
Software Reliability and Rejuvenation: Modeling
and Analysis

Kishor S. Trivedi and Kalyanaraman Vaidyanathan

Dept. of Electrical & Computer Engineering
Duke University

Durham, NC 27708-0291, USA
{kst,kv}@ee.duke.edu

Abstract. Several recent studies have established that most system out-
ages are due to software faults. Given the ever increasing complexity of
software and the well-developed techniques and analysis for hardware
reliability, this trend is not likely to change in the near future. In this
paper, we classify software faults and discuss various techniques to deal
with them in the testing/debugging phase and the operational phase of
the software. We discuss the phenomenon of software aging and a preven-
tive maintenance technique to deal with this problem called software re-
juvenation. Stochastic models to evaluate the effectiveness of preventive
maintenance in operational software systems and to determine optimal
times to perform rejuvenation for different scenarios are described. We
also present measurement-based methodologies to detect software aging
and estimate its effect on various system resources. These models are
intended to help develop software rejuvenation policies. An automated
online measurement-based approach has been used in the software reju-
venation agent implemented in a major commercial server.

1 Introduction

Outages in computer systems consist of both hardware and software failures.
While hardware failures have been studied extensively and varied mechanisms
have been presented to increase system availability with regard to such fail-
ures, software failures and the corresponding reliability/availability analysis has
not drawn much attention from researchers. The study of software failures has
now become more important since it has been recognized that computer sys-
tems outages are more due to software faults than to hardware faults [19,35,40].
Therefore, software reliability is one of the weakest links in system reliability.

In this paper, we attempt to classify software faults based on an extension of
Gray’s classification [17] and discuss the various techniques to deal with these
faults in the testing/debugging and operational phase of the software. We then
describe the phenomenon of software aging, where the state of the software
system gradually degrades with time. This might eventually cause a performance
degradation of the system or result in a crash/hang failure. Particular attention
is given to software rejuvenation - a proactive form of environment diversity

M.C. Calzarossa and S. Tucci (Eds.): Performance 2002, LNCS 2459, pp. 318–345, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Software Reliability and Rejuvenation: Modeling and Analysis 319

to deal with software aging, explaining its various approaches and methods in
practice.

1.1 What Is a Software Failure?

According to Laprie et al. [29], “a system failure occurs when the delivered service
no longer complies with the specifications, the latter being an agreed descrip-
tion of the system’s expected function and/or service”. This definition applies to
both hardware and software system failures. Faults or bugs in a hardware or a
software component cause errors. An error is defined as that part of the system
which is liable to lead to subsequent failure, and an error affecting the service is
an indication that a failure occurs or has occurred. If the system comprises of
multiple components, errors can lead to a component failure. As various compo-
nents in the system interact, failure of one component might introduce one or
more faults in another.

1.2 Classification of Software Faults

Gray [17] classifies software faults into Bohrbugs and Heisenbugs. Bohrbugs are
essentially permanent design faults and hence almost deterministic in nature.
They can be identified easily and weeded out during the testing and debugging
phase (or early deployment phase) of the software life cycle. Heisenbugs, on
the other hand, are essentially permanent faults whose conditions of activation
occur rarely or are not easily reproducible. Hence, these faults result in transient
failures, i.e., failures which may not recur if the software is restarted. Some
typical situations in which Heisenbugs might surface are boundaries between
various software components, improper or insufficient exception handling and
interdependent timing of various events. It is for this reason that Heisenbugs are
extremely difficult to identify through testing. Hence, a mature piece of software
in the operational phase, released after its development and testing stage, is more
likely to experience failures caused by Heisenbugs than due to Bohrbugs. Most
recent studies on failure data have reported that a large proportion of software
failures are transient in nature [17,18], caused by phenomena such as overloads
or timing and exception errors [9,40]. The study of failure data from Tandem’s
fault tolerant computer system indicated that 70% of the failures were transient
failures, caused by faults like race conditions and timing problems [30].

1.3 Software Aging

The phenomenon of software aging has been reported by several recent stud-
ies [16,25]. It was observed that once the software was started, potential fault
conditions gradually accumulated with time leading to either performance degra-
dation or transient failures or both. Failures may be of crash/hang type or those
resulting from data inconsistency because of aging. Typical causes of aging, i.e.,
slow degradation, are memory bloating or leaking, unreleased file-locks, data
corruption, storage space fragmentation and accumulation of round off errors.

320 K.S. Trivedi and K. Vaidyanathan

Popular and widely used software like the web browser Netscape is known
to suffer from serious memory leaks which lead to occasional crash/hang of the
application. This problem is particularly pronounced in systems with low swap
space. The newsreader software xrn also experiences problems due to memory
leaks. Software aging has not only been observed in software used on a mass scale
but also in specialized software used in high availability and safety-critical ap-
plications. This phenomenon has been observed in general purpose UNIX appli-
cations [25]. The applications experienced a crash/hang failure over time which
resulted in unplanned and expensive downtime. Avritzer and Weyuker [4] report
aging manifesting as gradual performance degradation in an industrial telecom-
munication software system. They deal with soft failures, i.e, a type of failure
where the system may enter a faulty state in which the system is still available
for service but has degraded to unacceptable performance levels, losing users or
packets. A similar kind of gradual performance degradation in file systems lead-
ing to a soft failure is discussed by Smith and Seltzer [39]. Their study shows
that in a degraded file system caused by normal usage and filling up of stor-
age space, the read throughput may be as much as 40% lower than that in an
empty file system. The reason behind this is the fragmentation of storage space
over time which results in non-sequential allocation of blocks. The most glaring
example of software aging in recent times is reported by Marshall [32]. In this
case, software aging resulted in loss of human life. The software system in the US
Patriot missiles deployed during the Gulf War accumulated numerical roundoff
error. This led to the interpretation of an incoming Iraqi Scud missile as a false
alarm which cost the lives of 28 US soldiers.

We designate faults attributed to software aging, which are quite different
from Bohrbugs and Heisenbugs, as aging-related faults. These faults are similar to
Heisenbugs in that they are activated under certain conditions (for example, lack
of OS resources) which may not be easily reproducible. However, as discussed
later, their modes and methods of recovery differ significantly. Figure 1 shows
our extended classification and treatment strategies for each class.

Fig. 1. Classification and treatment of software faults

Software Reliability and Rejuvenation: Modeling and Analysis 321

1.4 Software Fault Tolerance

Techniques for tolerating faults in software have been divided into three classes:

– Design diversity: Design diversity techniques are specifically developed
to tolerate design faults in software arising out of wrong specifications and
incorrect coding. Two or more variants of a software developed by different
teams, but to a common specification are used. These variants are then used
in a time or space redundant manner to achieve fault tolerance. Popular
techniques which are based on the design diversity concept for fault tolerance
in software are N-version programming [3], recovery block [23] and N-self
checking programming [28]. The design diversity approach was developed
mainly to deal with Bohrbugs, but can to some extent deal with Heisenbugs.

– Data diversity: Data diversity, a technique for fault tolerance in software,
was introduced by Amman and Knight [2]. While the design diversity ap-
proaches to provide fault tolerance rely on multiple versions of the software
written to the same specifications, the data diversity approach uses only one
version of the software. This approach relies on the observation that software
sometime fails for certain values in the input space and this failure could be
averted if there is a minor perturbation of input data which is acceptable to
the software. Data diversity can work well with Bohrbugs and is cheaper to
implement than design diversity techniques. To some extent, data diversity
can also deal with Heisenbugs since different input data is presented and by
definition, these bugs are non-deterministic and non-repeatable.

– Environment diversity Environment diversity is the newest approach to
fault tolerance in software. Although this technique has been used for long
in an ad hoc manner, only recently has it gained recognition and importance.
Having its basis on the observation that most software failures are transient
in nature, the environment diversity approach requires reexecuting the soft-
ware in a different environment [27]. Environment diversity deals effectively
with Heisenbugs by exploiting their definition and nature. Adams [1] has
proposed restarting the system as the best approach to masking software
faults. Environment diversity, a generalization of restart [24,27], is a cheap
but effective technique for fault tolerance in software. Examples of envi-
ronment diversity techniques include operation retry operation, application
restart and node reboot. The retry and restart operations can be done on the
same node or on another spare (cold/warm/hot) node [30]. A specific form
of environment diversity, called software rejuvenation [25,47], which forms
the crux of this paper is discussed in detail in the following sections.

1.5 Software Rejuvenation

To counteract software aging, a proactive technique called software rejuvenation
has been proposed [25,47]. It involves stopping the running software occasion-
ally, “cleaning” its internal state and restarting it. Garbage collection, flushing
operating system kernel tables, reinitializing internal data structures are some

322 K.S. Trivedi and K. Vaidyanathan

examples of what cleaning the internal state of a software might involve. An ex-
treme, but well known example of rejuvenation is a hardware reboot. It has been
implemented in the real-time system collecting billing data for most telephone
exchanges in the United States [5]. A very similar technique called software
capacity restoration, has been used by Avritzer and Weyuker in a large telecom-
munications switching software [4], where the switching computer is rebooted
occasionally upon which its service rate is restored to the peak value. Grey [20]
proposed performing operations solely for fault management in SDI (Strategic
Defense Initiative) software which are invoked whether or not the fault exists
and called it operational redundancy. Tai et al. [41] have proposed and analyzed
the use of on-board preventive maintenance for maximizing the probability of
successful mission completion of spacecrafts with very long mission times. The
necessity of performing preventive maintenance in a safety critical environment
is evident from the example of aging in Patriot’s software [32]. The failure which
resulted in loss of human lives could have been prevented if the computer was
restarted after each 8 hours of running time. Rejuvenation has been implemented
in various other kinds of systems - transaction processing systems [7], web servers
[46] and cluster servers [8].

Software rejuvenation (preventive maintenance) incurs an overhead (in terms
of performance, cost and downtime) which should be balanced against the loss
incurred due to unexpected outage caused by a failure. Thus, an important
research issue is to determine the optimal times to perform rejuvenation. In this
paper, we present two approaches for analyzing software aging and studying
aging-related failures.

The rest of this paper is organized as follows. Section 2 describes various
analytical models for software aging and to determine optimal times to perform
rejuvenation. Measurement-based models are dealt with in Section 3. The im-
plementation of a software rejuvenation agent in a major commercial server is
discussed in Section 4. Section 5 describes various approaches and methods of
rejuvenation and Section 6 concludes the paper with pointers to future work.

2 Analytic Models for Software Rejuvenation

The aim of the analytic modeling is to determine optimal times to perform re-
juvenation which maximize availability and minimize the probability of loss or
the response time of a transaction (in the case of a transaction processing sys-
tem). This is particularly important for business-critical applications for which
adequate response time can be as important as system uptime. The analysis
is done for different kinds of software systems exhibiting varied failure/aging
characteristics.

The accuracy of a modeling based approach is determined by the assumptions
made in capturing aging. In [12,13,14,25,41] only the failures causing unavail-
ability of the software are considered, while in [34] only a gradually decreasing
service rate of a software which serves transactions is assumed. Garg et al. [15],
however, consider both these effects of aging together in a single model. Mod-

Software Reliability and Rejuvenation: Modeling and Analysis 323

els proposed in [12,13,25] are restricted to hypo-exponentially distributed time
to failure. Those proposed in [14,34,41] can accommodate general distributions
but only for the specific aging effect they capture. Generally distributed time to
failure, as well as the service rate being an arbitrary function of time are allowed
in [15]. It has been noted [40] that transient failures are partly caused by over-
load conditions. Only the model presented by Garg et al. [15] captures the effect
of load on aging. Existing models also differ in the measures being evaluated.
In [14,41] software with a finite mission time is considered. In the [12,13,15,25]
measures of interest in a transaction based software intended to run forever are
evaluated.

Bobbio et al.[6] present fine grained software degradation models, where one
can identify the current degradation level based on the observation of a sys-
tem parameter, are considered. Optimal rejuvenation policies based on a risk
criterion and an alert threshold are then presented. Dohi et al. [10,11] present
software rejuvenation models based on semi-Markov processes. The models are
analyzed for optimal rejuvenation strategies based on cost as well as steady-state
availability. Given a sample data of failure times, statistical non-parametric al-
gorithms based on the total time on test transform are presented to obtain the
optimal rejuvenation interval.

2.1 Basic Model for Rejuvenation

Figure 2 shows the basic software rejuvenation model proposed by Huang et al.
[25]. The software system is initially in a “robust” working state, 0. As time
progresses, it eventually transits to a “failure-probable” state 1. The system is
still operational in this state but can fail (move to state 2) with a non-zero
probability. The system can be repaired and brought back to the initial state
0. The software system is also rejuvenated at regular intervals from the failure
probable state 1 and brought back to the robust state 0.

12 3

0completion of

repair

system failure rejuvenation

completion of

rejuvenation

state

change

Fig. 2. State transition diagram for rejuvenation

Huang et al. [25] assume that the stochastic behavior of the system can be
described by a simple continuous-time Markov chain (CTMC) [43]. Let Z be the
random time interval when the highly robust state changes to the failure probable

324 K.S. Trivedi and K. Vaidyanathan

state, having the exponential distribution Pr{Z ≤ t} = F0(t) = 1− exp(−t/µ0)
(µ0 > 0). Just after the state becomes the failure probable state, a system
failure may occur with a positive probability. Without loss of generality, we
assume that the random variable Z is observable during the system operation.
Define the failure time X (from state 1) and the repair time Y , having the
exponential distributions Pr{X ≤ t} = Ff (t) = 1 − exp(−t/λf) and Pr{Y ≤
t} = Fa(t) = 1 − exp(−t/µa) (λf > 0, µa > 0). If the system failure occurs
before triggering a software rejuvenation, then the repair is started immediately
at that time and is completed after the random time Y elapses. Otherwise,
the software rejuvenation is started. Note that the software rejuvenation cycle
is measured from the time instant just after the system enters state 1. Define
the distribution functions of the time to invoke the software rejuvenation and
of the time to complete software rejuvenation by Fr(t) = 1 − exp(−t/µr) and
Fc(t) = 1 − exp(−t/µc) (µc > 0, µr > 0), respectively. The CTMC is then
analyzed and the expected system down time and the expected cost per unit
time in the steady state is computed. An optimal rejuvenation interval which
minimizes expected downtime (or expected cost) is obtained.

It is not difficult to introduce the periodic rejuvenation schedule and to ex-
tend the CTMC model to the general one. Dohi et al. [10,11] developed semi-
Markov models with the periodic rejuvenation and general transition distribution
functions. More specifically, let Z be the random variable having the common
distribution function Pr{Z ≤ t} = F0(t) with finite mean µ0 (> 0). Also, let
X and Y be the random variables having the common distribution functions
Pr{X ≤ t} = Ff (t) and Pr{Y ≤ t} = Fa(t) with finite means λf (> 0) and
µa (> 0), respectively. Denote the distribution function of the time to invoke
the software rejuvenation and the distribution of the time to complete software
rejuvenation by Fr(t) and Fc(t) (with mean µc (> 0)), respectively. After com-
pleting the repair or the rejuvenation, the software system becomes as good as
new, and the software age is initiated at the beginning of the next highly ro-
bust state. Consequently, we define the time interval from the beginning of the
system operation to the next one as one cycle, and the same cycle is repeated
again and again. The time to software rejuvenation (the rejuvenation interval)
is a constant, t0, i.e., Fr(t) = U(t− t0), where U(·) is the unit step function.

The underlying stochastic process is a semi-Markov process with four regen-
eration states. If the sojourn times in all states are exponentially distributed,
this model is the CTMC in Huang et al. [25]. Using the renewal theory [36], the
steady-state system availability is computed as

A(t0) = Pr
{
software system is operative in the steady state

}

=
µ0 +

∫ t0
0 F f (t)dt

µ0 + µaFf (t0) + µcF f (t0) +
∫ t0
0 F f (t)dt

= S(t0)/T (t0), (1)

where in general φ(·) = 1 − φ(·) The problem is to derive the optimal software
rejuvenation interval t∗0 which maximizes the system availability in the steady

Software Reliability and Rejuvenation: Modeling and Analysis 325

state A(t0). We make the following assumption that the mean time to repair is
strictly larger than the mean time to complete the software rejuvenation (i.e.,
µa > µc). This assumption is quite reasonable and intuitive. The following result
gives the optimal software rejuvenation schedule for the semi-Markov model.

Assume that the failure time distribution is strictly IFR (increasing failure
rate) [43]. Define the following non-linear function:

q(t0) = T (t0)−
{
(µa − µc)rf (t0) + 1

}
S(t0), (2)

where rf (t) = (dFf (t)/dt)/F f (t) is the failure rate.

(i) If q(0) > 0 and q(∞) < 0, then there exists a finite and unique optimal
software rejuvenation schedule t∗0 (0 < t∗0 < ∞) satisfying q(t∗0) = 0, and
the maximum system availability is

A(t∗0) =
1

(µa − µc)rf (t∗0) + 1
. (3)

(ii) If q(0) ≤ 0, then the optimal software rejuvenation schedule is t∗0 = 0, i.e. it
is optimal to start the rejuvenation just after entering the failure probable
state, and the maximum system availability is A(0) = µ0/(µ0 + µc).

(iii) If q(∞) ≥ 0, then the optimal rejuvenation schedule is t∗0 → ∞, i.e. it
is optimal not to carry out the rejuvenation, and the maximum system
availability is A(∞) = (µ0 + λf)/(µ0 + µa + λf).

If the failure time distribution is DFR (decreasing failure rate), then the
system availability A(t0) is a convex function of t0, and the optimal rejuvenation
schedule is t∗0 = 0 or t∗0 →∞ [10,11].

Garg et al. [12] have developed a Markov Regenerative Stochastic Petri Net
(MRSPN) model where rejuvenation is performed at deterministic intervals as-
suming that the failure probable state 1 is not observable.

2.2 Preventive Maintenance in Transactions Based Software
Systems

In [15], Garg et al. consider a transaction-based software system whose macro-
states representation is presented in Figure 3. The state in which the software is
available for service (albeit with decreasing service rate) is denoted as state A.
After failure a recovery procedure is started. In state B the software is recover-
ing from failure and is unavailable for service. Lastly, the software occasionally
undergoes preventive maintenance (PM), denoted by state C. PM is allowed
only from state A. Once recovery from failure or PM is complete, the software
is reset to state A and is as good as new. From this moment, which constitutes
a renewal, the whole process stochastically repeats itself.

The system consists of a server type software to which transactions arrive
at a constant rate λ. Each transaction receives service for a random period.
The service rate of the software is an arbitrary function measured from the

326 K.S. Trivedi and K. Vaidyanathan

B A C

Undergoing PMRecovering

Available

Fig. 3. Macro-states representation of the software behavior

last renewal of the software (because of aging) denoted by µ(·). Therefore, a
transaction which starts service at time t1, occupies the server for a time whose

distribution is given by 1 − e−
∫ t
t1

µ(·) dt
. If the software is busy processing a

transaction, arriving customers are queued. Total number of transactions that
the software can accommodate is K (including the one being processed) and any
more arriving when the queue is full are lost. The service discipline is FCFS. The
software fails with a rate ρ(·), that is, the CDF of the time to failure X is given

by FX(t) = 1− e−
∫ t

0
ρ(·) dt. Times to recover from failure Yf and to perform PM

Yr are random variables with associated general CDFs FYf and FYr respectively.
The model does not require any assumptions on the nature of FYf and FYr . Only
the respective expectations γf = E[Yf] and γr = E[Yr] are assumed to be finite.
Any transactions in the queue at the time of failure or at the time of initiation
of PM are assumed to be lost. Moreover, any transactions which arrive while the
software is recovering or undergoing PM are also lost.

The effect of aging in the model may be captured by using decreasing service
rate and increasing failure rate, where the decrease or the increase respectively
can be a function of time, instantaneous load, mean accumulated load or a
combination of the above.

Two policies which can be used to determine the time to perform PM are
considered. Under policy I which is purely time-based, PM is initiated after a
constant time δ has elapsed since it was started (or restarted). Under policy
II, which is based on instantaneous load and time, a constant waiting period
δ must elapse before PM is attempted. After this time PM is initiated if and
only if there are no transactions in the system. Otherwise, the software waits
until the queue is empty upon which PM is initiated. The actual PM interval
under Policy II is determined by the sum of PM wait δ and the time it takes
for the queue to get empty from that point onwards B. Since the latter quantity
is dependent on system parameters and can not be controlled, the actual PM
interval has a range [δ,∞).

Given the above behavioral model the following measures are derived for each
policy: steady state availability of the software ASS , long run probability of loss
of a transaction Ploss, and expected response time of a transaction given that
it is successfully served Tres. The goal is to determine optimal values of δ (PM
interval under policy I and PM wait under policy II) based on the constraints
on one or more of these measures.

Software Reliability and Rejuvenation: Modeling and Analysis 327

According to the model described above at any time t the software can be in
any one of three states: up and available for service (state A), recovering from a
failure (state B) or undergoing PM (state C). Let {Z(t), t ≥ 0} be a stochastic
process which represents the state of the software at time t. Further, let the
sequence of random variables Si, i > 0 represent the times at which transitions
among different states take place. Since the entrance times Si constitute renewal
points {Z(Si), i > 0} is an embedded discrete time Markov chain (DTMC) with
a transition probability matrix P given by:

P =


0 PAB PAC

1 0 0
1 0 0


 . (4)

The steady state probability πi of the DTMC being in state i, i ∈ {A,B,C} is:

π = [πA, πB , πC] =
[
1
2
,
1
2
PAB ,

1
2
PAC

]
. (5)

The software behavior is modeled via the stochastic process {(Z(t), N(t)) , t ≥
0}. If Z(t) = A, then N(t) ∈ {0, 1, . . . ,K} as the queue can accommodate up
to K transactions. If Z(t) ∈ {B,C}, then N(t) = 0, since by assumption all
transactions arriving while the software is either recovering or undergoing PM
are lost. Further, the transactions already in the queue at the transition instant
are also discarded. It can be shown that the process {(Z(t), N(t)) , t ≥ 0} is a
Markov regenerative process (MRGP). Transition to state A from either B or C
constitutes a regeneration instant.

Let U be a random variable denoting the sojourn time in state A, and
denote its expectation by E[U]. Expected sojourn times of the MRGP in
states B and C are already defined to be γf and γr. The steady state
availability is obtained using the standard formulae from MRGP theory:
ASS = Pr{software is in state A}

=
πAE[U]

πBγf + πCγr + πAE[U]
. (6)

The probability that a transaction is lost is defined as the ratio of expected
number of transactions which are lost in an interval to the expected total num-
ber of transactions which arrive during that interval. Since the evolution of
{Z(t), N(t)), t > 0} in the intervals comprising of successive visits to state A is
stochastically identical it suffices to consider just one such interval. The number
of transactions lost is given by the summation of three quantities: (1) transac-
tions in the queue when the system is exiting state A because of the failure or
initiation of PM (2) transactions that arrive while failure recovery or PM is in
progress and (3) transactions that are disregarded due to the buffer being full.
The last quantity is of special significance since the probability of buffer being
full will increase due to the degrading service rate. It follows that the probability
of loss is given by

328 K.S. Trivedi and K. Vaidyanathan

Ploss =
πAE[Nl] + λ

(
πBγf + πCγr + πA

∫ ∞
0
pK(t)dt

)

λ (πBγf + πCγr + πAE[U])
(7)

where E[Nl] is the expected number of transactions in the buffer when the system
is exiting state A. Equation 7 is valid only for policy II. Under policy I sojourn
time in state A is limited by δ, so the upper limit in the integral

∫∞
0 pK(t)dt is

δ instead of ∞.
Next an upper bound on the mean response time of a transaction given that it

is successfully served, Tres, is derived. The mean number of transactions, denoted
by E, which are accepted for service while the software is in state A is given
by the mean number of transactions which are not accepted due to the buffer
being full, subtracted from the mean total number of transactions which arrive

while the software is in state A, that is, E = λ

[
E[U]−

∫ ∞
t=0
pK(t)dt

]
. Out of

these transactions, on the average, E[Nl] are discarded later because of failure
or initiation of PM. Therefore, the mean number of transactions which actually
receive service given that they were accepted is given by E − E[Nl]. The mean
total amount of time the transactions spent in the system while the software is in

state A is W =
∫ ∞
t=0

∑
i

ipi(t) dt. This time is composed of the mean time spent

by the transactions which were served as well as those which were discarded,
denoted as WS and WD, respectively. Therefore, W =WS +WD. The response
time we are interested in is given by Tres = WS/(E − E[Nl]), which is upper
bounded by Tres < W

E−E[Nl]
.

pi(t) is the probability that there are i transactions queued for service, which
is also the probability of being in state i of the subordinated process at time t.
pi′(t) is the probability that the system failed when there were i transactions
queued for service. These transient probabilities for both policies can be obtained
by solving the systems of forward differential-difference equations given in [15]. In
general they do not have a closed-form analytical solution and must be evaluated
numerically. Once these probabilities are obtained, the rest of the quantities PAB ,
PAC , E[U] and E[Nl] can be easily computed [15] and then used to obtain the
steady state availability ASS , the probability of transaction lost Ploss and the
upper bound on the response time of a transaction Tres.

Examples are presented to illustrate the usefulness of the presented model in
determining the optimum value of δ (PM interval in the case of policy I and PM
wait in the case of policy II). First, the service rate and failure rate are assumed
to be functions of real time, where ρ(t) is defined to be the hazard function
of Weibull distribution, while µ(t) is defined to be a monotone non-increasing
function that approximates the service degradation. Figure 4 shows Ass and Ploss
for both policies plotted against δ for different values of the mean time to perform
PM γr. Under both policies, it can be seen that for any particular value of δ,
higher the value of γr, lower is the availability and higher is the corresponding
loss probability. It can also be observed that the value of δ which minimizes
probability of loss is much lower than the one which maximizes availability. In

Software Reliability and Rejuvenation: Modeling and Analysis 329

0.0 100.0 200.0 300.0 400.0
δ

0.990

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

A
va

ila
bi

lit
y

I, 0.15
I, 0.35
I, 0.55
I, 0.85
II, 0.15
II, 0.35
II, 0.55
II, 0.85

0.0 50.0 100.0 150.0
δ

0.00

0.01

0.01

0.02

0.02

0.03

0.04

L
os

s
Pr

ob
ab

ili
ty

I, 0.15
I, 0.35
I, 0.55
I, 0.85
II, 0.15
II, 0.35
II, 0.55
II, 0.85

Fig. 4. Results for experiment 1

fact, the probability of loss becomes very high at values of δ which maximize
availability. For any specific value of γr, policy II results in a lower minima in
loss probability than that achieved under policy I. Therefore, if the objective is
to minimize long run probability of loss, such as in the case of telecommunication
switching software, policy II always fares better than policy I.

0 100 200 300 400 500
δ

0.990

0.992

0.995

0.997

1.000

A
va

ila
bi

lit
y

real time
Busy time
no failure

0 100 200 300 400 500
δ

0.00

0.03

0.05

0.08

0.10

L
os

s
Pr

ob
ab

ili
ty

real time
busy time
no failure

0 100 200 300 400 500
δ

0.0

1.0

2.0

3.0

4.0

5.0

6.0

R
es

po
ns

e
T

im
e real time

busy time
no failure

Fig. 5. Results of experiment 2

Figure 5 shows ASS , Ploss and upper bound on Tres plotted against δ under
policy I. Each of the figures contains three curves. µ(·) and ρ(·) in the solid curve
are functions of real time µ(t) and ρ(t), whereas in the dotted curve they are
functions (with the same parameters) of the mean total processing time µ(L(t))
and ρ(L(t)). The dashed curve represents a third system in which no crash/hang
failures occur ρ(·) = 0, but service degradation is present with µ(·) = µ(t).
This experiment illustrates the importance of making the right assumptions in
capturing aging because as seen from the figure, depending on the forms chosen
for µ(·) and ρ(·), the measures vary in a wide range.

2.3 Software Rejuvenation in a Cluster System

Software rejuvenation has been applied to cluster systems [8,45]. This is a novel
application, which significantly improves cluster system availability and produc-
tivity. The Stochastic Reward Net (SRN) model of a cluster system employing
simple time-based rejuvenation is shown in Figure 6. The cluster consists of n
nodes which are initially in a “robust” working state, Pup. The aging process

330 K.S. Trivedi and K. Vaidyanathan

is modeled as a 2-stage hypo-exponential distribution (increasing failure rate)
[43] with transitions Tfprob and Tnoderepair. Place Pfprob represents a “failure-
probable” state in which the nodes are still operational. The nodes then can
eventually transit to the fail state, Pnodefail1. A node can be repaired through
the transition Tnoderepair, with a coverage c. In addition to individual node fail-
ures, there is also a common-mode failure (transition Tcmode). The system is also
considered down when there are a (a ≤ n) individual node failures. The system
is repaired through the transition Tsysrepair.

Pup

Pfprob

P

P

sysfail

nodefail2

Tnoderepair

TnodefailTimmd1

Timmd2

n

Pnodefail1

Trejuvinterval

Pclock

Pstartrejuv

T

fprobrejuv

rejuved

Prejuv1

rejuv1

Prejuv2

Trejuv2

T Timmd7

Timmd10

Timmd12

sysrepairT Timmd5

Timmd4

g1

g1g1

g1 g1

T Pnodefailrejuv Tfprobrejuv

Tfprob

P

cmodeT

n

immd8T Timmd9
prob=n2prob=n1

g1

Timmd13

T

g1

immd14

T

g2

immd3T g3

immd6

g5

immd15

g4 g4

g6

g2

immd11T g7 g7

(1-c)

c

#

#

#

Fig. 6. SRN model of a cluster system employing simple time-based rejuvenation

In the simple time-based policy, rejuvenation is done successively for all the
operational nodes in the cluster, at the end of each deterministic interval. The
transition Trejuvinterval fires every d time units depositing a token in place
Pstartrejuv. Only one node can be rejuvenated at any time (at places Prejuv1
or Prejuv2). Weight functions are assigned such that the probability of selecting
a token from Pup or Pfprob is directly proportional to the number of tokens in
each. After a node has been rejuvenated, it goes back to the “robust” working
state, represented by place Prejuved. This is a duplicate place for Pup in order to
distinguish the nodes which are waiting to be rejuvenated from the nodes which
have already been rejuvenated. A node, after rejuvenation, is then allowed to
fail with the same rates as before rejuvenation even when another node is being
rejuvenated. Duplicate places for Pupb and Pfprob are needed to capture this.
Node repair is disabled during rejuvenation. Rejuvenation is complete when the
sum of nodes in places Prejuved, Pfprobrejuv and Pnodefail2 is equal to the total
number of nodes, n. In this case, the immediate transition Timmd10 fires, putting
back all the rejuvenated nodes in places Pup and Pfprob. Rejuvenation stops
when there are a−1 tokens in place Pnodefail2, to prevent a system failure. The
clock resets itself when rejuvenation is complete and is disabled when the system

Software Reliability and Rejuvenation: Modeling and Analysis 331

is undergoing repair. Guard functions (g1 through g7) are assigned to express
complex enabling conditions textually.

In condition-based rejuvenation (Figure 7), rejuvenation is attempted only
when a node transits into the “failure probable” state. In practice, this degraded
state could be predicted in advance by means of analyses of some observable
system parameters [16]. In case of a successful prediction, assuming that no
other node is being rejuvenated at that time, the newly detected node can be
rejuvenated. A node is allowed to fail even while waiting for rejuvenation.

Pup

P

P

sysfail

nodefail2

Tnoderepair

Timmd1

Timmd2

n

T

sysrepairT

Timmd4

g1

g1

Tfprob

cmodeT

n

c1

(1-c1)

Pdetect

rejuv

Timmd6

Prejuv

T

T

g1

g1

immd8

immd9

nodefail1P

immd7T

g1 T

g5

g4

immd3T g3

g2

immd5

immd11T

c2

fprobP

(1-c2) Timmd10

detectfailP

nodefailT

Tnodefail1

2

#

#

#

Fig. 7. SRN model of a cluster system employing condition-based rejuvenation

For the analyses, the following values are assumed. The mean times spent in
places Pup and Pfprob are 240 hrs and 720 hrs respectively. The mean times to
repair a node, to rejuvenate a node and to repair the system are 30 min, 10 min
and 4 hrs respectively. In this analysis, the common-mode failure is disabled and
node failure coverage is assumed to be perfect. All the models were solved using
the SPNP (Stochastic Petri Net Package) tool [22]. The measures computed
were expected unavailability and the expected cost incurred over a fixed time
interval. It is assumed that the cost incurred due to node rejuvenation is much
less than the cost of a node or system failure since rejuvenation can be done at
predetermined or scheduled times. In our analysis, we fix the value for costnodefail
at $5,000/hr, the costrejuv at $250/hr. The value of costsysfail is computed as
the number of nodes, n, times costnodefail.

Figure 8 shows the plots for an 8/1 configuration (8 nodes including 1 spare)
system employing simple time-based rejuvenation. The upper plot and lower
plots show the expected cost incurred and the expected downtime (in hours)
respectively in a given time interval, versus rejuvenation interval (time between
successive rejuvenation) in hours. If the rejuvenation interval is close to zero, the

332 K.S. Trivedi and K. Vaidyanathan

system is always rejuvenating and thus incurs high cost and downtime. As the
rejuvenation interval increases, both expected unavailability and cost incurred
decrease and reach an optimum value. If the rejuvenation interval goes beyond
the optimal value, the system failure has more influence on these measures than
rejuvenation. The analysis was repeated for 2/1, 8/2, 16/1 and 16/2 configu-
rations. For time-based rejuvenation, the optimal rejuvenation interval was 100
hours for the 1-spare clusters, and approximately 1 hour for the 2-spare clus-
ters. In our analysis of condition-based rejuvenation, we assumed 90% prediction
coverage. For systems that have one spare, time-based rejuvenation can reduce
downtime by 26% relative to no rejuvenation. Condition-based rejuvenation does
somewhat better, reducing downtime by 62% relative to no rejuvenation. How-
ever, when the system can tolerate more than one failure at a time, downtime is
reduced by 98% to 95% via time-based rejuvenation, compared to a mere 85%
for condition-based rejuvenation.

0 100 200 300 400 500 600
1.2

1.4

1.6

1.8

2

2.2
x 10

4

Rejuvenation Interval (hours)

E
xp

ec
te

d
C

os
t

0 100 200 300 400 500 600
0.85

0.9

0.95

1

1.05

Rejuvenation Interval (hours)

E
xp

ec
te

d
D

ow
nt

im
e

Fig. 8. Results for an 8/1 cluster system employing time-based rejuvenation

3 Measurement Based Models for Software Rejuvenation

While all the analytical models are based on the assumption that the rate of
software aging is known, in the measurement based approach, the basic idea
is to monitor and collect data on the attributes responsible for determining the
health of the executing software. The data is then analyzed to obtain predictions
about possible impending failures due to resource exhaustion.

In this section we describe the measurement-based approach for detection
and validation of the existence of software aging. The basic idea is to periodi-
cally monitor and collect data on the attributes responsible for determining the
health of the executing software, in this case the UNIX operating system. Garg

Software Reliability and Rejuvenation: Modeling and Analysis 333

et al. [16] propose a methodology for detection and estimation of aging in the
UNIX operating system. An SNMP-based distributed resource monitoring tool
was used to collect operating system resource usage and system activity data
from nine heterogeneous UNIX workstations connected by an Ethernet LAN at
the Department of Electrical and Computer Engineering at Duke University. A
central monitoring station runs the manager program which sends get requests
periodically to each of the agent programs running on the monitored work-
stations. The agent programs in turn obtain data for the manager from their
respective machines by executing various standard UNIX utility programs like
pstat, iostat and vmstat. For quantifying the effect of aging in operating system
resources, the metric Estimated time to exhaustion is proposed. The earlier work
[16] uses a purely time-based approach to estimate resource exhaustion times,
whereas the the work presented in [44] takes into account the current system
workload as well.

A methodology based on time-series analysis to detect and estimate resource
exhaustion times due to software aging in a web server while subjecting it to
an artificial workload, is proposed in [31]. Avritzer and Weyuker [4] monitor
production traffic data of a large telecommunication system and describe a reju-
venation strategy which increases system availability and minimizes packet loss.
Cassidy et al. [7] have developed an approach to rejuvenation for large online
transaction processing servers. They monitor various system parameters over a
period of time. Using pattern recognition methods, they come to the conclusion
that 13 of those parameters deviate from normal behavior just prior to a crash,
providing sufficient warning to initiate rejuvenation.

3.1 Time-Based Estimation

In the time-based estimation method presented by Garg et al. [16], data was
collected from the UNIX machines at intervals of 15 minutes for about 53 days.
Time-ordered values for each monitored object are obtained, constituting a time
series for that object. The objective is to detect aging or a long term trend
(increasing or decreasing) in the values. Only results for the data collected from
the machine Rossby are discussed here.

First, the trends in operating system resource usage and system activity are
detected using smoothing of observed data by robust locally weighted regression,
proposed by Cleveland [16]. This technique is used to get the global trend be-
tween outages by removing the local variations. Then, the slope of the trend is
estimated in order to do prediction. Figure 9 shows the smoothed data super-
imposed on the original data points from the time series of objects for Rossby.
Amount of real memory free (plot 1) shows an overall decrease, whereas file table
size (plot 2) shows an increase. Plots of some other resources not discussed here
also showed an increase or decrease. This corroborates the hypothesis of aging
with respect to various objects.

The seasonal Kendall test [16] was applied to each of these time series to
detect the presence of any global trends at a significance level, α, of 0.05. With
Zα=1.96, all values are such that the null hypothesis (H0) that no trend exists

334 K.S. Trivedi and K. Vaidyanathan

Time

R
ea

l M
em

or
y

F
re

e

0 10 20 30 40 50

15
00

0
25

00
0

35
00

0

Time

F
ile

 T
ab

le
 S

iz
e

0 10 20 30 40 50

14
0

16
0

18
0

20
0

22
0

24
0

26
0

Fig. 9. Non-parametric regression smoothing for Rossby objects

is rejected for the variables considered. Given that a global trend is present
and that its slope is calculated for a particular resource, the time at which the
resource will be exhausted because of aging only, is estimated. Table 1 refers to
several objects on Rossby and lists an estimate of the slope (change per day) of
the trend obtained by applying Sen’s slope estimate for data with seasons [16].
The values for real memory and swap space are in Kilobytes. A negative slope, as
in the case of real memory, indicates a decreasing trend, whereas a positive slope,
as in the case of file table size, is indicative of an increasing trend. Given the
slope estimate, the table lists the estimated time to failure of the machine due to
aging only with respect to this particular resource. The calculation of the time
to exhaustion is done by using the standard linear approximation y = mx+ c.

A comparative effect of aging on different system resources can be obtained
from the above estimates. Overall, it was found that file table size and process
table size are not as important as used swap space and real memory free since they
have a very small slope and high estimated times to failure due to exhaustion.
Based on such comparisons, we can identify important resources to monitor and
manage in order to deal with aging related software failures. For example, the
resource used swap space has the highest slope and real memory free has the
second highest slope. However, real memory free has a lower time to exhaustion
than used swap space.

Software Reliability and Rejuvenation: Modeling and Analysis 335

Table 1. Estimated slope and time to exhaustion for Rossby, Velum and Jefferson
objects

Resource Initial Max Sen’s Slope 95% Confidence Estimated Time
Name Value Value Estimation Interval to Exh. (days)
Rossby

Real Memory Free 40814.17 84980 -252.00 -287.75 : -219.34 161.96
File Table Size 220 7110 1.33 1.30 : 1.39 5167.50

Process Table Size 57 2058 0.43 0.41 : 0.45 4602.30
Used Swap Space 39372 312724 267.08 220.09 : 295.50 1023.50

Jefferson
Real Memory Free 67638.54 114608 -972.00 -1006.81 : -939.08 69.59
File Table Size 268.83 7110 1.33 1.30 : 1.38 5144.36

Process Table Size 67.18 2058 0.30 0.29 : 0.31 6696.41
Used Swap Space 47148.02 524156 577.44 545.69 : 603.14 826.07

3.2 Time and Workload-Based Estimation

The method discussed in the previous subsection assumes that accumulated use
of a resource over a time period depends only on the elapsed time. However, it
is intuitive that the rate at which a resource is consumed is dependent on the
current workload. In this subsection, we discuss a measurement-based model to
estimate the rate of exhaustion of operating system resources as a function of
both time and the system workload [44]. The SNMP-based distributed resource
monitoring tool described previously was used for collecting operating system
resource usage and system activity parameters (at 10 min intervals) for over 3
months. Only results for the data collected from the machine Rossby are dis-
cussed here. The longest stretch of sample points in which no reboots or failures
occurred were used for building the model. A semi-Markov reward model [42] is
constructed using the data. First different workload states are identified using
statistical cluster analysis and a state-space model is constructed. Corresponding
to each resource, a reward function based on the rate of resource exhaustion in
the different states is then defined. Finally the model is solved to obtain trends
and the estimated exhaustion rates and time to exhaustion for the resources.

The following variables were chosen to characterize the system workload -
cpuContextSwitch, sysCall, pageIn, and pageOut. Hartigan’s k-means clustering
algorithm [21] was used for partitioning the data points into clusters based on
workload. The statistics for the eleven workload clusters obtained are shown
in Table 2. Clusters whose centroids were relatively close to each other and
those with a small percentage of data points in them, were merged to simplify
computations. The resulting clusters are W1 = {1, 2, 3}, W2 = {4, 5}, W3 = {6},
W4 = {7}, W5 = {8}, W6 = {9}, W7 = {10} and W8 = {11}.

Transition probabilities from one state to another were computed from data,
resulting in transition probability matrix P of the embedded discrete time
Markov chain The sojourn time distribution for each of the workload states
was fitted to either 2-stage hyper-exponential or 2-stage hypo-exponential dis-

336 K.S. Trivedi and K. Vaidyanathan

Table 2. Statistics for the workload clusters

Cluster Center % of
No. cpuConSw sysCall pgOut pgIn pts.
1 48405.16 94194.66 5.16 677.83 0.98
2 54184.56 122229.68 5.39 81.41 0.76
3 34059.61 193927.00 0.02 136.73 0.93
4 20479.21 45811.71 0.53 243.40 1.89
5 21361.38 37027.41 0.26 12.64 7.17
6 15734.65 54056.27 0.27 14.45 6.55
7 37825.76 40912.18 0.91 12.21 11.77
8 11013.22 38682.46 0.03 10.43 42.87
9 67290.83 37246.76 7.58 19.88 4.93
10 10003.94 32067.20 0.01 9.61 21.23
11 197934.42 67822.48 415.71 184.38 0.93

tribution functions. The fitted distributions were tested using the Kolmogorov-
Smirnov test at a significance level of 0.01.

Two resources, usedSwapSpace and realMemoryFree, are considered for the
analysis, since the previous time-based analysis suggested that they are criti-
cal resources. For each resource, the reward function is defined as the rate of
corresponding resource exhaustion in different states. The true slope (rate of
increase/decrease) of a resource at every workload state is estimated by using
Sen’s non-parametric method [44]. Table 3 shows the slopes with 95% confidence
intervals.

It was observed that slopes in a given workload state for a particular resource
during different visits to that state are almost the same. Further, the slopes across
different workload states are different and generally higher the system activity,
higher is the resource utilization. This validates the assumption that resource
usage does depend on the system workload and the rates of exhaustion vary
with workload changes. It can also be observed from Table 3 that the slopes
for usedSwapSpace in all the workload states are non-negative, and the slopes
for realMemoryFree are non-positive in all the workload states except in one.
It follows that usedSwapSpace increases whereas realMemoryFree decreases over
time which validates the software aging phenomenon.

The semi-Markov reward model was solved using the SHARPE tool [37] de-
veloped by researchers at Duke University. The slope for the workload-based esti-
mation is computed as the expected reward rate in steady state from the model.
The times to resource exhaustion is computed as the job completion time (mean
time to accumulate x amount of reward) of the Markov reward model. Table 4
gives the estimates for the slope and time to exhaustion for usedSwapSpace and
realMemoryFree. It can be seen that workload based estimations gave a lower
time to resource exhaustion than those computed using time based estimations.
Since the machine failures due to resource exhaustion were observed much before

Software Reliability and Rejuvenation: Modeling and Analysis 337

Table 3. Slope estimates (in KB/10 min)

usedSwapSpace realMemoryFree
State Slope 95 % Conf. Slope 95 % Conf.

Est. Interval Est. Interval
W1 119.3 5.5 - 222.4 -133.7 -137.7 - -133.3
W2 0.57 0.40 - 0.71 -1.47 -1.78 - -1.09
W3 0.76 0.73 - 0.80 -1.43 -2.50 - -0.62
W4 0.57 0.00 - 0.69 -1.23 -1.67 - -0.80
W5 0.78 0.75 - 0.80 0.00 -5.65 - 6.00
W6 0.81 0.64 - 1.00 -1.14 -1.40 - -0.88
W7 0.00 0.00 - 0.00 0.00 0.00 - 0.00
W8 91.8 72.4 - 111.0 91.7 -369.9 - 475.2

the times to resource exhaustion estimated by the time based method, it follows
that the workload based approach results in better estimations.

Table 4. Estimates for slope (in KB/10 min) and time to exhaustion (in days) for
usedSwapSpace and realMemoryFree

Method usedSwapSpace realMemoryFree
of Slope 95 % Conf. Est. Time Slope 95 % Conf. Est. Time

Estimation Estimate Interval to Exh. Estimate Interval to Exh.
Time based 0.787 0.786 - 0.788 2276.46 -2.806 -3.026 - -2.630 60.81

Workload based 4.647 1.191 - 7.746 490.50 -4.1435 -9.968 - 2.592 41.38

3.3 Time Series and ARMA Models

In this section, a measurement-based approach based on time-series analysis to
detect software aging and to estimate resource exhaustion times due to aging in
a web server is described [31]. The experiments are conducted on an Apache web
server running on the Linux platform. Before carrying out other experiments,
the capacity of the web server is determined so that the appropriate workload
to use in the experiments can be decided. The capacity of the web server was
found to be around 390 requests/sec. In the next part of the experiment, the
web server was run without rejuvenation for a long time until the performance
degraded or until the server crashed. The requests were generated by httperf [33]
to get one of five specified files from the server of sizes 500 bytes, 5KB, 50KB,
500KB and 5MB. The corresponding probabilities that a given file is requested
are: 0.35, 0.5, 0.14, 0.009 and 0.001, respectively. During the period of running,
the performance measured by the workload generator and system parameters
collected by the Linux system monitoring tool, procmon, were recorded.

338 K.S. Trivedi and K. Vaidyanathan

The first data set was collected in a 7-day period with a connection rate of
350 requests/sec. The second set was collected in a 25-day period with connec-
tion rate of 400 request/sec. During the experiment, we recorded more than 100
parameters, but for our modeling purposes, six representative parameters per-
taining to system resources were selected (Table 5). In addition to the six system
status parameters, the response time of the web server, recorded by httperf on
the client machine, is also included in the model as a measure of performance of
the web server.

Table 5. Analyzed parameters and their physical meaning

Parameter Physical meaning
PhysicalMemoryFree Free physical memory
SwapSpaceUsed Used swap space
LoadAvg5Min Average CPU load in the last five minutes
NumberDiskRequests Number of disk requests in the last five minutes
PageOutCounter Number of pages paged out in the last five minutes
NewProcesses Number of newly spawned processes in the last five minutes
ResponseTime The interval from the time httperf sends out the first byte of

request until it receives the first byte of reply

After collecting the data, it needs to be analyzed to determine if software
aging exists, which is indicated by degradation in performance of the web server
and/or exhaustion of system resources. The performance of the web server is
measured by response time which is the interval from the time a client sends
out the first byte of request until it receives the first byte of reply. Figure 10(a)
shows the plot of the response time in data set I. To identify the trend, the
range of y-axis is magnified (Figure 10(b)). The response time becomes longer
with the running time of the experiment. To determine whether the trend is
just a fluctuation due to noise or an essential characteristic of the data, a linear
regression model is used to fit the time series of the response time. The least
squares solution is r = 15.5655+0.027t, where r is response time in milliseconds,
t is the time from the beginning of the experiment. The 95% confidence interval
for the slope is (0.019, 0.036) ms/hour. Since the slope is positive, it can be
concluded that the performance of the web server is degrading.

Performing the same analysis to the parameters related to system resources,
it was found that the available resources are decreasing. Estimated slopes of
some of the parameters using linear regression model are listed in Table 6.

The parameters in data set II are used as the modeling objects since the du-
ration of data set II is longer than that of data set I. In this case, there are seven
parameters to be analyzed. The analysis can be done using two different ap-
proaches: (1) building a univariate model for each of the outputs or, 2) building
only one multivariate model with seven outputs. In this case, seven univariate
models are built and then combined into a single multivariate model. First, the
parameters are determined to determine their characteristics and build an ap-

Software Reliability and Rejuvenation: Modeling and Analysis 339

0 50 100 150 200
0

50

100

150

200

250

300

time (hours)
(a)

re
sp

on
se

 ti
m

e
(m

s)

0 50 100 150 200
10

15

20

25

30

35

40

time (hours)
 (b)

re
sp

on
se

 ti
m

e
(m

s)

Fig. 10. Response time of the web server

Table 6. Estimated slope of parameters

Data Set Parameter Slope 95% confidence interval
response time 0.027 ms/hour (0.019, 0.036) ms/hour

I free physical memory -88.472 KB/hour (-93.337, -83.607) KB/hour
used swap space 29.976 KB/hour (29.290, 30.662) KB/hour
response time 0.063 ms/hour (0.057, 0.068) ms/hour

II free physical memory 15.183 KB/hour (14.094, 16.271) KB/hour
used swap space 7.841 KB/hour (7.658, 8.025) KB/hour

propriate model with one output and four inputs for each parameter - connection
rate, linear trend, periodic series with a period of one week, and periodic series
with a period of one day. The autocorrelation function (ACF) and the partial
autocorrelation function (PACF) for the output are computed. The ACF and
the PACF help us decide the appropriate model for the data [38]. For example,
from the ACF and PACF of used swap space it can be determined that an au-
toregressive model of order 1 [AR(1)] is suitable for this data series. Adding the
inputs to the AR(1) model, we get the ARX(1) model for used swap space:

Yt = aYt−1 + b1Xt + b2Lt + b3Wt + b4Dt, (8)

where Yt is the used swap space, Xt is the connection rate, Lt is the time step
which represents the linear trend, Wt is the weekly periodic series and Dt is the
daily periodic series. After observing the ACF and PACF of all the parameters,
we find that all of the PACFs cut off at certain lags. So all the multiple input
single output (MISO) models are of the ARX type, only with different orders.
This gives great convenience in combining them into a multiple input multiple
output (MIMO) ARX model which is described later.

In order to combine the MISO ARX models into a MIMO ARX model, we
need to choose the order between different outputs. This is done by inspecting
the CCF (cross-correlation function) between each pair of the outputs to find
out the leading relationship between them. If the CCF between parameter A and

340 K.S. Trivedi and K. Vaidyanathan

B gets its peak value at a positive lag k, we say that A leads B by k steps and
it might be possible to use A to predict B. In our analysis, there are 21 CCFs
that need to be computed. And in order to reduce the complexity, we only use
the CCFs that exhibit obvious leading relationship with lags less than 10 steps.
The next step after determination of the orders is to estimate the coefficients
of the model by the least squares method. The first half of the data is used to
estimate the parameters and the rest of the data is then used to verify the model.
Figure 11 shows the two-hour-ahead (24-step) predicted used swap space which

0 100 200 300 400 500 600
4

5

6

7

8

9

10

11

12

13

14
x 10

6

Time (hours)

us
ed

 s
w

ap
 s

pa
ce

 (
by

te
s)

measured
two−hour predicted

Fig. 11. Measured and two-hour ahead predicted used swap space

is computed using the established model and the data measured up to two hours
before the predicted time point. From the plots, we can see that the predicted
values are very close to the measured values.

4 Implementation of a Software Rejuvenation Agent

The first commercial version of a software rejuvenation agent (SRA) for the IBM
xSeries line of cluster servers has been implemented with our collaboration [8,
26,45]. The SRA was designed to monitor consumable resources, estimate the
time to exhaustion of those resources, and generate alerts to the management in-
frastructure when the time to exhaustion is less than a user-defined notification
horizon. For Windows operating systems, the SRA acquires data on exhaustible
resources by reading the registry performance counters and collecting parameters
such as available bytes, committed bytes, non-paged pool, paged pool, handles,
threads, semaphores, mutexes, and logical disk utilization. For Linux, the agent
accesses the /proc directory structure and collects equivalent parameters such

Software Reliability and Rejuvenation: Modeling and Analysis 341

as memory utilization, swap space, file descriptors and inodes. All collected pa-
rameters are logged on to disk. They are also stored in memory preparatory to
time-to-exhaustion analysis.

In the current version of the SRA, rejuvenation can be based on elapsed time
since the last rejuvenation, or on prediction of impending exhaustion. When
using Timed Rejuvenation, a user interface is used to schedule and perform re-
juvenation at a period specified by the user. It allows the user to select when
to rejuvenate different nodes of the cluster, and to select “blackout” times dur-
ing which no rejuvenation is to be allowed. Predictive Rejuvenation relies on
curve-fitting analysis and projection of the utilization of key resources, using
recently observed data. The projected data is compared to prespecified upper
and lower exhaustion thresholds, within a notification time horizon. The user
specifies the notification horizon and the parameters to be monitored (some pa-
rameters believed to be highly indicative are always monitored by default), and
the agent periodically samples the data and performs the analysis. The predic-
tion algorithm fits several types of curves to the data in the fitting window. These
different curve types have been selected for their ability to capture different types
of temporal trends. A model-selection criterion is applied to choose the “best”
prediction curve, which is then extrapolated to the user-specified horizon. The
several parameters that are indicative of resource exhaustion are monitored and
extrapolated independently. If any monitored parameter exceeds the specified
minimum or maximum value within the horizon, a request to rejuvenate is sent
to the management infrastructure. In most cases, it is also possible to identify
which process is consuming the preponderance of the resource being exhausted,
in order to support selective rejuvenation of just the offending process or a group
of processes.

5 Approaches and Methods of Software Rejuvenation

Software rejuvenation can be divided broadly into two approaches as follows:

– Open-loop approach: In this approach, rejuvenation is performed with-
out any feedback from the system. Rejuvenation in this case, can be
based just on elapsed time (periodic rejuvenation) [25,12] and/or instan-
taneous/cumulative number of jobs on the system [15].

– Closed-loop approach: In the closed-loop approach, rejuvenation is per-
formed based on information on the system “health”. The system is moni-
tored continuously (in practice, at small deterministic intervals) and data is
collected on the operating system resource usage and system activity. This
data is then analyzed to estimate time to exhaustion of a resource which
may lead to a component or an entire system degradation/crash. This es-
timation can be based purely on time, and workload-independent [16,8] or
can be based on both time and system workload [44].
The closed-loop approach can be further classified based on whether the
data analysis is done off-line or on-line. Off-line data analysis is done based
on system data collected over a period of time (usually weeks or months).

342 K.S. Trivedi and K. Vaidyanathan

The analysis is done to estimate time to rejuvenation. This off-line analysis
approach is best suited for systems whose behavior is fairly deterministic.
The on-line closed-loop approach, on the other hand, performs on-line anal-
ysis of system data collected at deterministic intervals. Another approach to
estimate the optimal time to rejuvenation could be based on system failure
data [11]. This approach is more suited for off-line data analysis.

This classification of approaches to rejuvenation is shown in Figure 12.

Open-loop approach Closed-loop approach

Elapsed Elapsed time

Time-based

 analysis

 Time &
workload-based

 time
(periodic)

 and load

 analysis
 Time &

workload-based
 analysis

Time-basedFailure

 data analysis

On-lineOff-line

SOFTWARE REJUVENATION

Fig. 12. Approaches to software rejuvenation

Rejuvenation is a very general proactive fault management approach and can
be performed at different levels - the system level or the application level. An
example of a system level rejuvenation is a hardware-reboot. At the application
level, rejuvenation is performed by stopping and restarting a particular offending
application, process or a group of processes. This is also known as a partial
rejuvenation. The above rejuvenation approaches when performed on a single
node can lead to undesired and often costly downtime. Rejuvenation has been
recently extended for cluster systems, in which two or more nodes work together
as a single system [8,45]. In this case, rejuvenation can be performed by causing
no or minimal downtime by failing over applications to another spare node.

6 Conclusions

In this paper, we classified software faults based on an extension of Gray’s clas-
sification and discussed the various techniques to deal with them. Attention was
devoted to software rejuvenation, a proactive technique to counteract the phe-
nomenon of software aging. Various analytical models for software aging and to

Software Reliability and Rejuvenation: Modeling and Analysis 343

determine optimal times to perform rejuvenation were described. Measurement-
based models based on data collected from operating systems were also discussed.
The implementation of a software rejuvenation agent in a major commercial
server was then briefly described. Finally, various approaches to rejuvenation
and rejuvenation granularity were discussed.

In the measurement-based models presented in this paper, only aging due to
each individual resource has been captured. In the future, one could improve the
algorithm used for aging detection to involve multiple parameters simultaneously,
for better prediction capability and reduced false alarms. Dependences between
the various system parameters could be studied. The best statistical data analysis
method for a given system is also yet to be determined.

References

1. E. Adams. Optimizing Preventive Service of the Software Products. IBM Journal
of R&D, 28(1):2-14, January 1984.

2. P. E. Amman and J. C. Knight. Data Diversity: An Approach to Software Fault
Tolerance. In Proc. of 17th Int. Symp. on Fault Tolerant Computing, pages 122-126,
June 1987.

3. A. Avizienis and L. Chen. On the Implementation of N-version Programming for
Software Fault Tolerance During Execution. In Proc. IEEE COMPSAC 77, pp
149-155, November 1977.

4. A. Avritzer and E.J. Weyuker. Monitoring Smoothly Degrading Systems for In-
creased Dependability. Empirical Software Eng. Journal, Vol 2, No. 1, pp 59-77,
1997.

5. L. Bernstein. Text of seminar delivered by Mr. Bernstein. In University Learning
Center, George Mason University, January 29 1996.

6. A. Bobbio, A. Sereno and C. Anglano. Fine Grained Software Degradation Models
for Optimal rejuvenation policies. Performance Evaluation, Vol. 46, pp 45-62, 2001.

7. K. Cassidy, K. Gross and A. Malekpour. Advanced Pattern Recognition for De-
tection of Complex Software Aging in Online Transaction Processing Servers. In
Proc. Dependable Systems and Networks, DSN 2002, Washington D.C., June 2002.

8. V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi, K.
Vaidyanathan and W. Zeggert. Proactive Management of Software Aging. IBM
Journal of R&D, Vol. 45, No.2, March 2001.

9. R. Chillarege, S. Biyani and J. Rosenthal. Measurement of Failure Rate in Widely
Distributed Software. In Proc. of 25th IEEE Int. Symp. on Fault Tolerant Com-
puting, pp 424-433, Pasadena, CA, July 1995.

10. T. Dohi, K. Goševa–Popstojanova and K. S. Trivedi. Analysis of Software Cost
Models with Rejuvenation. In Proc. of the 5th IEEE Int. Symp. on High Assurance
Systems Engineering, HASE 2000, Albuquerque, NM, November 2000.

11. T. Dohi, K. Goševa–Popstojanova and K. S. Trivedi. Statistical Non-Parametric
Algorithms to Estimate the Optimal Software Rejuvenation Schedule. Proc. of the
2000 Pacific Rim Int. Symp. on Dependable Computing, PRDC 2000, Los Angeles,
CA, December 2000.

12. S. Garg, A. Puliafito, M. Telek and K. S. Trivedi. Analysis of Software Rejuvenation
Using Markov Regenerative Stochastic Petri Net. In Proc. of the Sixth Int. Symp.
on Software Reliability Engineering, pp 180-187, Toulouse, France, October 1995.

344 K.S. Trivedi and K. Vaidyanathan

13. S. Garg, Y. Huang, C. Kintala and K. S. Trivedi. Time and Load Based Soft-
ware Rejuvenation: Policy, Evaluation and Optimality. In Proc. of the First Fault-
Tolerant Symposium, Madras, India, December 1995.

14. S. Garg, Y. Huang and C. Kintala, K.S. Trivedi, Minimizing Completion Time of
a Program by Checkpointing and Rejuvenation. Proc. 1996 ACM SIGMETRICS
Philadelphia, PA, pp 252-261, May 1996.

15. S. Garg, A. Puliafito, M. Telek and K. S. Trivedi. Analysis of Preventive Main-
tenance in Transactions Based Software Systems. IEEE Trans. on Computers, pp
96-107, Vol.47, No.1, January 1998.

16. S. Garg, A. van Moorsel, K. Vaidyanathan and K. S. Trivedi. A Methodology for
Detection and Estimation of Software Aging. In Proc. of the Ninth Int. Symp.
on Software Reliability Engineering, pp 282-292, Paderborn, Germany, November
1998.

17. J. Gray. Why do Computers Stop and What Can be Done About it? In Proc. of
5th Symp. on Reliability in Distributed Software and Database Systems, pp 3-12,
January 1986.

18. J. Gray. A Census of Tandem System Availability Between 1985 and 1990. IEEE
Trans. on Reliability, 39:409-418, October 1990.

19. J. Gray and D. P. Siewiorek. High-Availability Computer Systems. IEEE Com-
puter, pages 39-48, September 1991.

20. B. O. A. Grey. Making SDI Software Reliable through Fault-tolerant Techniques.
Defense Electronics, pp 77–80,85–86, August 1987.

21. J. A. Hartigan. Clustering Algorithms. New York:Wiley, 1975.
22. C. Hirel, B. Tuffin and K. S. Trivedi. SPNP: Stochastic Petri Net Package. Version

6.0. B. R. Haverkort et al. (eds.): TOOLS 2000, Lecture Notes in Computer Science
1786, pp 354-357, Springer-Verlag Heidelberg, 2000.

23. J. J. Horning, H. C. Lauer, P. M. Melliar-Smith and B. Randell. A Program
Structure for Error Detection and Recovery. Lecture Notes in Computer Science,
16:177-193, 1974.

24. Y. Huang, P. Jalote and C. Kintala. Two Techniques for Transient Software Error
Recovery. Lecture Notes in Computer Science, Vol. 774, pp 159-170. Springer
Verlag, Berlin, 1994.

25. Y. Huang, C. Kintala, N. Kolettis and N. D. Fulton. Software Rejuvenation:
Analysis, Module and Applications. In Proc. of 25th Symp. on Fault Tolerant
Computing, pp 381-390, Pasadena, CA, June 1995.

26. IBM Netfinity Director Software Rejuvenation - White Paper. IBM Corporation,
Research Triangle Park, NC, January 2001.

27. P. Jalote, Y. Huang and C. Kintala. A Framework for Understanding and Handling
Transient Software Failures. In Proc. 2nd ISSAT Int. Conf. on Reliability and
Quality in Design, Orlando, FL, 1995.

28. J. C. Laprie, J. Arlat, C. Béounes, K. Kanoun and C. Hourtolle. Hardware and Soft-
ware Fault Tolerance: Definition and Analysis of Architectural Solutions. In Proc.
of 17th Symp. on Fault Tolerant Computing, pp 116-121, Pittsburgh, PA,1987.

29. J. C. Laprie (Ed.). Dependability: Basic Concepts and Terminology. Springer-
Verlag, Wien, New York, 1992.

30. I. Lee and R. K. Iyer. Software Dependability in the Tandem GUARDIAN System.
IEEE Trans. on Software Engineering, pp 455-467, Vol. 21, No. 5, May 1995.

31. L. Li, K. Vaidyanathan and K. S. Trivedi. An Approach to Estimation of Soft-
ware Aging in a Web Server. In Proc. of the Int. Symp. on Empirical Software
Engineering, ISESE 2002, Nara, Japan, October 2002 (to appear).

Software Reliability and Rejuvenation: Modeling and Analysis 345

32. E. Marshall. Fatal Error: How Patriot Overlooked a Scud. Science, pp 1347, March
13 1992.

33. D. Mosberger and T. Jin. Httperf - A Tool for Measuring Web Server Performance
In First Workshop on Internet Server Performance, WISP, Madison, WI, pp.59-67,
June 1998.

34. A. Pfening, S. Garg, A. Puliafito, M. Telek and K. S. Trivedi. Optimal Rejuvenation
for Tolerating Soft Failures. Performance Evaluation, 27 & 28, pp 491-506, October
1996.

35. D. K. Pradhan. Fault-Tolerant Computer System Design. Prentice Hall, Englewood
Cliffs, NJ, 1996.

36. S. M. Ross. Stochastic Processes. John Wiley & Sons, New York, 1983.
37. R. A. Sahner, K. S. Trivedi, A. Puliafito. Performance and Reliability Analysis

of Computer Systems - An Example-Based Approach Using the SHARPE Software
Package. Kluwer Academic Publishers, Norwell, MA, 1996.

38. R. H. Shumway and D. S. Stoffer. Time Series Analysis and Its Applications,
Springer-Verlag, New York, 2000.

39. K. Smith and M. Seltzer. File System Aging - Increasing the Relevance of File
System Benchmarks In Proc. of ACM SIGMETRICS, June 1997.

40. M. Sullivan and R. Chillarege. Software Defects and Their Impact on System
Availability - A Study of Field Failures in Operating Systems. In Proc. 21st IEEE
Int. Symp. on Fault Tolerant Computing, pages 2–9, 1991.

41. A. T. Tai, S. N. Chau, L. Alkalaj, and H. Hecht. On-board Preventive Mainte-
nance: Analysis of Effectiveness and Optimal Duty Period. In Proc. of 3rd Int.
Workshop on Object-oriented Real-time Dependable Systems, Newport Beach, Cal-
ifornia, February 1997.

42. K. S. Trivedi, J. Muppala, S. Woolet and B. R. Haverkort. Composite Performance
and Dependability Analysis. Performance Evaluation, Vol. 14, Nos. 3-4, pp 197-
216, February 1992.

43. K. S. Trivedi. Probability and Statistics, with Reliability, Queuing and Computer
Science Applications, 2nd edition. John Wiley, 2001.

44. K. Vaidyanathan and K. S. Trivedi. A Measurement-Based Model for Estimation
of Resource Exhaustion in Operational Software Systems. In Proc. of the Tenth
IEEE Int. Symp. on Software Reliability Engineering, pp 84-93, Boca Raton, FL,
November 1999.

45. K. Vaidyanathan, R. E. Harper, S. W. Hunter, K. S. Trivedi. Analysis and Imple-
mentation of Software Rejuvenation in Cluster Systems. In Proc. of the Joint Int.
Conf. on Measurement and Modeling of Computer Systems, ACM SIGMETRICS
2001/Performance 2001, Cambridge, MA, June 2001.

46. http://www.apache.org
47. http://www.software-rejuvenation.com

	Software Reliability and Rejuvenation: Modeling and Analysis
	Introduction
	What Is a Software Failure?
	Classification of Software Faults
	Software Aging
	Software Fault Tolerance
	Software Rejuvenation

	Analytic Models for Software Rejuvenation
	Basic Model for Rejuvenation
	Preventive Maintenance in Transactions Based Software Systems
	Software Rejuvenation in a Cluster System

	Measurement Based Models for Software Rejuvenation
	Time-Based Estimation
	Time and Workload-Based Estimation
	Time Series and ARMA Models

	Implementation of a Software Rejuvenation Agent
	Approaches and Methods of Software Rejuvenation
	Conclusions
	References

