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Abstract. M/G/1-type processes are commonly encountered when
modeling modern complex computer and communication systems.
In this tutorial, we present a detailed survey of existing solution
methods for M/G/1-type processes, focusing on the matrix-analytic
methodology. From first principles and using simple examples, we derive
the fundamental matrix-analytic results and lay out recent advances.
Finally, we give an overview of an existing, state-of-the-art software tool
for the analysis of M/G/1-type processes.
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1 Introduction

Matrix analytic techniques, pioneered by Marcel Neuts [25,26], provide a frame-
work that is widely used for the exact analysis of a general and frequently encoun-
tered class of queueing models. In these models, the embedded Markov chains are
two-dimensional generalizations of elementary GI/M/1 and M/G/1 queues [13],
and their intersection, i.e., quasi-birth-death (QBD) processes. GI/M/1 and
M/G/1 Markov chains model systems with interarrival and service times char-
acterized, respectively, by general distributions rather than simple exponentials
and are often used as the modeling tool of choice in modern computer and com-
munication systems [24,30,35,6,18]. As a consequence, considerable effort has
been placed into the development of efficient matrix-analytic techniques for their
analysis [26,21,8,9,11,15]. Alternatively, GI/M/1 and M/G/1 Markov chains can
be analyzed by means of eigenvalues and eigenvectors [7].

The class of models that can be analyzed using M/G/1-type Markov chains
includes the important class of BMAP/G/1 queues, where the arrival process is
a batch Markovian arrival process (BMAP) [17,26,3]. Special cases of BMAPs in-
clude phase-type renewal processes (e.g., Erlang or Hyperexponential processes)
and non-renewal processes (e.g., the Markov modulated Poisson process). The
importance of BMAPs lies in their ability to be more effective and powerful
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traffic models than the simple Poisson process or the batch Poisson process, as
they can effectively capture dependence and correlation, salient characteristics
of Internet traffic [27,12,33].

In this paper, we focus on the solution techniques for M/G/1-type Markov
chains. Neuts [25] defines various classes of infinite-state Markov chains with a
repetitive structure, whose state space1 is partitioned into the boundary states
S(0) = {s(0)1 , . . . , s

(0)
m } and the sets of states S(i) = {s(i)1 , . . . , s

(i)
n }, for i ≥ 1, that

correspond to the repetitive portion of the chain. For the class of M/G/1-type
Markov chains, the infinitesimal generator QM/G/1 has upper block Hessenberg
form:

QM/G/1 =



L̂ F̂(1) F̂(2) F̂(3) F̂(4) · · ·
B̂ L F(1) F(2) F(3) · · ·
0 B L F(1) F(2) · · ·
0 0 B L F(1) · · ·
0 0 0 B L · · ·
...

...
...

...
...

. . .


. (1)

We use the letters “L”, “F”, and “B” to describe “local”, ‘forward”, and “back-
ward” transition rates, respectively, in relation to a set of states S(i) for i ≥ 1,
and a “̂ ” for matrices related to S(0).

For systems of the M/G/1-type, matrix analytic methods have been pro-
posed for the solution of the basic equation π · QM/G/1 = 0 [26], where π
is the (infinite) stationary probability vector of all states in the chain. Key to
the matrix-analytic methods is the computation of an auxiliary matrix called
G. Traditional solution methodologies for M/G/1-type processes compute the
stationary probability vector with a recursive function based on G. Iterative
algorithms are used to determine G [20,16].

Another class of Markov-chains with repetitive structure that commonly oc-
curs in modeling of computer systems is the class of GI/M/1-type processes,
whose infinitesimal generator QGI/M/1 has a lower block Hessenberg form:

1 We use calligraphic letters to indicate sets (e.g., A), lower case boldface Roman or
Greek letters to indicate row vectors (e.g., a, α), and upper case boldface Roman
letters to indicate matrices (e.g.,A). We use superscripts in parentheses or subscripts
to indicate family of related entities (e.g., A(1), A1), and we extend the notation
to subvectors or submatrices by allowing sets of indices to be used instead of single
indices (e.g., a[A], A[A,B]). Vector and matrix elements are indicated using square
brackets (e.g., a[1],A[1, 2]). RowSum(·) indicates the diagonal matrix whose entry in
position (r, r) is the sum of the entries on the rth row of the argument (which can be
a rectangular matrix). Norm(·) indicates a matrix whose rows are normalized. 0 and
1 indicate a row vector or a matrix of 0’s, or a row vector of 1’s, of the appropriate
dimensions, respectively.
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QGI/M/1 =


L̂ F̂ 0 0 0 · · ·
B̂(1) L F 0 0 · · ·
B̂(2) B(1) L F 0 · · ·
B̂(3) B(2) B(1) L F · · ·
...

...
...

...
...

. . .

 . (2)

The solution of GI/M/1-type processes is significantly simpler than the solu-
tion of M/G/1-type processes because of the matrix geometric relation [25] that
exists among the stationary probabilities of sets S(i) for i ≥ 1. This property
leads to significant algebraic simplifications resulting in the very elegant matrix-
geometric solution technique that was pioneered by Neuts and that was later
popularized by Nelson in the early ’90s [23,24]. Key to the matrix-geometric so-
lution is a matrix called R which is used in the computation of the steady-state
probability vector and measures of interest.

Quasi-Birth-Death (QBD) processes are the intersection of M/G/1-type and
GI/M/1-type processes and their infinitesimal generator has the structure de-
picted in Eq.(3).

QQDB =


L̂ F̂ 0 0 0 · · ·
B̂ L F 0 0 · · ·
0 B L F 0 · · ·
0 0 B L F · · ·
...

...
...

...
...

. . .

 . (3)

Since QBDs are special cases of both M/G/1-type processes and GI/M/1-type
processes, either the matrix-analytic method or the matrix-geometric solution
can be used for their analysis. The matrix-geometric solution is the preferable one
because of its simplicity. Both matrices G and R are defined for QBD processes.
We direct the interested reader to [16] for recent advances on the analysis of
QBD processes.

Key to the solution of Markov chains of the M/G/1, GI/M/1, and QBD
types, is the existence of a repetitive structure, as illustrated in Eqs. (1), (2),
and (3), that allows for a certain recursive procedure to be applied for the compu-
tation of the stationary probability vector π(i) corresponding to S(i) for i ≥ 1.
It is this recursive relation that gives elegance to the solution for the case of
GI/M/1 (and consequently QBD) Markov chains, but results in unfortunately
more complicated mathematics for the case of the M/G/1-type.

The purpose of this tutorial is to shed light into the existing techniques
for the analysis of Markov chains of the M/G/1 type that are traditionally
considered not easy to solve. Our intention is to derive from first principles (i.e.,
global balance equations) the repetitive patterns that allow for their solution and
illustrate that the mathematics involved are less arduous than initially feared.

Our stated goals and outline of this tutorial are the following:

– Give an overview of the matrix-geometric solution of GI/M/1 and QBD
processes and establish from first principles why a geometric solution exists
(Section 2).
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– Use first principles to establish the most stable recursive relation for the
case of M/G/1-type processes and essentially illustrate the absence of any
geometric relation among the steady state probabilities of sets S(i), i ≥ 0,
for such chains (Section 3).

– Present an overview of the current state of the art of efficient solutions for
M/G/1-type processes (Section 4).

– State the stability conditions for M/G/1-type processes (Section 5).
– Summarize the features of an existing software tool that can provide M/G/1-

type solutions (Section 6).

Our aim is to make these results more accessible to performance modelers. We
do this by presenting simplified derivations that are often example driven and
by describing an existing tool for the solution of such processes.

2 Matrix Geometric Solutions for GI/M/1-Type and
QBD Processes

In this section we give a brief overview2 of the matrix geometric solution tech-
nique for GI/M/1-type and QBD processes. While QBDs fall under both the
M/G/1 and the GI/M/1-type cases, they are most commonly associated with
GI/M/1 processes because they can be both solved using the very well-known
matrix geometric approach [25].

Key to the general solution for the generator of Eqs.(2) and (3) is the assump-
tion that a geometric relation3 holds among the stationary probability vectors
π(i) of states in S(i) for i ≥ 1:

∀i ≥ 1, π(i) = π(1) ·Ri−1, (4)

where, in the GI/M/1-type case, R is the solution of the matrix equation

F + R · L +
∞∑
k=1

Rk+1 ·B(k) = 0, (5)

and can be computed using iterative numerical algorithms. The above equation
is obtained from the balance equations of the repeating portion of the process,
i.e., starting from the third column of QGI/M/1. Using Eq.(4) and substituting
in the balance equation that corresponds to the second column of QGI/M/1, and
together with the normalization condition

π(0) · 1T + π(1) ·
∞∑
i=1

Ri−1 · 1T = 1 i.e., π(0) · 1T + π(1) · (I−R)−1 · 1T = 1,

we obtain the following system of linear equations
2 In this section and in the remainder of this tutorial we assume continuous time
Markov chains, or CTMCs, but our discussion applies just as well to discrete time
Markov chains, or DTMCs.

3 This is similar to the simplest degenerate case of a QBD process, the straight forward
birth-death M/M/1 case.
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[π(0),π(1)] ·
[

e (L(0))� F̂(1)

(I−R)−1 · e
(∑∞

k=1R
k−1 · B̂(k)

)�
L +

∑∞
k=1R

k ·B(k)

]
= [1,0],

(6)
that yields a unique solution for π(0) and π(1). The symbol “�” indicates that
we discard one (any) column of the corresponding matrix, since we added a
column representing the normalization condition. For i ≥ 2, π(i) can be obtained
numerically from Eq. (4), but many useful performance metrics such as expected
system utilization, throughput, or queue length can be expressed explicitly in
closed-form using π(0), π(1), and R only (e.g., the average queue length is simply
given by π(1) · (I−R)−2 · 1T ) [23].

In the case of QBD processes, Eq. (5) simply reduces to the matrix quadratic
equation

F + R · L + R2 ·B = 0,

while π(0) and π(1) are obtained as the solution of the following system of linear
equations [24]:

[π(0),π(1)] ·
[

e (L(0))� F̂(1)

(I−R)−1 · e (B̂)� L + R ·B

]
= [1,0].

Again, the average queue length is given by the same equation as in the GI/M/1
case.

2.1 Why Does a Geometric Relation Hold for QBD Processes?

There is a clear intuitive appeal to the fact that a geometric relation holds for
QBD processes. In this section, we first focus on the reasons for the existence of
this relationship via a simple example. Our first example is a QBD process that
models an M/Cox2/1 queue. The state transition diagram of the CTMC that
models this queue is depicted in Figure 1. The state space S of this CTMC is
divided into subsets S(0) = {(0, 0)} and S(i) = {(i, 1), (i, 2)} for i ≥ 1, implying
that the stationary probability vector is also divided in the respective subvectors
π(0) = [π(0, 0)] and π(i) = [π(i, 1),π(i, 2)], for i ≥ 1. The block-partitioned
infinitesimal generator QQBD is a infinite block tridiagonal matrix as defined in
Eq.(3) and its component matrices are:

L̂ = [−λ] , F̂ = [λ 0] , B̂ =
[

0.2µ
γ

]
,

B =
[

0.2µ 0
γ 0

]
, L =

[−(λ + µ) 0.8µ
0 − (λ + γ)

]
, F =

[
λ 0
0 λ

]
.

(7)

To illustrate the existence of the geometric relationship among the various
stationary probability vectors π(i), we use the concept of stochastic comple-
mentation [22]. A detailed summary of some important results on stochastic
complementation is presented in Appendix A. We partition the state space into
two subsets; A = ∪j=ij=0S(j) and A = ∪∞j=i+1S(j), i.e., a set with finite number of
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Fig. 1. The CTMC modeling an M/Cox2/1 queue.
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Fig. 2. The CTMC of the stochastic complement of A = ∪j=ij=0S(j) of the CTMC
modeling an M/Cox2/1 queue.

states and a set with an infinite number of states, respectively. The stochastic
complement of the states in A is a new Markov chain that “skips over” all states
in A. This Markov chain includes states in A only but all transitions out of S(i)

(i.e., the boundary set) to S(i+1) (i.e., the first set in A) need to be “folded back”
to A (see Figure 2). This folding introduces a new direct transition with rate x
that ensures that the stochastic complement of the states in A is a stand-alone
process. Because of the structure of this particular process, i.e., A is entered from
A only through state (i, 1), x is simply equal to λ (see Lemma 1 in Appendix
A). Furthermore, because of the repetitive structure of the original chain, this
rate does not depend on i (which essentially defines the size of set A).

The steady state probability vector π = [π(0), · · · ,π(i)] of the stochastic
complement of the states in A relates to the steady state probability πA of the
original process with: π = πA/πA · 1T . This implies that if a relation exists
between π(i−1) and π(i), then the same relation holds for π(i−1) and π(i).

The flow balance equations for states (i, 1) and (i, 2) in the stochastic com-
plement of A, are:

(0.2µ+ 0.8µ)π(i)[1] = λπ(i−1)[1] + λπ(i)[2],
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(γ + λ)π(i)[2] = λπ(i−1)[2] + 0.8µπ(i)[1],

which can further be expressed as:

(−µπ(i)[1] + λπ(i)[2]) = −λπ(i−1)[1],

(0.8µπ(i)[1]− (γ + λ)π(i)[2]) = −λπ(i−1)[2].

This last set of equations leads us to the following matrix equation

[
π(i)[1],π(i)[2]

] [−µ 0.8µ
λ −(γ + λ)

]
= −

[
π(i−1)[1],π(i−1)[2]

] [
λ 0
0 λ

]
,

which implies that the relation between π(i−1) and π(i) can be expressed as

π(i) = π(i−1)R, (8)

where matrix R is defined as

R = −
[
λ 0
0 λ

]
·
[−µ 0.8µ

λ − (γ + λ)

]−1
= −F

(
L + F

[
1 0
1 0

])−1
. (9)

Applying Eq.(8) recursively, one can obtain the result of Eq.(4). Observe that
in this particular case an explicit computation of R is possible (i.e., there is no
need to compute R [28] via an iterative numerical procedure as in the general
case). This is a direct effect of the fact that in this example backward transitions
from S(i) to S(i−1) are directed toward a single state only. In Appendix B, we
give details on the cases when matrix R can be explicitly computed.

2.2 Generalization: Geometric Solution for the GI/M/1 Processes

We generalize the finding in the previous example by considering a GI/M/1-
queue with infinitesimal generator QGI/M/1 similarly to the proof given in [14].
To evaluate the relation between π(i−1) and π(i) for i > 1, we construct the
stochastic complement of the states in A = ∪ij=0S(j) (A = S−A). The stochastic
complement of states in A has an infinitesimal generator defined by the following
relation

Q = Q[A,A] + Q[A,A] · (−Q[A,A])−1 ·Q[A,A],

where
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Q[A,A] =


L̂ F̂ · · · 0 0
B̂(1) L · · · 0 0
...

...
...

...
...

B̂(i−1) B(i−2) · · · L F
B̂(i) B(i−1) · · · B(1) L

 , Q[A,A] =


0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
...

0 0 0 0 · · ·
F 0 0 0 · · ·

 ,

Q[A,A] =


B̂(i+1) B(i) · · · B(1)

B̂(i+2) B(i+1) · · · B(2)

B̂(i+3) B(i+2) · · · B(3)

B̂(i+4) B(i+3) · · · B(4)

...
...

...
...

 , Q[A,A] =


L F 0 0 · · ·
B(1) L F 0 · · ·
B(2) B(1) L F · · ·
B(3) B(2) B(1) L · · ·
...

...
...

...
. . .

 .
(10)

Observe that Q[A,A] is the same matrix for any i > 1. We define its inverse
to be as follows

(−Q[A,A])−1 =


A0,0 A0,1 A0,2 A0,3 · · ·
A1,0 A1,1 A1,2 A1,3 · · ·
A2,0 A2,1 A2,2 A2,3 · · ·
A3,0 A3,1 A3,2 A3,3 · · ·

...
...

...
...

...

 . (11)

From the special structure of Q[A,A] we conclude that the second term in the
summation that defines Q is a matrix with all block entries equal to zero except
the very last block row, whose block entries Xj are of the form:

Xj = F ·
∞∑
k=0

A0,kB̂(j+1+k) j = i

and

Xj = F ·
∞∑
k=0

A0,kB(j+1+k), 0 ≤ j < i.

Note that X0 = F ·∑∞k=0A0,kB(1+k) which means that X0 does not depend on
the value of i > 1. The infinitesimal generator Q of the stochastic complement
of states in A is determined as

Q =


L̂ F̂ · · · 0 0

B̂(1) L · · · 0 0
...

...
...

...
...

B̂(i−1) B(i−2) · · · L F
B̂(i) + Xi B(i−1) + Xi−1 · · · B(1) + X1 L + X0

 . (12)

Let π be the stationary probability vector of the CTMC with infinitesimal gen-
erator Q and πA the steady-state probability vector of the CTMC of states in
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A in the original process, i.e., the process with infinitesimal generator QGI/M/1.
There is a linear relation between π and πA given in the following equation:

π =
πA

πA · 1T . (13)

Since πQ = 0, we obtain the following relation

π(i) · (L + X0) = −π(i−1) · F

implying:
π(i) · (L + X0) = −π(i−1) · F.

The above equation holds for any i > 1, because their matrix coefficients do not
depend on i. By applying it recursively over all vectors π(i) for i > 1, we obtain
the following geometric relation

π(i) = π(1) ·Ri−1 ∀ i ≥ 1.

Matrix R, the geometric coefficient, has an important probabilistic interpre-
tation: the entry (k, l) of R is the expected time spent in the state l of S(i),
before the first visit into S(i−1), expressed in time unit ∆i, given the starting
state is k in S(i−1). ∆i is the mean sojourn time in the state k of S(i−1) for
i ≥ 2 [25, pages 30-35].

3 Why M/G/1 Processes Are More Difficult

For M/G/1-type processes there is no geometric relation among the various
probability vectors π(i) for i ≥ 1 as in the case of QBD and GI/M/1-type
processes. In this section, we first demonstrate via a simple example why such a
geometric relation does not exist and then we generalize and derive Ramaswami’s
recursive formula, i.e., the classic methodology for the solution of M/G/1 chains.

3.1 Example: A BMAP1/Cox2/1 Queue

Figure 3 illustrates a Markov chain that models a BMAP1/Cox2/1 queue. This
chain is very similar with the one depicted in Figure 1, the only difference is that
the new chain models bulk arrivals of unlimited size. The infinitesimal generator
QM/G/1 of the process is block partitioned according to the partitioning of the
state space S of this CTMC into subsets S(0) = {(0, 0)} and S(i) = {(i, 1), (i, 2)}
for i ≥ 1. The definition of the component matrices of QM/G/1 is as follows:

L̂ = [−2λ] , B̂ =
[

0.2µ
γ

]
, F̂(i) =

[
0.5i−1λ 0

]
i ≥ 1,

B=
[

0.2µ 0
γ 0

]
, L=

[−(2λ + µ) 0.8µ
0 − (2λ + γ)

]
, F(i)=

[
0.5i−1λ 0

0 0.5i−1λ

]
i ≥ 1.
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Fig. 3. The CTMC that models a BMAP1/Cox2/1 queue.

In the following, we derive the relation between π(i) for i ≥ 1 and the rest of
vectors in π using stochastic complementation, i.e., similarly to the approach
described in Section 2. First we partition the state space S into two partitions
A = ∪j=ij=0S(j) and A = ∪∞j=i+1S(j) and then we construct the stochastic comple-
ment of states in A. The Markov chain of the stochastic complement of states in
A, (see Figure 4), illustrates how transitions from states (j, 1) and (j, 2) for j ≤ i
and state (0, 0) to states (l, 1) and (l, 2) for l > i are folded back to state (i, 1),
which is the single state to enter A from states in A. These “back-folded” tran-
sitions are marked by xk,h for k ≤ i and h = 1, 2 and represent the “correction”
needed to make the stochastic complement of states in A, a stand-alone process.
Because of the single entry state in A the stochastic complement of states in A
for this example can be explicitly derived (see Lemma 1 in Appendix A) and the
definition of rates xk,h is as follows:

xk,h = 2 · 0.5i−kλ = 0.5i−k−1λ, i ≥ 1, k ≤ i, h = 1, 2.

The flow balance equations for states (i, 1) and (i, 2) for the stochastic comple-
ment of states in A are:

(0.2µ+ 0.8µ)π(i)[1] = 2λπ(i)[2]
+ 2 · 0.5i−1λπ(0)[1]
+ 2 · 0.5i−2λπ(1) [1] + 0.5i−2λπ(1) [2] + ...

+ 2 · 0.5i−iλπ(i−1)[1] + 0.5i−iλπ(i−1)[2]

and

(2λ+ γ)π(i)[2] = 0.8µπ(i)[1] + 0.5i−2λπ(1)[2] + ...+ 0.5i−iλπ(i−1)[2].
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Fig. 4. Stochastic complement of BMAP1/Cox2/1-type queue at level i.

In the above equalities we group the elements of π(i) on the left and the
rest of the terms on the right in order to express their relation in terms of
the block matrices that describe the infinitesimal generator Q of the stochastic
complement of states in A. By rearranging the terms, the above equations can
be re-written as:

−µπ(i)[1] + 2λπ(i)[2] = −(2 · 0.5i−1λπ(0)[1]
+ 2 · 0.5i−2λπ(1) [1] + 0.5i−2λπ(1) [2] + ...

+ 2 · 0.5i−iλπ(i−1)[1] + 0.5i−iλπ(i−1)[2])

and

0.8µπ(i)[1]− (2λ+ γ)π(i)[2] = −(0.5i−2λπ(1)[2] + ...+ 0.5i−iλπ(i−1)[2]).

We can now re-write the above equations in the following matrix equation form:

[π(i)[1], π(i)[2]] ·
[
−µ 0.8µ
2λ −(2λ+ γ)

]
= −

(
π(0)[1]

[
2 · 0.5i−1λ 0

]
+ [π(1) [1], π(1) [2]]

[
2 · 0.5i−2λ 0

0.5i−2λ 0.5i−2λ

]
+ ...

+ [π(i−1)[1], π(i−1)[2]]

[
2 · 0.5i−iλ 0

0.5i−iλ 0.5i−iλ

])
.

By substituting [π(i)[1], π(i)[2]] with π(i) and expressing the coefficient ma-
trices in the above equation in terms of the component matrices of the infinites-
imal generator Q of the stochastic complement of states in A, we obtain4:
4 Recall that π is the stationary probability vector of the stochastic complement

of states in A and π[A] is the stationary probability vector of states in A in
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π(i) ·(L+
∞∑
j=1

F(j)G) = −(π(0)
∞∑
j=i

F̂(j)G+π(1)
∞∑

j=i−1
F(j)G+...+π(i−1)

∞∑
j=1

F(j)G),

where G is a matrix with the following structure:

G =
[

1 0
1 0

]
.

Note that at this point, we have introduced a new matrix, G, that has an im-
portant probabilistic interpretation. In this specific example, the matrix G can
be explicitly derived [28]. This is a direct outcome of the fact that all states in
set S(i) for i ≥ 1 return to the same single state in set S(i−1). Equivalently,
the matrix B of the infinitesimal generator QM/G/1 has only a single column
different from zero.

3.2 Generalization: Derivation of Ramaswami’s Recursive Formula

In this section, we investigate the relation between π(i) for i > 1 and π(j) for
0 ≤ j < i for the general case in the same spirit as [34]. We construct the
stochastic complementation of the states in A = ∪ij=0S(j) (A = S − A). We
obtain

Q[A,A] =


L̂ F̂(1) · · · F̂(i−1) F̂(i)

B̂ L · · · F̂(i−2) F̂(i−1)
...

...
...

...
...

0 0 · · · L F
0 0 · · · B L

 , Q[A,A] =


F̂(i+1) F̂(i+2) F̂(i+3) · · ·
F(i) F(i+1) F(i+2) · · ·

...
...

... · · ·
F(2) F(3) F(4) · · ·
F(1) F(2) F(3) · · ·

 ,

Q[A,A] =


0 0 · · · 0 B
0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

 , Q[A,A] =


L F(1) F(2) F(3) · · ·
B L F(1) F(2) · · ·
0 B L F(1) · · ·
0 0 B L · · ·
...

...
...

...
. . .

 .

The stochastic complement for states in A has an infinitesimal generator
defined as follows

Q = Q[A,A] + Q[A,A] · (−Q[A,A])−1 ·Q[A,A].

the original M/G/1 process. They relate to each other based on the equation
π = π[A]/(π[A]1T ), which implies that any relation that holds among subvectors
π(j) for j ≤ i would hold for subvectors π(j) for j ≤ i as well
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Observe that Q[A,A] is the same matrix for any i ≥ 1. We define its inverse to
be as follows

(−Q[A,A])−1 =


A0,0 A0,1 A0,2 A0,3 · · ·
A1,0 A1,1 A1,2 A1,3 · · ·
A2,0 A2,1 A2,2 A2,3 · · ·
A3,0 A3,1 A3,2 A3,3 · · ·

...
...

...
...

...

 . (14)

From the special structure of Q[A,A] we conclude that the second term of the
above summation is a matrix with all block entries equal to zero except the very
last block column, whose block entries Xj are of the form:

Xi =
∞∑
k=0

F̂(i+1+k) ·Ak,0 ·B

and

Xj =
∞∑
k=0

F(j+1+k) ·Ak,0 ·B, 0 ≤ j < i.

The infinitesimal generator Q of the stochastic complement of states in A is
determined as

Q =


L̂ F̂(1) · · · F̂(i−1) F̂(i) + Xi

B̂ L · · · F(i−2) F(i−1) + Xi−1
...

...
...

...
...

0 0 · · · L F(1) + X1
0 0 · · · B L + X0

 . (15)

We define π to be the steady-state probability vector of the CTMC with infinites-
imal generator Q and πA the steady-state probability vector of the CTMC with
infinitesimal generator QM/G/1 corresponding to the states in A. There is a
linear relation between π and πA:

π =
πA

πA · 1T . (16)

From the relation πQ = 0, it follows that

π(i) · (L + X0) = −(π(0) · (F̂(i) + Xi) +
i−1∑
j=1

π(j) · (F(i−j) + Xi−j)) ∀i ≥ 1

and

π(i) · (L+X0) = −(π(0) · (F̂(i) +Xi)+
i−1∑
j=1

π(j) · (F(i−j) +Xi−j)) ∀i ≥ 1. (17)

The above equation shows that there in no geometric relation between vectors
π(i) for i ≥ 1, however it provides a recursive relation for the computation of
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the steady-state probability vector for M/G/1 Markov chains. In the following,
we further work on simplifying the expression of matrices Xj for 0 ≤ j ≤ i.

From the definition of the stochastic complementation (see Appendix A) we
know that an entry [r, c] in (−Q[A,A]−1 ·Q[A,A]) 5 represents the probability
that starting from state r ∈ A the process enters A through state c. Since
A is entered from A only through states in S(i) we can use the probabilistic
interpretation of matrix G to figure out the entries in (−Q[A,A]−1) ·Q[A,A].
An entry [r, c] in Gj for j > 0 represents the probability that starting from
state r ∈ S(i+j) for i > 0 the process enters set S(i) through state c. It is
straightforward now to define

(−Q[A,A]−1) ·Q[A,A] =


0 0 · · · 0 G
0 0 · · · 0 G1

0 0 · · · 0 G2

0 0 · · · 0 G3

...
...

...
...

...

 . (18)

The above result simplifies the expression of Xj as follows

Xi =
∞∑
k=1

F̂(i+k) ·Gk and Xj =
∞∑
k=1

F(j+k) ·Gk, 0 ≤ j < i. (19)

This is in essence Ramaswami’s recursive formula. We will return to this in
the following section after we elaborate on matrix G, its implications, and its
probabilistic interpretation.

4 General Solution Method for M/G/1

For the solution of M/G/1-type processes, several algorithms exist [2,20,26].
These algorithms first compute matrix G as the solution of the following equa-
tion:

B + LG +
∞∑
i=1

F(i)Gi+1 = 0. (20)

The matrix G has an important probabilistic interpretation: an entry (r, c) in G
expresses the conditional probability of the process first entering S(i−1) through
state c, given that it starts from state r of S(i) [26, page 81]6. Figure 5 illus-
trates the relation of entries in G for different paths of the process. From the
probabilistic interpretation of G the following structural properties hold [26]

– if the M/G/1 process with infinitesimal generator QM/G/1 is recurrent then
G is row-stochastic,

5 Only the entries of the last block column of (−Q[A,A]−1) · Q[A,A] are different
from zero.

6 The probabilistic interpretation of G is the same for both DTMCs and CTMCs.
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S(i+2)S(i+1)S(i)S(1)S(0)

[r,h]
2

G

G[k,h] G [r,k]i−1
[h,j]G

. . . . . .
j

. . .

. . .

. . .

. . .

. . .

h
k r

Fig. 5. Probabilistic interpretation of G.

– to any zero column in matrix B of the infinitesimal generator QM/G/1, there
is a corresponding zero column in matrix G.

The G matrix is obtained by solving iteratively Eq.(20). However, recent ad-
vances show that the computation of G is more efficient when displacement
structures are used based on the representation of M/G/1-type processes by
means of QBD processes [20,2,1,16]. The most efficient algorithm for the com-
putation of G is the cyclic reduction algorithm [2].

4.1 Ramaswami’s Formula

From Eqs.(17) and (19) and the aid of matrix G, we derive Ramaswami’s recur-
sive formula [29], which is numerically stable because it entails only additions and
multiplications7. Ramaswami’s formula defines the following recursive relation
among stationary probability vectors π(i) for i ≥ 0:

π(i) = −
(
π(0)Ŝ(i) +

i−1∑
k=1

π(k)S(i−k)
)
S(0)−1 ∀i ≥ 1, (21)

where, letting F(0) ≡ L, matrices Ŝ(i) and S(i) are defined as follows:

Ŝ(i) =
∞∑
l=i

F̂(l)Gl−i, i ≥ 1, S(i) =
∞∑
l=i

F(l)Gl−i, i ≥ 0. (22)

Observe that the above auxiliary sums represent the last column in the infinites-
imal generator Q defined in Eq.(15). We can express them in terms of matrices
Xi defined in Eq.(19) as follows:

Ŝ(i) = F̂(i) + Xi, i ≥ 1 S(i) = F(i) + Xi, i ≥ 0.
7 Subtractions on these type of formulas present the possibility of numerical instabil-
ity [26,29].
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Given the above definition of π(i) for i ≥ 1 and the normalization condition, a
unique vector π(0) can be obtained by solving the following system of m linear
equations, i.e., the cardinality of set S(0):

π(0)

(L̂(0) − Ŝ(1)S(0)−1B̂
)�
| 1T −

∞∑
i=1

Ŝ(i)

 ∞∑
j=0

S(j)

−1 1T
 = [0 | 1], (23)

where the symbol “�” indicates that we discard one (any) column of the corre-
sponding matrix, since we added a column representing the normalization condi-
tion. Once π(0) is known, we can then iteratively compute π(i) for i ≥ 1, stopping
when the accumulated probability mass is close to one. After this point, mea-
sures of interest can be computed. Since the relation between π(i) for i ≥ 1 is
not straightforward, computation of measures of interest requires generation of
the whole stationary probability vector.

4.2 Special Case: Explicit Computation of G

A special case of M/G/1-type processes occurs when B is a product of two
vectors, i.e., B = α·β. Assuming, without loss of generality, that β is normalized,
then G = 1T · β, i.e., it is derived explicitly [28,30].

For this special case, G = Gn, for n ≥ 1. This special structure of matrix
G simplifies the form of matrices Ŝ(i) for i ≥ 1, and S(i) for i ≥ 0 defined in
Eq.(22):

Ŝ(i) = F̂(i) + (
∑∞
j=i+1 F̂

(j)) ·G, i ≥ 1
S(i) = F̂(i) + (

∑∞
j=i+1F

(j)) ·G, i ≥ 0, F(0) ≡ L.
(24)

The major gain of this special case is the fact that G does not need to be either
computed or fully stored.

4.3 Fast FFT Ramaswami’s Formula

[19] gives an improved version of Ramaswami’s formula. Once π(0) is known using
Eq.(23), the stationary probability vector is computed using matrix-generating
functions associated with block triangular Toeplitz matrices8. These matrix-
generating functions are computed efficiently by using fast Fourier transforms
(FFT).

The algorithm of the Fast FFT Ramaswami’s formula is based on the fact
that in practice it is not possible to store an infinite number of matrices to
express the M/G/1-type process. Assuming that only p matrices can be stored
then the infinitesimal generator QM/G/1 has the following structure

8 A Toeplitz matrix has equal elements in each of its diagonals allowing the use of
computationally efficient methods.
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QM/G/1 =



L̂ F̂(1) F̂(2) F̂(3) F̂(4) · · · F̂(p) 0 0 · · ·
B̂ L F(1) F(2) F(3) · · · F(p−1) F(p) 0 · · ·
0 B L F(1) F(2) · · · F(p−2) F(p−1) F(p) · · ·
0 0 B L F(1) · · · F(p−3) F(p−2) F(p−1) · · ·
...

...
...

...
...

. . .
...

...
...

. . .
0 0 0 0 0 · · · F(1) F(2) F(3) · · ·
0 0 0 0 0 · · · L F(1) F(2) · · ·
0 0 0 0 0 · · · B L F(1) · · ·
0 0 0 0 0 · · · 0 B L · · ·
...

...
...

...
...

...
...

...
...

. . .



. (25)

Because there are only p matrices of type F̂(i) and F(i), there are only p
sums of type Ŝ(i) and S(i) to be computed. Therefore, the computation of π(i)

for i > 0 using Ramaswami’s formula, i.e., Eq.(21), depends only on p vectors
π(j) for max(0, i− p) ≤ j < i. Define

π̃(1) = [π(1), ...,π(p)] and π̃(i) = [π(p(i−1)+1), ...,π(pi)] for i ≥ 2. (26)

The above definition simplifies the formalization of Ramaswami’s formula since
π̃(i) depends only on the values of π̃(i−1) for i > 1. If we apply Ramaswami’s
formula for vectors π(1) to π(p), we obtain the following equations

π(1)=−π(0)Ŝ(1)(S(0))−1

π(2)=−(π(0)Ŝ(2) + π(1)S(1))(S(0))−1

π(3)=−(π(0)Ŝ(3) + π(1)S(2) + π(2)S(1))(S(0))−1
...
π(p)=−(π(0)Ŝ(p) + π(1)S(p−1) + ... + π(p−1)S(1))(S(0))−1

. (27)

We rewrite the above equations in the following form:

π(1)S(0) =−π(0)Ŝ(1)

π(2)S(0) + π(1)S(1) =−π(0)Ŝ(2)

π(3)S(0) + π(2)S(1) + π(1)S(2) =−π(0)Ŝ(3)

...
π(p)S(0) + π(p−1)S(1) + ... + π(1)S(p−1)=−π(0)Ŝ(p)

. (28)

Define

Y =


S(0) S(1) S(2) · · · S(p−1)

0 S(0) S(1) · · · S(p−2)

0 0 S(0) · · · S(p−3)
...

...
...

. . .
...

0 0 0 · · · S(0)

 and b =
[
Ŝ(1), Ŝ(2), Ŝ(3), · · · , Ŝ(p)

]
. (29)
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The set of equations in Eq.(28) can be written in a compact way by using the
definitions in Eq.(26) and Eq.(29).

π̃(1) = −π(0) · b ·Y−1. (30)

We apply Ramswami’s formula for all vectors π(j), p(i− 1) + 1 ≤ j ≤ pi in π̃(i)

for i > 1.

π(p(i−1)+1)=−(π(p(i−2)+1)S(p)+...+ π(p(i−1))S(1)) (S(0))−1

π(p(i−1)+2)=−(π(p(i−2)+2)S(p)+...+ π(p(i−1)+1)S(1)) (S(0))−1

π(p(i−1)+3)=−(π(p(i−2)+3)S(p)+...+ π(p(i−1)+2)S(1)) (S(0))−1
...
π(p(i−1)+p)=−(π(p(i−2)+p)S(p)+...+π(p(i−1)+p−1)S(1)) (S(0))−1

.

These equations can be rewritten in the following form

π(p(i−1)+1)S(0) =−(π(p(i−2)+1)S(p)+ ... +π(p(i−1))S(1))
π(p(i−1)+2)S(0) + π(p(i−1)+1)S(1) =−(π(p(i−2)+2)S(p)+ ... +π(p(i−1))S(2))
π(p(i−1)+3)S(0) + ... + π(p(i−1)+1)S(2) =−(π(p(i−2)+3)S(p)+ ... +π(p(i−1))S(3))
...
π(p(i−1)+p)S(0) + ... + π(p(i−1)+1)S(p−1)=−π(p(i−1))S(p).

The above set of equations can be written in a matrix form as

π̃(i) = −π̃(i−1) · ZY−1 i ≥ 2, (31)

where matrix Y is defined in Eq.(29) and the definition of matrix Z is given by
the following

Z =


S(p) 0 · · · 0 0
S(p−1) S(p) · · · 0 0

...
...

. . .
...

...
S(2) S(3) · · · S(p) 0
S(1) S(2) · · · S(p−1) S(p)

 . (32)

The Fast Ramaswami’s Formula consists of the set of equations defined in
Eq.(30) and Eq.(31). The effectiveness of the representation of the Ramaswami’s
formula in the form of Eq.(30) and Eq.(31) comes from the special structure of
matrices Y and Z. The matrix Y is an upper block triangular Toeplitz ma-
trix and the matrix Z is a lower block triangular Toeplitz matrix. Using fast
Fourier transforms one can compute efficiently the inverse of a Toeplitz matrix
or the multiplication of a vector with a Toeplitz matrix [19]. Although the use
of Fourier transforms for matrix operations may result in numerical instabilities,
in numerous test cases the above algorithm has not experienced instability [19,
21].
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4.4 ETAQA-M/G/1

Etaqa[31] is an aggregation-based technique that computes only π(0), π(1) and∑∞
i=2 π

(i) for an M/G/1-type processes by solving a finite system of linear equa-
tions. Distinctively from the classic techniques of solving M/G/1-type processes,
this method recasts the problem into that of solving a finite linear system in
m + 2n unknowns, where m is the number of states in the boundary portion of
the process and n is the number of states in each of the repetitive “levels” of the
state space, and are able to obtain exact results. The ETAQA methodology uses
basic, well-known results for Markov chains. Assuming that the state space S is
partitioned into sets S(j), j ≥ 0, instead of evaluating the probability distribu-
tion of all states in each S(j), we calculate the aggregate probability distribution
of n classes of states T (i), 1 ≤ i ≤ n, appropriately defined (see Figure 6).
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Fig. 6. Aggregation of an infinite S into a finite number of states.

The following theorem formalizes the basic ETAQA result.

Theorem 1. [Etaqa] Given an ergodic CTMC with infinitesimal generator
QM/G/1 having the structure shown in Eq.(1), with stationary probability vector
π = [π(0),π(1),π(2), ...] the system of linear equations

x ·X = [1,0] (33)

where X ∈ IR(m+2n)×(m+2n) is defined as follows

X =



1T L̂ F̂(1) −
∞∑
i=3

Ŝ(i) ·G (
∞∑
i=2

F̂(i) + (
∞∑
i=3

Ŝ(i) ·G)�

1T B̂ L−
∞∑
i=2

S(i) ·G (
∞∑
i=1

F(i) +
∞∑
i=2

S(i) ·G)�

1T 0 B−
∞∑
i=1

S(i) ·G (
∞∑
i=1

F(i) + L+
∞∑
i=1

S(i) ·G)�


(34)

admits a unique solution x = [π(0), π(1), π(∗)], where π(∗) =
∑∞
i=2 π

(i).

Etaqa approach is in the same spirit as the one presented in [5,4] for the
exact solution of a very limited class of QBD and M/G/1-type Markov chains,
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but in distinct contrast to these works, the above theorem does not require any
restriction on the form of the chain’s repeating pattern, thus can be applied to
any type of M/G/1 chain.

Etaqa provides a recursive approach to compute metrics of interest once
π(0), π(1), and π(∗) have been computed. We consider measures that can be
expressed as the expected reward rate:

r =
∞∑
j=0

∑
i∈S(j)

ρ
(j)
i π

(j)
i ,

where ρ(j)i is the reward rate of state s
(j)
i . For example, to compute the expected

queue length in steady state, where S(j) represents the system states with j

customers in the queue, we let ρ(j)i = j. To compute the second moment of the
queue length, we let ρ(j)i = j2.

Since our solution approach obtains π(0), π(1), and
∑∞
j=2 π

(j), we rewrite r
as

r = π(0)ρ(0)T + π(1)ρ(1)T +
∞∑
j=2

π(j)ρ(j)T ,

where ρ(0) = [ρ(0)1 , . . . ,ρ
(0)
m ] and ρ(j) = [ρ(j)1 , . . . ,ρ

(j)
n ], for j ≥ 1. Then, we

must show how to compute the above summation without explicitly using the
values of π(j) for j ≥ 2. We can do so if the reward rate of state s

(j)
i , for j ≥ 2

and i = 1, . . . , n, is a polynomial of degree k in j with arbitrary coefficients
a[0]i ,a[1]i , . . . ,a[k]i :

∀j ≥ 2, ∀i ∈ {1, 2, . . . , n}, ρ
(j)
i = a[0]i + a[1]i j + · · ·+ a[k]i jk. (35)

The definition of ρ(j)i illustrates that the set of measures of interest that one can
compute includes any moment of the probability vector π as long as the reward
rate of the ith state in each set S(j) has the same polynomial coefficients for all
j ≥ 2.

We compute
∑∞
j=2 π

(j)ρ(j)T as follows∑∞
j=2 π

(j)ρ(j)
T

=
∑∞
j=2 π

(j)
(
a[0] + a[1]j + · · ·+ a[k]jk

)T
= r[0]a[0]T + r[1]a[1]T + · · ·+ r[k]a[k]T ,

(36)

and the problem is reduced to the computation of r[l] =
∑∞
j=2 j

lπ(j), for l =
0, . . . , k. We show how r[k], k > 0, can be computed recursively, starting from
r[0], which is simply π(∗).

r[k] · [(B + L +
∞∑
j=1

F(j))� | (
∞∑
j=1

jkF(j) −B)1T ] = [b[k] | c[k]], (37)

where the definitions of b[k], c[k], F̂[k,j,h], and F[k,j,h] are as follows

b[k] = −
(
π(0)F̂[k,1,1] + π(1)(2kL + F[k,1,2]) +

k∑
l=1

(
k
l

)
r[k−l](L + F[l,1,1])

)
,
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c[k]=−(π(0)
∞∑
j=2

jkF̂[0,j,0]1
T+π(1)

∞∑
j=1

(j+1)kF[0,j,0]1
T+

k∑
l=1

(
k
l

)
r[k−l]

∞∑
j=1

jlF[0,j,0]1
T )

F̂[k,j,h] =
∞∑
l=j

(l + h)k · F̂(l), F[k,j,h] =
∞∑
l=j

(l + h)k · F(l), j ≥ 1.

As an example, we consider r[1], which is used to compute measures such as the
first moment of the queue length. In this case,

b[1] = −π(0)
∞∑
j=1

(j + 1)F̂(j)−π(1)(2L+
∞∑
j=1

(j + 2)F(j))−π(∗)(L+
∞∑
j=1

(j + 1)F(j))

c[1] = −π(0)
∞∑
j=2

jF̂[0,j]1T − π(1)
∞∑
j=1

(j + 1)F[0,j]1T − π(∗)
∞∑
j=1

jF[0,j]1T

5 Conditions for Stability

We briefly review the conditions that enable us to assert that the CTMC de-
scribed by the infinitesimal generator QM/G/1 in Eq.(1) is stable, that is, admits
a probability vector satisfying πQM/G/1 = 0 and π1T = 1.

First observe that the matrix Q̃ = B + L +
∑∞
j=1F

(j) is an infinitesimal
generator, since it has zero row sums and non-negative off-diagonal entries. The
conditions for stability depend on the irreducibility of matrix Q̃.

If Q̃ is irreducible then there exists a unique positive vector π̃ that satisfies
the equations π̃Q̃ = 0 and π̃1T = 1. In this case, the stability condition for the
M/G/1-type process with infinitesimal generator QM/G/1 [26] is given by the
following inequality

π̃(L +
∞∑
j=1

(j + 1)F(j))1T = π̃(L +
∞∑
j=1

F(j))1T + π̃
∞∑
j=1

jF(j)1T < 0.

Since B + L +
∑∞
j=1F

(j) is an infinitesimal generator, then (B + L +∑∞
j=1F

(j))1T = 0. By substituting in the condition for stability the term
(L +

∑∞
j=1F

(j))1T with its equal (−B1T ), the condition for stability can be
re-written as:

π̃

∞∑
j=1

jF(j)1T < π̃B1T . (38)

As in the scalar case, the equality in the above relation results in a null-recurrent
CTMC.

In the example of the BMAP1/Cox2/1 queue depicted in Figure 3 the in-
finitesimal generator Q̃ and its stationary probability vector are

Q̃ =
[−0.8µ 0.8µ

γ − γ

]
and π̃ =

[
γ

γ + 0.8µ
,

0.8µ
γ + 0.8µ

]
,

while
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∞∑
j=1

jF(j) =
[

4λ 0
0 4λ

]
.

The stability condition is expressed as[
γ

γ + 0.8µ
,

0.8µ
γ + 0.8µ

]
·
[
4λ 0
0 4λ

]
·
[
1
1

]
<

[
γ

γ + 0.8µ
,

0.8µ
γ + 0.8µ

]
·
[
0.2µ 0
γ 0

]
·
[
1
1

]
,

which can be written in the following compact form

4λ <
µ · γ

0.8µ + γ
.

If Q̃ is reducible, then the stability condition is different. By identifying the
absorbing states in Q̃, its state space can be rearranged as follows

Q̃ =


C1 0 · · · 0 0
0 C2 · · · 0 0
...

...
. . .

... 0
0 0 · · · Ck 0
D1 D2 · · · Dk D0

 , (39)

where the blocks Ch for 1 ≤ h ≤ k are irreducible and infinitesimal genera-
tors. Since the matrices B, L and F(i) for i ≥ 1 have non-negative off-diagonal
elements, they can be restructured similarly and have block components BCh

,
BDl

, LCh , LDl , and F(i)
Ch

, F(i)
Dl

for 1 ≤ h ≤ k, 0 ≤ l ≤ k, and i ≥ 1.
This implies that each of the sets S(i) for i ≥ 1 is partitioned into subsets that

communicate only through the boundary portion of the process, i.e., states in
S(0). The stability condition in Eq.(38) should be satisfied by all the irreducible
blocks identified in Eq.(39) in order for the M/G/1-type process to be stable as
summarized below:

π̃(h)
∞∑
j=1

jF(i)
Ch

1T < π̃(h)BCh
1T ∀1 ≤ h ≤ k. (40)

6 MAMSolver: A Matrix-Analytic Methods Tool

In this section we briefly describe the MAMSolver [32] software tool9 for the
solution of M/G/1-type, GI/M/1-type, and QBD processes. MAMSolver is a
collection of the most efficient solution methodologies for M/G/1-type, GI/M/1-
type, and QBD processes. In contrast to existing tools such as MAGIC [36] and
MGMTool [10], which provide solutions only for QBD processes, MAMSolver
provides implementations for the classical and the most efficient algorithms that
solve M/G/1-type, GI/M/1-type, and QBD processes. The solution provided by
MAMSolver consists of the stationary probability vector for the processes under
9 Available at http://www.cs.wm.edu/MAMSolver/
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study, the queue length and queue length distribution, as well as probabilistic
indicators for the queueing model such as the caudal characteristic [16].

MAMSolver provides solutions for both DTMCs and CTMCs. The matrix-
analytic algorithms are defined in terms of matrices, making matrix manipula-
tions and operations the basic elements of the tool. The input to MAMSolver,
in the form of a structured text file, indicates the method to be used for the
solution and the finite set of matrices that accurately describe the process to be
solved. Several tests are performed within the tool to insure that special cases
are treated separately and therefore efficiently.

To address possible numerical problems that may arise during matrix op-
erations, we use well known and heavily tested routines provided by the La-
pack and BLAS packages10. Methods such as LU-decomposition, GMRES, and
BiCGSTAB are used for the solution of systems of linear equations.

The solution of QBD processes starts with the computation of the matrix
R using the logarithmic reduction algorithm [16]. However for completeness
we provide also the classical iterative algorithm. There are cases when G (and
R) can be computed explicitly [28]. We check if the conditions for the explicit
computation hold in order to simplify and speedup the solution. The available
solution methods for QBD processes are matrix-geometric and Etaqa.

The classic matrix geometric solution is implemented to solve GI/M/1 pro-
cesses. The algorithm goes first through the classic iterative procedure to com-
pute R (to our knowledge, there is no alternative more efficient one). Then, it
computes the boundary part of the stationary probability vector. Since there
exists a geometric relation between vectors π(i) for i ≥ 1, there is no need to
compute the whole stationary probability vector.

M/G/1 processes require the computation of matrix G. More effort has
been placed on efficient solution of M/G/1 processes. MAMSolver provides the
classic iterative algorithm, the cyclic-reduction algorithm, and the explicit one
for special cases. The stationary probability vector is computed recursively using
either Ramaswami’s formula or its fast FFT version. Etaqa is the other available
alternative for the solution of M/G/1 processes.

For a set of input and output examples and the source code of MAMSolver,
we point the interested reader to the tool’s website
http://www.cs.wm.edu/MAMSolver/.

7 Concluding Remarks

In this tutorial, we derived the basic matrix analytic results for the solution of
M/G/1-type Markov processes. Via simple examples and from first principles,
we illustrated why the solution of QBD and GI/M/1-type processes is simpler
than the solution of M/G/1-type processes. We direct the interested reader in
the two books of Neuts [25,26] for further reading as well as to the book of
Latouche and Ramaswami [16]. Our target was to present enough material for
10 Available from http://www.netlib.org.
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a modeler to solve performance models with embedded Markov chains of the
M/G/1 form.
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Appendix A: Stochastic Complementation

Here, we briefly outline the concept of stochastic complementation [22]. While
[22] introduces the concept of stochastic complementation for DTMCs with finite
state spaces we define it instead for the infinite case, a straightforward extension,
and state the results in terms of CTMCs.

Partition the state space S of an ergodic CTMC with infinitesimal generator
matrix Q and stationary probability vector π, satisfying πQ = 0, into two
disjoint subsets, A and A.

Definition 1. [22] (Stochastic complement) The stochastic com-
plement of A is

Q = Q[A,A] + Q[A,A](−Q[A,A])−1Q[A,A], (41)

where (−Q[A,A])−1[r, c] represents the mean time spent in state c ∈
A, starting from state r ∈ A, before reaching any state in A, and
((−Q[A,A])−1Q[A,A])[r, c′] represents the probability that, starting
from r ∈ A, we enter A through state c′. ✷

The stochastic complement Q is the infinitesimal generator of a new CTMC
which mimics the original CTMC but “skips over” states in A. The following
theorem formalizes this concept.

Theorem 2. [22] The stochastic complement Q of A is an infinitesimal gener-
ator and is irreducible if Q is. If α is its stationary probability vector satisfying
αQ = 0, then α = Norm(π[A]). ✷

This implies that the stationary probability distribution α of the stochastic
complement differs from the corresponding portion of the stationary distribution
of the original CTMC π[A] only by the constant π[A]1T , which represents the
probability of being in A in the original CTMC.

There are cases where we can take advantage of the special structure of the
CTMC and explicitly generate the stochastic complement of a set of states A. To
consider these cases, rewrite the definition of stochastic complement in Eq.(41)
as

Q = Q[A,A] + RowSum(Q[A,A])Z, (42)

where Z = Norm(Q[A,A]) (−Q[A,A])−1Q[A,A]. The rth diagonal element of
RowSum(Q[A,A]) represents the rate at which the set A is left from its rth
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state to reach any of the states in A, while the rth row of Z, which sums to one,
specifies how this rate should be redistributed over the states in A when the
process eventually reenters it.

Lemma 1. (Single entry) If A can be entered from A only through
a single state c ∈ A, the matrix Z defined in Eq. (42) is trivially com-
putable: it is a matrix of zeros except for its cth column, which contains
all ones. ✷

b

a

c

d

e

α

β

γ

µλ

ν

τ
δ

b

a

c

e

α

β µλ

τ
δ

d

ν
γ

(b)(a)

Fig. 7. Stochastic Complementation for a finite Markov chain.

We choose the simple finite Markov chain depicted in Figure 7(a) to explain the
concept of stochastic complementation. The state space of this Markov chain is
S = {a, b, c, d, e}. We construct the stochastic complement of the states in set
A = {a, b, c} (A = {d, e}), as shown in Figure 7(b). The matrices used in Eq.(41)
for this example are:

Q[A,A] =

−(α + ν) α 0
β −(γ + β) 0
δ 0 −δ

 , Q[A,A] =

 0 ν
γ 0
0 0

 ,
Q[A,A] =

[
0 0 0
0 0 τ

]
, Q[A,A] =

[−µ µ
λ −(λ + τ)

]
.

Observe that in this case one can apply Lemma 1 to trivially construct the
stochastic complement, since A is entered from states in A only through state
c. There are only two transitions from states in A to states in A; the transition
with rate γ from state b to state d and the transition with rate ν from state a to
state e. These two transitions are folded back into A through state c, which is
the single entry in A. The following derivation shows that because of the special
single entry state the two folded transitions have the original rates, γ and ν
respectively.

Z = Norm(Q[A,A])(−Q[A,A])−1Q[A,A] =
[
0 1
1 0
0 0

]
·
[
λ+τ
µτ

1
τ

λ
µτ

1
τ

]
·
[
0 0 0
0 0 τ

]
=

[
0 0 1
0 0 1
0 0 0

]
,

which further results in:
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RowSum(Q[A,A]) · Z =

ν 0 0
0 γ 0
0 0 0

 ·
0 0 1

0 0 1
0 0 0

 =

0 0 ν
0 0 γ
0 0 0

 .
Appendix B: Explicit Computation of R

QBD processes are defined as the intersection of M/G/1 and GI/M/1-type pro-
cesses. Hence, both matrix G (characteristic for M/G/1) and matrix R (char-
acteristic for GI/M/1) can be defined for a QBD process as solutions of the
following quadratic equations [16]:

B + LG + FG2 = 0, F + RL + R2B = 0.

If matrix-geometric is used to solve a QBD process then the relation between
π(i) and π(i−1) for i > 1 is expressed in terms of R

π(i) = π(i−1R,

If matrix-analytic is the solution method then the relation between π(i) and
π(i−1) is based on Ramaswami’s recursive formula:

π(i) = −π(i−1)S(1)(S(0))−1,

where S(1) = F and S(0) = (L + FG), i.e., the only auxiliary sums (see Subsec-
tion 4.1) used in the solution of M/G/1 processes that are defined for a QBD
process. The above equations allow the derivation of the fundamental relation
between R and G [16, pages 137-8],

R = −F(L + FG)−1. (43)

Obviously, for the case of QBD processes, knowing G (or R) implies a direct
computation of R (or G). Computing G is usually easier than computing R:
G’s computation is a prerequisite to the computation of R in the logarithmic
reduction algorithm, the most efficient algorithm to compute R [16]. If B can
be expressed as a product of two vectors

B = α · β,

where, without loss of generality β is assumed to be a normalized vector, then
G and R can be explicitly obtained as

G = 1 · β, R = −F(L + F1 · β)−1.

Representative examples, where the above condition holds, are the queues
M/Cox/1, M/Hr/1, and M/Er/1, whose service process is Coxian, Hyperex-
ponential, and Erlang distribution respectively.
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