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1 Introduction

There are many computer, communication and manufacturing systems which
give rise to queueing models where the arrival and/or service mechanisms are
influenced by some external processes. In such models, a single unbounded queue
evolves in an environment which changes state from time to time. The instanta-
neous arrival and service rates may depend on the state of the environment and
also, to a limited extent, on the number of jobs present.

The system state at time t is described by a pair of integer random variables,
(It, Jt), where It represents the state of the environment and Jt is the num-
ber of jobs present. The variable It takes a finite number of values, numbered
0, 1, . . . , N ; these are also called the environmental phases. The possible values
of Jt are 0, 1, . . .. Thus, the system is in state (i, j) when the environment is in
phase i and there are j jobs waiting and/or being served.

The two-dimensional process X = {(It, Jt) ; t ≥ 0} is assumed to have the
Markov property, i.e. given the current phase and number of jobs, the future
behaviour of X is independent of its past history. Such a model is referred to
as a Markov-modulated queue (see, for example, Prabhu and Zhu [21]). The
corresponding state space, {0, 1, . . . , N} × {0, 1, . . .} is known as a lattice strip.

A fully general Markov-modulated queue, with arbitrary state-dependent
transitions, is not tractable. However, one can consider a sub-class of models
which are sufficiently general to be useful, and yet can be solved efficiently. We
shall introduce the following restrictions:

(i) There is a threshold M , such that the instantaneous transition rates out of
state (i, j) do not depend on j when j ≥M .

(ii) the jumps of the random variable J are bounded.

When the jumps of the random variable J are of size 1, i.e. when jobs arrive
and depart one at a time, the process is said to be of the Quasi-Birth-and-Death
type, or QBD (the term skip-free is also used, e.g. in Latouche et al. [12]). The
state diagram for this common model, showing some transitions out of state
(i, j), is illustrated in figure 1.

The requirement that all transition rates cease to depend on the size of the job
queue beyond a certain threshold is not too restrictive. Note that we impose no
limit on the magnitude of the threshold M , although it must be pointed out that

M.C. Calzarossa and S. Tucci (Eds.): Performance 2002, LNCS 2459, pp. 17–35, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



18 I. Mitrani

j + 1

j

j − 1

1

0

Ni10

❅
❅
❅�

�
�
�✠

�
�
�✠

❅
❅
❅�

✛
✲✲

✛

✻

❄

❄

✻

� � ��

� ���

� � ��

� � ��

� ���

Fig. 1. State diagram of a QBD process

the larger M is, the greater the complexity of the solution. Similarly, although
jobs may arrive and/or depart in fixed or variable (but bounded) batches, the
larger the batch size, the more complex the solution.

The object of the analysis of a Markov-modulated queue is to determine the
joint steady-state distribution of the environmental phase and the number of
jobs in the system:

pi,j = lim
t→∞P (It = i , Jt = j) ; i = 0, 1, . . . , N ; j = 0, 1, . . . . (1)

That distribution exists for an irreducible Markov process if, and only if, the
corresponding set of balance equations has a positive solution that can be nor-
malized.

The marginal distributions of the number of jobs in the system, and of the
phase, can be obtained from the joint distribution:

p·,j =
N∑
i=0

pi,j . (2)
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pi,· =
∞∑
j=0

pi,j . (3)

Various performance measures can then be computed in terms of these joint and
marginal distributions.

There are three ways of solving Markov-modulated queueing models exactly.
Perhaps the most widely used one is the matrix-geometric method [18]. This
approach relies on determining the minimal positive solution, R, of a non-linear
matrix equation; the equilibrium distribution is then expressed in terms of pow-
ers of R.

The second method uses generating functions to solve the set of balance
equations. A number of unknown probabilities which appear in the equations for
those generating functions are determined by exploiting the singularities of the
coefficient matrix. A comprehensive treatment of that approach, in the context
of a discrete-time process with an M/G/1 structure, is presented in Gail et al.
[5].

The third (and arguably best) method is the subject of this tutorial. It is
called spectral expansion, and is based on expressing the equilibrium distribution
of the process in terms of the eigenvalues and left eigenvectors of a certain matrix
polynomial. The idea of the spectral expansion solution method has been known
for some time (e.g., see Neuts [18]), but there are rather few examples of its
application in the performance evaluation literature. Some instances where that
solution has proved useful are reported in Elwalid et al. [3], and Mitrani and
Mitra [17]; a more detailed treatment, including numerical results, is presented
in Mitrani and Chakka [16]. More recently, Grassmann [7] has discussed models
where the eigenvalues can be isolated and determined very efficiently. Some
comparisons between the spectral expansion and the matrix-geometric solutions
can be found in [16] and in Haverkort and Ost [8]. The available evidence suggests
that, where both methods are applicable, spectral expansion is faster even if the
matrix R is computed by the most efficient algorithm.

The presentation in this tutorial is largely based on the material in chapter
6 of [13] and chapter 13 of [14].

Before describing the details of the spectral expansion solution, it would be
instructive to show some examples of systems which are modelled as Markov-
modulated queues.

2 Examples of Markov-Modulated Queues

We shall start with a few models of the Quasi-Birth-and-Death type, where the
queue size increases and decreases in steps of 1.

2.1 A Multiserver Queue with Breakdowns and Repairs

A single, unbounded queue is served by N identical parallel servers. Each server
goes through alternating periods of being operative and inoperative, indepen-
dently of the others and of the number of jobs in the system. The operative
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and inoperative periods are distributed exponentially with parameters ξ and η,
respectively. Thus, the number of operative servers at time t, It, is a Markov
process on the state space {0, 1, . . . , N}. This is the environment in which the
queue evolves: it is in phase i when there are i operative servers (see [15,20]).

Jobs arrive according to a Markov-Modulated Poisson Process controlled by
It. When the phase is i, the instantaneous arrival rate is λi. Jobs are taken for
service from the front of the queue, one at a time, by available operative servers.
The required service times are distributed exponentially with parameter µ. An
operative server cannot be idle if there are jobs waiting to be served. A job
whose service is interrupted by a server breakdown is returned to the front of
the queue. When an operative server becomes available, the service is resumed
from the point of interruption, without any switching overheads. The flow of
jobs is shown in figure 2.
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Fig. 2. A multiserver queue with breakdowns and repairs

The process X = {(It, Jt) ; t ≥ 0} is QBD. The transitions out of state (i, j)
are:

(a) to state (i− 1, j) (i > 0), with rate iξ;
(b) to state (i + 1, j) (i < N), with rate (N − i)η;
(c) to state (i, j + 1) with rate λi;
(d) to state (i, j − 1) with rate min(i, j)µ.

Note that only transition (d) has a rate which depends on j, and that dependency
vanishes when j ≥ N .
Remark. Even if the breakdown and repair processes were more compli-

cated, e.g., if servers could break down and be repaired in batches, or if a
server breakdown triggered a job departure, the queueing process would still
be QBD. The environmental state transitions can be arbitrary, as long as the
queue changes in steps of 1.



Spectral Expansion Solutions for Markov-Modulated Queues 21

In this example, as in all models where the environment state transitions do
not depend on the number of jobs present, the marginal distribution of the num-
ber of operative servers can be determined without finding the joint distribution
first. Moreover, since the servers break down and are repaired independently of
each other, that distribution is binomial:

pi,· =
(

N
i

)(
η

ξ + η

)i(
ξ

ξ + η

)N−i
; i = 0, 1, . . . , N . (4)

Hence, the steady-state average number of operative servers is equal to

E(Xt) =
Nη

ξ + η
. (5)

The overall average arrival rate is equal to

λ =
N∑
i=0

pi,·λi . (6)

This gives us an explicit condition for stability. The offered load must be less
than the processing capacity:

λ

µ
<

Nη

ξ + η
. (7)

2.2 Manufacturing Blocking

Consider a network of two nodes in tandem, such as the one in figure 3. Jobs
arrive into the first node in a Poisson stream with rate λ, and join an unbounded
queue. After completing service at node 1 (exponentially distributed with pa-
rameter µ ), they attempt to go to node 2, where there is a finite buffer with
room for a maximum of N−1 jobs (including the one in service). If that transfer
is impossible because the buffer is full, the job remains at node 1, preventing its
server from starting a new service, until the completion of the current service at
node 2 (exponentially distributed with parameter ξ ). In this last case, server 1
is said to be ‘blocked’. Transfers from node 1 to node 2 are instantaneous (see
[1,19]).
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Fig. 3. Two nodes with a finite intermediate buffer
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The above type of blocking is referred to as ‘manufacturing blocking’. (An
alternative model, which also gives rise to a Markov-modulated queue, is the
‘communication blocking’. There node 1 does not start a service if the buffer is
full.)

In this system, the unbounded queue at node 1 is modulated by a finite-state
environment defined by node 2. We say that the environment, It, is in state i if
there are i jobs at node 2 and server 1 is not blocked (i = 0, 1, . . . , N − 1). An
extra state, It = N , is needed to describe the situation where there are N − 1
jobs at node 2 and server 1 is blocked.

The above assumptions imply that the pair X = {(It, Jt) ; t ≥ 0}, where Jt
is the number of jobs at node 1, is a QBD process. Note that the state (N, 0)
does not exist: node 1 may be blocked only if there are jobs present.

The transitions out of state (i, j) are:

(a) to state (i− 1, j) (0 < i < N), with rate ξ;
(b) to state (N − 1, j − 1) (i = N, j > 0), with rate ξ;
(c) to state (i + 1, j − 1) (0 ≤ i < N − 1, j > 0), with rate µ;
(d) to state (N, j) (i = N − 1, j > 0), with rate µ;
(e) to state (i, j + 1) with rate λ.

The only dependency on j comes from the fact that transitions (b), (c) and (d)
are not available when j = 0. In this example, the j-independency threshold is
M = 1.

Because the environmental process is coupled with the queueing process, the
marginal distribution of the former (i.e., the number of jobs at node 2), cannot
be determined without finding the joint distribution of It and Jt. Nor is the
stability condition as simple as in the previous example.

2.3 Phase-Type Distributions

There is a large and useful family of distributions that can be incorporated into
queueing models by means of Markovian environments. Those distributions are
‘almost’ general, in the sense that any distribution function either belongs to
this family or can be approximated as closely as desired by functions from it.

Let It be a Markov process with state space {0, 1, . . . , N} and generator
matrix Ã. States 0, 1, . . . , N −1 are transient, while state N , reachable from any
of the other states, is absorbing (the last row of Ã is 0). At time 0, the process
starts in state i with probability αi (i = 0, 1, . . . , N−1; α1+α2+. . .+αN−1 = 1).
Eventually, after an interval of length T , it is absorbed in state N . The random
variable T is said to have a ‘phase-type’ (PH) distribution with parameters Ã
and αi (see [18]).

The exponential distribution is obviously phase-type (N = 1). So is the
Erlang distribution—the convolution of N exponentials (exercise 5 in section
2.3). The corresponding generator matrix is
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Ã =




−µ µ
−µ µ

. . . . . .
−µ µ

0


 ,

and the initial probabilities are α0 = 1, α1 = . . . = αN−1 = 0.
Another common PH distribution is the ‘hyperexponential’, where I0 = i

with probability αi, and absorbtion occurs at the first transition. The generator
matrix of the hyperexponential distribution is

Ã =




−µ0 µ0
−µ1 µ1

. . .
...

−µN−1 µN−1
0


 .

The corresponding probability distribution function, F (x), is a mixture of expo-
nentials:

F (x) = 1−
N−1∑
i=0

αie
−µix .

The PH family is very versatile. It contains distributions with both low and
high coefficients of variation. It is closed with respect to mixing and convolution:
if X1 and X2 are two independent PH random variables with N1 and N2 (non-
absorbing) phases respectively, and c1 and c2 are constants, then c1X1 + c2X2
has a PH distribution with N1 + N2 phases.

A model with a single unbounded queue, where either the interarrival in-
tervals, or the service times, or both, have PH distributions, is easily cast in
the framework of a queue in Markovian environment. Consider, for instance, the
M/PH/1 queue. Its state at time t can be represented as a pair (It, Jt), where Jt
is the number of jobs present and It is the phase of the current service (if Jt > 0).
When It has a transition into the absorbing state, the current service completes
and (if the queue is not empty) a new service starts immediately, entering phase
i with probability αi.

The PH/PH/n queue can also be represented as a QBD process. However,
the state of the environmental variable, It, now has to indicate the phase of the
current interarrival interval and the phases of the current services at all busy
servers. If the interarrival interval has N1 phases and the service has N2 phases,
the state space of It would be of size N1N

n
2 .

2.4 Checkpointing and Recovery in the Presence of Faults

The last example is not a QBD process. Consider a system where transactions,
arriving according to a Poisson process with rate λ, are served in FIFO order by
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a single server. The service times are i.i.d. random variables distributed exponen-
tially with parameter µ. After N consecutive transactions have been completed,
the system performs a checkpoint operation whose duration is an i.i.d. random
variable distributed exponentially with parameter β. Once a checkpoint is es-
tablished, the N completed transactions are deemed to have departed. However,
both transaction processing and checkpointing may be interrupted by the occur-
rence of a fault. The latter arrive according to an independent Poisson process
with rate ξ. When a fault occurs, the system instantaneously rolls back to the
last established checkpoint; all transactions which arrived since that moment
either remain in the queue, if they have not been processed, or return to it,
in order to be processed again (it is assumed that repeated service times are
resampled independently) (see [11,8]).

This system can be modelled as an unbounded queue of (uncompleted) trans-
actions, which is modulated by an environment consisting of completed trans-
actions and checkpoints. More precisely, the two state variables, I(t) and J(t),
are the number of transactions that have completed service since the last check-
point, and the number of transactions present that have not completed service
(including those requiring re-processing), respectively.

The Markov-modulated queueing process X = {[I(t), J(t)] ; t ≥ 0}, has the
following transitions out of state (i, j):

(a) to state (0, j + i), with rate ξ;
(b) to state (0, j) (i = N), with rate β;
(c) to state (i, j + 1), with rate λ;
(d) to state (i + 1, j − 1) (0 ≤ i < N, j > 0), with rate µ;

Because transitions (a), resulting from arrivals of faults, cause the queue size
to jump by more than 1, this is not a QBD process.

3 Spectral Expansion Solution

Let us now turn to the problem of determining the steady-state joint distribu-
tion of the environmental phase and the number of jobs present, for a Markov-
modulated queue. We shall start with the most commonly encountered case,
namely the QBD process, where jobs arrive and depart singly. The starting
point is of course the set of balance equations which the probabilities pi,j , de-
fined in 1, must satisfy. In order to write them in general terms, the following
notation for the instantaneous transition rates will be used.

(a) Phase transitions leaving the queue unchanged: from state (i, j) to state
(k, j) (0 ≤ i, k ≤ N ; i �= k), with rate aj(i, k);

(b) Transitions incrementing the queue: from state (i, j) to state (k, j + 1) (0 ≤
i, k ≤ N), with rate bj(i, k);

(c) Transitions decrementing the queue: from state (i, j) to state (k, j − 1) (0 ≤
i, k ≤ N ; j > 0), with rate cj(i, k).
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It is convenient to introduce the (N + 1)× (N + 1) matrices containing the
rates of type (a), (b) and (c): Aj = [aj(i, k)], Bj = [bj(i, k)] and Cj = [cj(i, k)],
respectively (the main diagonal of Aj is zero by definition; also, C0 = 0 by
definition). According to the assumptions of the Markov-modulated queue, there
is a threshold, M (M ≥ 1), such that those matrices do not depend on j when
j ≥M . In other words,

Aj = A ; Bj = B ; Cj = C , j ≥M . (8)

Note that transitions (b) may represent a job arrival coinciding with a change
of phase. If arrivals are not accompanied by such changes, then the matrices
Bj and B are diagonal. Similarly, a transition of type (c) may represent a job
departure coinciding with a change of phase. Again, if such coincidences do not
occur, then the matrices Cj and C are diagonal.

By way of illustration, here are the transition rate matrices for some of the
examples in the previous subsection.

Multiserver Queue with Breakdowns and Repairs

Since the phase transitions are independent of the queue size, the matrices Aj
are all equal:

Aj = A =




0 Nη
ξ 0 (N − 1)η

2ξ 0
. . .

. . . . . . η
Nξ 0




.

Similarly, the matrices Bj do not depend on j:

B =



λ0

λ1
. . .

λN


 .

Denoting
µi,j = min(i, j)µ ; i = 0, 1, . . . , N ; j = 1, 2, . . . ,

the departure rate matrices, Cj , can thus be written as

Cj =




0
µ1,j

. . .
µN,j


 ; j = 1, 2, . . . ,
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These matrices cease to depend on j when j ≥ N . Thus, the threshold M is now
equal to N , and

C =




0
µ

. . .
Nµ


 .

Manufacturing Blocking

Remember that the environment changes phase without changing the queue size
either when a service completes at node 2 and node 1 is not blocked, or when
node 1 becomes blocked (if node 1 is already blocked, then a completion at node
2 changes both phase and queue size). Hence, when j > 0,

Aj = A =




0 0
ξ 0 0

. . . . . . . . .
ξ 0 µ

0 0


 ; j = 1, 2, . . . .

When node 1 is empty (j = 0), it cannot become blocked; the state (N, 0)
does not exist and the matrix A0 has only N rows and columns:

A0 =




0
ξ 0

. . . . . .
ξ 0


 ;

Since the arrival rate into node 1 does not depend on either i or j, we have
Bj = B = λI, where I is the identity matrix of order N + 1. The departures
from node 1 (which can occur when i �= N − 1) are always accompanied by
environmental changes: from state (i, j) the system moves to state (i + 1, j − 1)
with rate µ for i < N − 1; from state (N, j) to state (N − 2, j − 1) with rate ξ.
Hence, the departure rate matrices do not depend on j and are equal to

Cj = C =




0 µ
0 0 µ

. . . . . .

. . . 0 µ
0 0 0
ξ 0 0




.
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Balance Equations

Using the instantaneous transition rates defined at the beginning of this section,
the balance equations of a general QBD process can be written as

pi,j

N∑
k=0

[aj(i, k) + bj(i, k) + cj(i, k)]

=
N∑
k=0

[pk,jaj(k, i) + pk,j−1bj−1(k, i) + pk,j+1cj+1(k, i)] , (9)

where pi,−1 = b−1(k, i) = c0(i, k) = 0 by definition. The left-hand side of (9)
gives the total average number of transitions out of state (i, j) per unit time (due
to changes of phase, arrivals and departures), while the right-hand side expresses
the total average number of transitions into state (i, j) (again due to changes of
phase, arrivals and departures). These balance equations can be written more
compactly by using vectors and matrices. Define the row vectors of probabilities
corresponding to states with j jobs in the system:

vj = (p0,j , p1,j , . . . , pN,j) ; j = 0, 1, . . . . (10)

Also, let DA
j , DB

j and DC
j be the diagonal matrices whose i th diagonal element

is equal to the i th row sum of Aj , Bj and Cj , respectively. Then equations (9),
for j = 0, 1, . . ., can be written as:

vj [DA
j + DB

j + DC
j ] = vj−1Bj−1 + vjAj + vj+1Cj+1 , (11)

where v−1 = 0 and DC
0 = B−1 = 0 by definition.

When j is greater than the threshold M , the coefficients in (11) cease to
depend on j :

vj [DA + DB + DC ] = vj−1B + vjA + vj+1C , (12)

for j = M + 1,M + 2, . . ..
In addition, all probabilities must sum up to 1:

∞∑
j=0

vje = 1 , (13)

where e is a column vector with N + 1 elements, all of which are equal to 1.
The first step of any solution method is to find the general solution of the

infinite set of balance equations with constant coefficients, (12). The latter are
normally written in the form of a homogeneous vector difference equation of
order 2:

vjQ0 + vj+1Q1 + vj+2Q2 = 0 ; j = M,M + 1, . . . , (14)

where Q0 = B, Q1 = A−DA −DB −DC and Q2 = C. There is more than one
way of solving such equations.
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Associated with equation (14) is the so-called ‘characteristic matrix polyno-
mial’, Q(x), defined as

Q(x) = Q0 + Q1x + Q2x
2 . (15)

Denote by xk and uk the ‘generalized eigenvalues’, and corresponding ‘gen-
eralized left eigenvectors’, of Q(x). In other words, these are quantities which
satisfy

det[Q(xk)] = 0 ,

ukQ(xk) = 0 ; k = 1, 2, . . . , d , (16)
where det[Q(x)] is the determinant of Q(x) and d is its degree. In what follows,
the qualification generalized will be omitted.

The above eigenvalues do not have to be simple, but it is assumed that if
one of them has multiplicity m, then it also has m linearly independent left
eigenvectors. This tends to be the case in practice. So, the numbering in (16) is
such that each eigenvalue is counted according to its multiplicity.

It is readily seen that if xk and uk are any eigenvalue and corresponding left
eigenvector, then the sequence

vk,j = ukx
j−M
k ; j = M,M + 1, . . . , (17)

is a solution of equation (14). Indeed, substituting (17) into (14) we get

vk,jQ0 + vk,j+1Q1 + vk,j+2Q2 = xj−Mk uk[Q0 + Q1xk + Q2x
2
k] = 0 .

By combining any multiple eigenvalues with each of their independent eigen-
vectors, we thus obtain d linearly independent solutions of (14). On the other
hand, it is known that there cannot be more than d linearly independent solu-
tions. Therefore, any solution of (14) can be expressed as a linear combination
of the d solutions (17):

vj =
d∑
k=1

αkukx
j−M
k ; j = M,M + 1, . . . , (18)

where αk (k = 1, 2, . . . , d), are arbitrary (complex) constants.
However, the only solutions that are of interest in the present context are

those which can be normalized to become probability distributions. Hence, it
is necessary to select from the set (18), those sequences for which the series∑
vje converges. This requirement implies that if |xk| ≥ 1 for some k, then the

corresponding coefficient αk must be 0.
So, suppose that c of the eigenvalues of Q(x) are strictly inside the unit

disk (each counted according to its multiplicity), while the others are on the
circumference or outside. Order them so that |xk| < 1 for k = 1, 2, . . . , c. The
corresponding independent eigenvectors are u1, u2, . . ., uc. Then any normaliz-
able solution of equation (14) can be expressed as

vj =
c∑

k=1

αkukx
j−M
k ; j = M,M + 1, . . . , (19)

where αk (k = 1, 2, . . . , c), are some constants.
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Expression (19) is referred to as the ‘spectral expansion’ of the vectors vj .
The coefficients of that expansion, αk, are yet to be determined.

Note that if there are non-real eigenvalues in the unit disk, then they appear
in complex-conjugate pairs. The corresponding eigenvectors are also complex-
conjugate. The same must be true for the appropriate pairs of constants αk, in
order that the right-hand side of (19) be real. To ensure that it is also positive,
the real parts of xk, uk and αk should be positive.

So far, expressions have been obtained for the vectors vM , vM+1, . . .; these
contain c unknown constants. Now it is time to consider the balance equations
(11), for j = 0, 1, . . . ,M . This is a set of (M + 1)(N + 1) linear equations with
M(N+1) unknown probabilities (the vectors vj for j = 0, 1, . . . ,M−1), plus the
c constants αk. However, only (M +1)(N +1)−1 of these equations are linearly
independent, since the generator matrix of the Markov process is singular. On
the other hand, an additional independent equation is provided by (13).

In order that this set of linearly independent equations has a unique solution,
the number of unknowns must be equal to the number of equations, i.e. (M +
1)(N + 1) = M(N + 1) + c, or c = N + 1. This observation implies the following

Proposition 1 The QBD process has a steady-state distribution if, and only
if, the number of eigenvalues of Q(x) strictly inside the unit disk, each counted
according to its multiplicity, is equal to the number of states of the Markovian
environment, N+1. Then, assuming that the eigenvectors of multiple eigenvalues
are linearly independent, the spectral expansion solution of (12) has the form

vj =
N+1∑
k=1

αkukx
j−M
k ; j = M,M + 1, . . . . (20)

In summary, the spectral expansion solution procedure consists of the follow-
ing steps:

1. Compute the eigenvalues of Q(x), xk, inside the unit disk, and the corre-
sponding left eigenvectors uk. If their number is other than N + 1, stop; a
steady-state distribution does not exist.

2. Solve the finite set of linear equations (11), for j = 0, 1, . . . ,M , and (13),
with vM and vM+1 given by (20), to determine the constants αk and the
vectors vj for j < M .

3. Use the obtained solution in order to determine various moments, marginal
probabilities, percentiles and other system performance measures that may
be of interest.

Careful attention should be paid to step 1. The ‘brute force’ approach which
relies on first evaluating the scalar polynomial det[Q(x)], then finding its roots,
may be very inefficient for large N . An alternative which is preferable in most
cases is to reduce the quadratic eigenvalue-eigenvector problem

u[Q0 + Q1x + Q2x
2] = 0 , (21)
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to a linear one of the form uQ = xu, where Q is a matrix whose dimensions
are twice as large as those of Q0, Q1 and Q2. The latter problem is normally
solved by applying various transformation techniques. Efficient routines for that
purpose are available in most numerical packages.

This linearization can be achieved quite easily if the matrix C = Q2 is non-
singular. Indeed, after multiplying (21) on the right by Q−12 , it becomes

u[H0 + H1x + Ix2] = 0 , (22)

where H0 = Q0C
−1, H1 = Q1C

−1, and I is the identity matrix. By introducing
the vector y = xu, equation (22) can be rewritten in the equivalent linear form

[u,y]
[

0 −H0
I −H1

]
= x[u,y] . (23)

If C is singular but B is not, a similar linearization is achieved by multiplying
(21) on the right by B−1 and making a change of variable x → 1/x. Then the
relevant eigenvalues are those outside the unit disk.

If both B and C are singular, then the desired result is achieved by first
making a change of variable, x→ (γ +x)/(γ−x), where the value of γ is chosen
so that the matrix S = γ2Q2 + γQ1 + Q0 is non-singular. In other words, γ can
have any value which is not an eigenvalue of Q(x). Having made that change
of variable, multiplying the resulting equation by S−1 on the right reduces it to
the form (22).

The computational demands of step 2 may be high if the threshold M is large.
However, if the matrices Bj (j = 0, 1, . . . ,M−1) are non-singular (which is often
the case in practice), then the vectors vM−1,vM−2, . . . ,v0 can be expressed in
terms of vM and vM+1, with the aid of equations (11) for j = M,M − 1, . . . , 1.
One is then left with equations (11) for j = 0, plus (13) (a total of N + 1
independent linear equations), for the N + 1 unknowns xk.

Having determined the coefficients in the expansion (19) and the probabilities
pi,j for j < N , it is easy to compute performance measures. The steady-state
probability that the environment is in state i is given by

pi,· =
M−1∑
j=0

pi,j +
N+1∑
k=1

αkuk,i
1

1− xk
, (24)

where uk,i is the i th element of uk.
The conditional average number of jobs in the system, Li, given that the

environment is in state i, is obtained from

Li =
1
pi,·


M−1∑
j=1

jpi,j +
N+1∑
k=1

αkuk,i
M − (M − 1)xk

(1− xk)2


 . (25)

The overall average number of jobs in the system, L, is equal to

L =
N∑
i=0

pi,·Li . (26)
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The spectral expansion solution can also be used to provide simple estimates
of performance when the system is heavily loaded. The important observation
in this connection is that when the system approaches instability, the expansion
(19) is dominated by the eigenvalue with the largest modulus inside the unit
disk, xN+1. That eigenvalue is always real. It can be shown that when the offered
load is high, the average number of jobs in the system is approximately equal to
xN+1/(1− xN+1).

3.1 Batch Arrivals and/or Departures

Consider now a Markov-modulated queue which is not a QBD process, i.e. one
where the queue size jumps may be bigger than 1. As before, the state of the
process at time t is described by the pair (It, Jt), where It is the state of the
environment (the operational mode) and Jt is the number of jobs in the system.
The state space is the lattice strip {0, 1, . . . , N}×{0, 1, . . .}. The variable Jt may
jump by arbitrary, but bounded amounts in either direction. In other words, the
allowable transitions are:

(a) Phase transitions leaving the queue unchanged: from state (i, j) to state
(k, j) (0 ≤ i, k ≤ N ; i �= k), with rate aj(i, k);

(b) Transitions incrementing the queue by s: from state (i, j) to state (k, j + s)
(0 ≤ i, k ≤ N ; 1 ≤ s ≤ r1 ; r1 ≥ 1), with rate bj,s(i, k);

(c) Transitions decrementing the queue by s: from state (i, j) to state (k, j − s)
(0 ≤ i, k ≤ N ; 1 ≤ s ≤ r2 ; r2 ≥ 1), with rate cj,s(i, k),

provided of course that the source and destination states are valid.
Obviously, if r1 = r2 = 1 then this is a Quasi-Birth-and-Death process.
Denote by Aj = [aj(i, k)], Bj,s = [bj,s(i, k)] and Cj,s = [cj,s(i, k)], the tran-

sition rate matrices associated with (a), (b) and (c), respectively. There is a
threshold M , such that

Aj = A ; Bj,s = Bs ; Cj,s = Cs ; j ≥M . (27)

Defining again the diagonal matrices DA, DBs and DCs , whose i th diagonal
element is equal to the i th row sum of A, Bs and Cs, respectively, the balance
equations for j > M + r1 can be written in a form analogous to (12):

vj [DA +
r1∑
s=1

DBs +
r2∑
s=1

DCs ] =
r1∑
s=1

vj−sBs + vjA +
r2∑
s=1

vj+sCs . (28)

Similar equations, involving Aj , Bj,s and Cj,s, together with the corresponding
diagonal matrices, can be written for j ≤M + r1.

As before, (28) can be rewritten as a vector difference equation, this time of
order r = r1 + r2, with constant coefficients:

r∑
�=0

vj+�Q� = 0 ; j ≥M . (29)
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Here, Q� = Br1−� for / = 0, 1, . . . r1 − 1,

Qr1 = A−DA −
r1∑
s=1

DBs −
r2∑
s=1

DCs ,

and Q� = C�−r1 for / = r1 + 1, r1 + 2, . . . r1 + r2.
The spectral expansion solution of this equation is obtained from the char-

acteristic matrix polynomial

Q(x) =
r∑
�=0

Q�x
� . (30)

The solution is of the form

vj =
c∑

k=1

αkukx
j−M
k ; j = M,M + 1, . . . , (31)

where xk are the eigenvalues of Q(x) in the interior of the unit disk, uk are the
corresponding left eigenvectors, and αk are constants (k = 1, 2, . . . , c ). These
constants, together with the the probability vectors vj for j < M , are deter-
mined with the aid of the state-dependent balance equations and the normalizing
equation.

There are now (M + r1)(N + 1) so-far-unused balance equations (the ones
where j < M + r1), of which (M + r1)(N + 1)− 1 are linearly independent, plus
one normalizing equation. The number of unknowns is M(N +1)+c (the vectors
vj for j = 0, 1, . . . ,M − 1), plus the c constants αk. Hence, there is a unique
solution when c = r1(N + 1).

Proposition 2 The Markov-modulated queue has a steady-state distribution if,
and only if, the number of eigenvalues of Q(x) strictly inside the unit disk,
each counted according to its multiplicity, is equal to the number of states of the
Markovian environment, N +1, multiplied by the largest arrival batch, r1. Then,
assuming that the eigenvectors of multiple eigenvalues are linearly independent,
the spectral expansion solution of (28) has the form

vj =
r1∗(N+1)∑
k=1

αkukx
j−M
k ; j = M,M + 1, . . . . (32)

For computational purposes, the polynomial eigenvalue-eigenvector problem
of degree r can be transformed into a linear one. For example, suppose that Qr

is non-singular and multiply (29) on the right by Q−1r . This leads to the problem

u

[
r−1∑
�=0

H�x
� + Ixr

]
= 0 , (33)
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where H� = Q�Q
−1
r . Introducing the vectors y� = x�u, / = 1, 2, . . . , r − 1, one

obtains the equivalent linear form

[u,y1, . . . ,yr−1]




0 −H0
I 0 −H1

. . . . . .
I −Hr−1


 = x[u,y1, . . . ,yr−1] .

As in the quadratic case, if Qr is singular then the linear form can be achieved
by an appropriate change of variable.

Example: Checkpointing and Recovery

Consider the transaction processing system described in section 2.4. Here r1 = N
and r2 = 1 (the queue size is incremented by 1 when jobs arrive and by 1, 2, . . . , N
when faults occur; it is decremented by 1 when a transaction completes service.
The threshold M is equal to 0. The matrices A, Bs and Cs are given by:

Aj = A =




0
0 0
...
β 0 . . . 0


 ; j = 0, 1, . . . .

The only transition which changes the environment, but not the queue, is the
establishment of a checkpoint in state (N, j).

Bj,1 = B1 =




λ
ξ λ
0 0 λ

. . .
λ


 ; j = 0, 1, . . . .

The queue size increases by 1 when a job arrives, causing a transition from (i, j)
to (i, j + 1), and also when a fault occurs in state (1, j); then the new state is
(0, j + 1).

Bj,2 = B2 =




0
0 0
ξ 0 0
...
0 0 . . . 0


 ; j = 0, 1, . . . .

The queue size increases by 2 when a fault occurs in state (2, j), causing a
transition to state (0, j + 2). The other Bs matrices have a similar form, until

Bj,N = BN =




0
0 0
...
ξ 0 . . . 0


 ; j = 0, 1, . . . .
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There is only one matrix corresponding to decrementing queue:

Cj,1 = C1 =




0 µ
0 µ

. . . . . .
0 µ

0


 ; j = 1, 2, . . . .

The matrix polynomial Q(x) is of degree N + 1. According to Proposition
2, the condition for stability is that the number of eigenvalues in the interior of
the unit disk is N(N + 1).
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