y ) is a real macro-state which
contains all the states (T,X) such that X ≤ T − F . In this case Y is a upper
bound of the number of high priority packets in the states which are aggregated.
If Y > T −F then the state contains only one state (T,X) where Y = X. So, Y
represents exactly the number of high priority packets in the buffer (see figure
2). Clearly, if the value of F is large, we do not reduce the state space but we
expect that the bound would be tight.
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high priority
cells can be lost

macro-states
unchanged
states

states where

M

(B-M+2, B-M+1)

H=T-F

F

B H

 B

T

(B-M+2, B-M+2)

Fig. 2. The aggregated chain

In [16] we have analyzed small buffers to check the accuracy of the bound
and large buffers to show the efficiency of the method. Here, we only present
a typical comparison of these bounds for a small buffer of size 80 (these small
value allows the computation of the exact result for comparison purpose). The
load is 0.9 with 2/3 high level packets. With a sufficiently large value for F
(typically 10), the algorithm gives accurate results. The exact result for RH is
in this example 8.9 10−13. The bound with F = 10 is 9.510−13. Of course if
F is too small, the result is worse and can reach 10−6 for F = 2. The exact
chain has 3321 states while the bound with F = 10 is computed with a chain
of size 798. The number of states is divided by 4 and we only lost few digits. It
is worthy to remark that a reduction by an order on the states space implies a
reduction by two or three orders on the computation times for the steady state
distribution. And the reduction is much more important if the original chain is
bigger. Typically, for a buffer size of 1000 and an aggregation factor F equal to
20, the bounding matrix obtained from Algorithm 5 has roughly 20000 states.
The original state space is 25 times larger.

The results shows previously are very accurate. We have found several reasons
for that property. First the distribution is skewed. Almost all the probability
mass is concentrated on the states with a small number of packets. Moreover
the first part of the initial matrix is already st-monotone. This property is due
to the ordering of the states we have considered. Again, we have to emphasis
that the states ordering is a crucial issue for st-bounds [11].

For instance, consider the matrix of the chain for a small buffer of size 4.
The chain has 15 states ordered in a lexicographic way: {(0), (1, 0), (1, 1), (2, 0),
(2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (3, 3), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)}. Let us de-
note by p, q and r respectively the arrival probabilities of arrival for a batch of
size 0, 1 or 2. And let a be the probability that an arriving packets is a low pri-
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ority one. Similarly b is the probability for a high level packet. The distribution
of packets types in a size 2 batch are respectively c for 2 low level packets, e for
two high level, and d for a mixed batch. Independence assumption on the type
of packets entering the queue lead to an important reduction of the number of
parameter (for instance c = a2). However, it is not necessary to illustrate the
effect of Algorithm 5.

P =




p qa qb rc rd re
p qa qb rc rd re
p qa qb rc rd re

p qa qb rc rd re
p qa qb rc rd re
p qa qb rc rd re

p qa qb rc rd re
p qa qb rc rd re

p qa qb rc rd re
p qa qb rc rd re

p qa + rc qb + rd re
p qa + rc qb + rd re

p qa + rc qb + rd re
p qa + rc qb + rd + re
p qa + rc bq + rd + re




A careful inspection of matrix P shows that the 10 first rows of the matrix
already satisfy the st-monotone property. For a bigger buffer model, this prop-
erty is still true for the states where the buffer is not full. We assume that F = 2,
the only one non trivial values for such a small example). Thus, we consider two
real macro-states : {(3, 2), (3, 3)} and {(4, 2), (4, 3), (4, 4)}. Note that the initial
matrix is already lumpable since the scheduling of service and arrivals imply that
some states have similar transitions. For instance states (0), (1, 0) and (1, 1) can
be gathered into one macro-state). We use this property in the resolution algo-
rithm but we do not develop here to focus on the bounding algorithm. Algorithm
5 provides a lumpable matrix with the macro-states already defined which can
be aggregated to obtain (f = min(qb, rc) and g = max(qb, rc)):



p qa qb rc rd re
p qa qb rc rd re
p qa qb rc rd re

p qa qb rc rd re
p qa qb rc rd + re
p qa qb rc rd + re

p qa qb rc rd re
p qa qb rc rd + re

p qa + qb r
p qa + f g − rc r

p qa + f g + rd + re
p q + r



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5 Algorithms for “icx” Comparison

Stoyan’s proof in Theorem 4.2.5 of ([35], p.65]) that the monotonicity and the
comparability of transition matrices yield sufficient conditions for chain com-
parison is not restricted to “st” ordering. Similarly, the definitions of the mono-
tonicity and the comparison of stochastic matrices are much more general than
the statements presented in section 2. First let us turn back to the definitions
for “icx” ordering which is supposed to be more accurate than the st-ordering.

Definition 11 Let X and Y be two random variables taking values on a totally
ordered space. X is said to be less than Y (X <icx y= if and only if E[f(X)] ≤
E[f(Y )], for all non decreasing convex functions f , whenever the expectations
exist.

For discrete state space, it is also possible to use a matrix formulation through
matrix Kicx. Let p and q be respectively the probability distribution vectors of
X and Y . X <icx Y if and only if pKicx ≤ qKicx, where Kicx is defined as
following :

Kicx =




1 0 0 . . . 0
2 1 0 . . . 0
3 2 1 . . . 0
...

...
...

. . .
...

n n− 1 n− 2 . . . 1




This can be rewritten as follows :

X <icx Y ⇐⇒
n∑

k=i

(k − i + 1) pk ≤
n∑

k=i

(k − i + 1) qk, ∀i ∈ {1, . . . , n}

Similarly, we can define the increasing concave ordering by the set non-
decreasing concave functions. In this case Kicv = −KT

icx, where AT denotes
the transpose of matrix A.

Clearly, the icx-comparison and the icx-monotonicity of stochastic matri-
ces are defined in the same manner as the st-ordering (see definitions 2 and
3). However, the characterization of the <icx-monotonicity through matrix
Kicx must take into account the finiteness of matrix P . Indeed, the conditions
K−1icxPKicx ≥ 0 provide sufficient conditions for the <icx-monotonicity. It is
known for a long time time that these conditions are also necessary for infinite
chains.

For finite chains, the necessary conditions were unknown until recently. More-
over the conditions K−1icxPKicx ≥ 0 are very restrictive and they lead to a chain
whose first and last states are absorbing. Thus, it was not possible to develop an
algorithmic approach without an efficient necessary and sufficient condition for
monotonicity. Recently, in [2], Benmammoun has proved such conditions for the
icx-monotonicity of finite chains. This characterization is based on matrix Zicx

which is slightly different from matrix K−1icx.
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K−1icx =




1 0 0 . . . 0
−2 1 0 . . . 0
1 −2 1 . . . 0
...

...
...

. . .
...

0 . . . 1 −2 1




Zicx =




1 0 0 . . . 0
−1 1 0 . . . 0
1 −2 1 . . . 0
...

...
...

. . .
...

0 . . . 1 −2 1




5.1 Basic Algorithm

The sufficient conditions to compare Markov chains through the monotonicity
and the comparability of matrices (see theorem 1) are also valid for the
icx-ordering. Therefore, it is possible to design an algorithm to construct an icx-
monotone and upper bounding chain based on Benmammoun’s characterization.

Algorithm 6 An icx-monotone upper bound Q:
q1,n = p1,n;
q2,n = max(q1,n, p2,n);
for i = 3, . . . , n do qi,n = max(pi,n, 2qi−1,n − qi−2,n); od
for j = n− 1, n− 2, · · · , 2 do

q1,j =
∑n

k=j(k − j + 1)p1,k −
∑n

k=j+1(k − j + 1)q1,k;

q2,j = max
(∑n

k=j(k − j + 1)p2,k,
∑n

k=j(k − j + 1)q1,k
)

−∑n
k=j+1(k − j + 1)q2,k;

for i = 3, 4, · · · , n do
qi,j = max

(∑n
k=j(k − j + 1)pi,k,

2
∑n

k=j(k − j + 1)qi−1,k −
∑n

k=j(k − j + 1)qi−2,k
)

−∑n
k=j+1(k − j + 1)qi,k;

od
od
for i = 1, 2 · · ·n do qi,1 = 1−∑n

j=2 qi,j ; od

Unfortunately, the output of this algorithm is not always a stochastic matrix
as we may obtain elements larger than 1.0. First, we apply this algorithm to
matrix P6 and the output is a stochastic upper bound Q:

P6 =


 0.5 0.15 0.35

0.3 0.4 0.3
0.45 0.1 0.45


 Q =


 0.5 0.15 0.35

0.35 0.3 0.35
0.4 0.25 0.45




However, for matrix P7, the output of Algorithm 6 is not a stochastic matrix
since Q3,3 > 1.

P7 =


 0.5 0.15 0.35

0.3 0.0 0.7
0.45 0.1 0.45



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Indeed, the last column of Q is:

Q =


 0.35

0.7
1.05




Several heuristics may be used to solve this problem. Further researches are
still necessary to obtain a simple and efficient algorithm.

5.2 Class C Matrices

Beside, the closed form solution of the stationary distribution, class C matrices
have nice properties about stochastic monotonicity. First, we present the stochas-
tic monotonicity characterization for this class and then we show an algorithm
to construct an icx-monotone, upper bounding, class C matrix.

Proposition 3

P is icx−monotone ⇐⇒
n∑

k=j

(k − j + 1) ck ≥ 0, ∀j ∈ {1, . . . , n}

Proposition 4 If P is in class C, then

P is st−monotone =⇒ P is icx−monotone

Let us emphasize here by an example, that, in general, st-monotonicity does
not imply icx-monotonicity:

P =


0.6 0.4 0

0.2 0.2 0.6
0.1 0.3 0.6




Clearly, P is st-monotone. On the other hand, if we consider p = [0.2 0.4 0.4]
and q = [0.3 0.1 0.6]. pP = [0.24 0.28 0.48] and qP = [0.26 0.32 0.42]. And
p <icx q is true while pP <icx qP is false. Thus P is not icx-monotone.

In the following algorithm we compute an icx-monotone, upper bounding,
class C matrix, Q for a given matrix P [4] As in the st-ordering case, this
algorithm consists in computing the first row q1,j , 1 ≤ j ≤ n and the constant
cj , 1 ≤ j ≤ n. In fact, these parameters take values within an interval ([cj , cj ])
and [q1,j , q1,j ]). Since we construct an upper bound, one must intuitively choose
the smallest values for these parameters in order to have elements which are as
close as possible to the original ones. Moreover, we define a constant const which
is greater than 1, but less than cj . By doing so, all entries of Q are positive, thus
Q is irreducible.
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Algorithm 7 Construction of an icx-monotone upper bounding DTMC Q
which belongs to class C:

q1,n = max1≤i≤n−1[ (n−1)pi,n−i+1
n−i ]; q1,n = q1,n +

1−q1,n

const ;

cn = max2≤i≤n[pi,n−q1,n
i−1 ]; cn = 1−q1,n

n−1 ;

if cn < 0 then cn = 0 else cn = cn +
cn−cn
const ;

for j = n− 1, n− 2, · · · , 2 do
f(i, j) = n−1

n−i
[∑n

k=j(k − j + 1)pi,k −
∑n

k=j+1(k − j + 1)qi,k
]

− i−1
n−i [1−

∑n
k=j+1 qn,k];

q1,j = (max1≤i≤n−1 f(i, j))+; q1,j = q1,j +
1−
∑n

k=j+1
q1,k−q1,j

const ;

αj = max2≤i≤n(
∑

k=j
(k−j+1)pi,k−

∑n

k=j+1
(k−j+1)qi,k−q1,j

i−1 );

cj = max(αj ,
−q1,j
n−1 ); cj =

1−
∑n

k=j+1
qn,k−q1,j

n−1 ;

if cj < −∑n
k=j=1(k − j + 1)ck then cj = −∑n

k=j+1(k − j + 1)ck

else cj = cj
cj−cj
const ;

od
q1,1 = 1−∑n

j=2 q1,j ;
c1 = −∑n

j=2 cj ;

We illustrate the application of this algorithm on matrix P7.

P7 =




0.25 0.2 0.25 0.3
0.15 0.1 0.65 0.1
0.35 0.05 0.15 0.45
0.3 0.2 0.1 0.4


 Q =




0.2718 0.1962 0.162 0.37
0.279 0.158 0.136 0.427
0.2863 0.1199 0.1098 0.484
0.2935 0.0818 0.0837 0.541




Matrix Q obtained by this algorithm belongs to class C with c1 = 0.00723,
c2 = −0.03813, c3 = −0.0261, c4 = 0.057. Their steady-state distributions are
πP = (0.2755, 0.1497, 0.2354, 0.3393) and πQ = (0.2846, 0.1286, 0.1157, 0.4711)
and we have πP <icx πP .

6 Conclusions

Strong stochastic bounds are not limited to sample-path proofs. It is now possi-
ble to compute bounds of the steady-state distribution directly from the chain.
This approach may be specially useful for high speed networks modeling where
the performance requirements are thresholds. Using the algorithmic approach
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we survey in this paper, a sample-path proof is not necessary anymore and these
algorithms may be integrated into software performance tools based on Markov
chains. Generalizations to other orderings or to computation of transient mea-
sures are still important problems for performance analysis.
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