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Abstract. This tutorial reviews benchmarking tools and techniques
that can be used to evaluate the performance and scalability of highly
accessed Web-server systems. The focus is on design and testing of lo-
cally and geographically distributed architectures where the performance
evaluation is obtained through workload generators and analyzers in a
laboratory environment. The tutorial identifies the qualities and issues
of existing tools with respect to the main features that characterize a
benchmarking tool (workload representation, load generation, data col-
lection, output analysis and report) and their applicability to the analysis
of distributed Web-server systems.

1 Introduction

The explosive growth in size and usage of the Web is causing enormous strain on
users, network service, and content providers. Sophisticated software components
have been implemented for the provision of critical services through the Web.
Consequently, many research efforts have been directed toward improving the
performance of Web-based services through caching and replication solutions. A
large variety of novel content delivery architectures, such as distributed Web-
server systems, cooperative proxy systems, and content distribution networks
have been proposed and implemented [35].

One of the key issues is the evaluation of the performance and scalability of
these systems under realistic workload conditions. In this tutorial, we focus on
the use of benchmarking models and tools during the design, testing, and alter-
native comparison of locally and geographically distributed systems for highly
accessed Web sites. We discuss the properties that should be provided by a
benchmarking tool in terms of various parameters: applicability to distributed
Web-server systems, realism of workload and significance of the output results.
The analysis is also influenced by the availability of the source code and the
customizability of the workload model. We analyze popular products that are
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free or at nominal costs, and provide source code: httperf [32], SPECweb99 (in-
cluding the version supporting SSL encryption/decryption) [38,39], SURGE [7,
8], S-Clients [6], TPC-W [41], WebBench [45], Web Polygraph [42], and Web-
Stone [30]. For this reason, we do not consider commercial tools (e.g., Techno-
vations’ Websizr [40], Neal Nelson’s Web Server Benchmark [34]) that are more
expensive and typically unavailable to the academic community, although they
provide richer functionalities. Other benchmarking tools that come from the re-
search (e.g., Flintstone [15], WAGON [24]) have not been included because they
are not publicly available.

We can anticipate that none of the observed tools is specifically oriented to
testing distributed Web-server systems, and only a minority of them reproduces
the load imposed by a modern user session. Many existing benchmarks prefer
to test the maximum capacity of a Web server by requesting objects as quickly
as possible or at a constant rate. Others with more realistic reproductions of
user session behavior (involving multiple requests for Web pages separated by
think times) refer to request and delivery of static content only. This result was
rather surprising if we think that the variety and complexity of offered Web-
based services require system structures that are quite different from the typical
browser/server solutions of the early days of the Web. The increasing need for
dynamic request, multimedia services, e-commerce transactions, and security are
typically based on multi-tier distributed systems. These novel architectures have
really complicated the user and client interactions with a Web system, ranging
from simple browsing to elaborated sessions involving queries to application and
database servers. Not to say about the manipulations to which a user request can
be subject, from cookie-based identifications to tunneling, caching, and redirec-
tions. Moreover, an increasing amount of Web services and content are subject
to security restrictions and secure communication channels involving strong au-
thentication that is becoming a common practice in the e-business world. Since
distributed Web-server systems typically provide dynamic and secure services, a
modern benchmarking tool should model and monitor the complex interactions
occurring between clients and servers. None of them seems publicly available to
the academic community.

We illustrate in Fig. 1 the basic structure of a benchmark tool for distributed
Web-server systems that we assume based on six main components (benchmark-
ing goal and scope, workload characterization, content mapping on servers, work-
load generation, data collection, data analysis and report) that will be analyzed
in details in the following sections. The clear identification of the characteristics
to be evaluated is at the basis of any serious benchmarking study that cannot
expect to achieve multiple goals. From this choice, the workload representation
phase takes as its input the set of parameters representing a given workload con-
figuration and produces a non ambiguous Web workload specification. In the case
of a distributed Web-server system, the content is not always replicated among
all the servers, hence it is important that the content mapping phase decides the
assignment of the Web content among multiple front-end and back-end servers.
The workload generation engine of a benchmark analyzes the workload specifi-
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cation and produces the offered Web workload, issuing the necessary amount of
requests to the Web system and handling the server responses. The component
responsible for data collection considers the metrics of interest that have been
chosen in the first phase of the benchmarking study and stores relative data
measurements. Often, the whole set of measurements must be aggregated and
processed in order to present meaningful results to the benchmark user. The
output analysis and report component of a benchmark takes the collected data
set, computes the desired statistics, and presents them to the benchmark user
in a readable form.

Scope and
goals

Workload
characterizationConfiguration

parameters
Content mapping

on servers

Data
collection

Web content
and services

Distributed
Web system

Workload
generation

Data analysis
& report

Collected data

Web content
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Measurements
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Metrics
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Fig. 1. Main components of a benchmarking tool for distributed Web-server systems.

After a brief description in Sect. 2 of the main architectures for locally and
geographically distributed Web-server systems, the remaining sections of this
tutorial follows the components outlined in Fig. 1. Finally, Sect. 9 concludes the
paper and summarizes some open issues for future research.

2 Distributed Web-Server Systems

In this section we outline the main characteristics of the Web-server systems we
consider in this tutorial, by distinguishing locally from geographically distributed
architectures.

Any distributed Web-server system needs to appear as one host to the outside
world, so that users need not be concerned about the names or locations of the
replicated servers. Although a large system may consist of dozens of nodes, it is
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publicized with one site name to provide a single interface to users at least at
the site name level.

2.1 Locally Distributed Architectures

A locally distributed Web-server system, namely Web cluster, is composed by
a multi-tier architecture placed at a single location. A typical architecture is
shown in Fig. 2. A modern Web cluster has typically a front-end component
(called Web switch) that is located between the Internet and the first tier of
Web server nodes, and it acts as a network representative for the Web site.
The Web system comprises also one authoritative Domain Name System (DNS)
server for translating the Web site name into one IP address. The role of this
name server is easy because a Web cluster provides to the external world a single
virtual IP address that corresponds to the IP address of the Web switch.

The HTTP processes running on the Web server nodes listen on some network
port for the client requests assigned by the Web switch, prepare the content
requested by the clients, send the response back to the clients or to the Web
switch depending on the cluster architecture, and finally return to the listen
status. The Web server nodes are capable of handling requests for static content,
whereas they forward requests for dynamic content to other processes that are
interposed between the Web servers and the back-end servers. In less complex
architectures these middle-tier processes (e.g., CGI, ASP, JSP) are executed on
the same nodes where the HTTP processes run, so to avoid a connection with
another server node. These middle-tier processes are activated by and accept
requests from the HTTP processes. They interact with database servers or other
legacy applications running on the back-end server nodes for providing dynamic
content.

In Fig. 2 we evidence the three main flows of interactions of a client with
the Web cluster not including secure connections: requests for static files that
are served from the disk cache of the Web servers, requests for static files that
require the disk access, requests for dynamic content.

The Web switch receives the totality of inbound packets and distributes them
among the Web servers. The two main architecture alternatives can be broadly
classified according to the OSI protocol stack layer at which the Web switch
operates the request assignment, that is layer-4 and layer-7 Web switches. The
main difference is the kind of information available to the Web switch to perform
assignment and routing decision.

Layer-4 Web switches work at TCP/IP layer. They are content information
blind, because they determine the target server when the client establishes the
TCP connection, before sending out the HTTP request. Therefore, the type of
information regarding the client is limited to that contained in TCP/IP packets,
that is IP source address, TCP port numbers, SYN/FIN flags in the TCP header.

Layer-7 Web switches work at the application layer. They can deploy content-
based request distribution. The Web switch establishes a complete TCP connec-
tion with the client, inspects the HTTP request content, and then relays it to
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Fig. 2. Flows of interaction in a locally distributed architecture.

the chosen Web server. The selection of the target server can be based on the
Web service/content requested, as URL content, SSL identifiers, and cookies.

Another important classification regards the mechanism used by the Web
cluster to route outbound packets to the clients. In two-ways architectures, both
inbound and outbound traffic pass through the Web switch. In one-way architec-
tures, only inbound packets flow through the Web switch, while outbound pack-
ets use a separate high-bandwidth network connection. A detailed description of
request routing mechanisms and dispatching algorithms for locally distributed
architectures can be found in [10].

2.2 Geographically Distributed Architectures

A locally distributed system is a powerful and robust architecture from the server
point of view, but does not solve the problems related to network delivery, such as
first and last mile connectivity, router overload, peering points. An alternative
solution is to distribute the server nodes over the Internet. With respect to
clusters of nodes that reside at a single location, geographically distributed Web-
server systems can reduce network delays experienced by the client, and also
provide high availability to face network failures and congestion.

For performance and availability reasons, the distribution take typically place
at the granularity of Web clusters that is, each geographically distributed node
consists of a cluster of servers as that described in the previous section. We
refer to this architectures as to Web multi-cluster. It maintains one hostname
for the extern as in the Web cluster case, but now each Web cluster has a visible
IP address. Hence, the request assignment process can occur in two or more
steps. The first request assignment (inter-cluster) is typically carried out by the
authoritative Domain Name Server (DNS) of the Web site that selects the IP
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address of the target Web cluster during the address lookup of the client request.
The second (intra-cluster) dispatching level is executed by the Web switch of the
target cluster that distributes the request reaching the cluster among the local
Web server nodes. A third (extra-cluster) dispatching level based on some request
re-routing technique may be integrated with the previous two mechanisms [11,
35].

3 Scope and Goals of the Benchmarking Study

In considering the performance of a Web system we should regard to its software,
operating system, and hardware environment, because each of these factors can
dramatically influence the results. In a distributed Web-server system, this en-
vironment is further complicated by the presence of multiple components, that
require connection handoffs, process activations and request dispatching. For ex-
ample, referring to the Web switch component in Fig. 2, we may be interested
to evaluate several alternatives, such as hardware, operating system, network re-
lated software, request dispatching policy and request forwarding mechanism. A
Web server is characterized by similar hardware and software layers, and besides
them by the HTTP software, the data distribution, the software for dynamic
requests. A back-end server is also characterized by application and database
software. Not to say of the additional complexity that characterizes a geograph-
ically distributed system.

A complete performance evaluation of all layers and components of a dis-
tributed Web-server system is simply impossible. Hence, any serious benchmark-
ing study should clearly define its goals and limit the scope of the alternatives
to be considered. In particular, this tutorial focuses mainly on benchmarking
tools used in the design and prototype phase when different architectures must
be evaluated and alternative solutions must be compared through experiments
in a laboratory. Our main interests do not go to the hardware and operating
system that in most cases are simply given. Similarly, we are not interested to
evaluate the end-to-end performance of an installed Web system although many
considerations can be also used for these purposes.

4 Workload Characterization

The characterization of the workload generated by a Web benchmarking tool
represents a central aspect of benchmarking and constitutes a distinguishing
core feature of existing tools as on it founds the attempt to mimic the real-world
traffic patterns observed by Web-server systems. The generation of synthetic
Web traffic is not a trivial task because it aims at reproducing as accurately
as possible the characteristics of real traffic patterns, which exhibit some un-
usual features such as burstiness and self-similarity [4,12]. On the other hand,
real world workloads are inherently irreproducible, since it is impossible to repli-
cate the overall conditions under which the performance testing was originally
performed.



214 M. Andreolini, V. Cardellini, and M. Colajanni

In this section, we identify the main properties that are at the basis of the
process of specifying the workload characterization. Moreover, we analyze the
requirements that are specific for the benchmarking of distributed Web-server
systems, compare the identified approaches, and discuss how the existing bench-
marks realize these properties, providing also directions which we feel should
be considered in the realization of benchmarking tools specific to distributed
Web-server systems.

4.1 Classification of Alternatives

The workload characterization of a Web benchmark deals with three main as-
pects:

– the Web service characterization defines the types of services requested to
the Web-server system;
– the request stream characterization defines the characteristics and the

methodology used to generate the stream of requests issued to the Web-
server system under evaluation;
– the Web client characterization defines the behavioral model of the Web

client (i.e., the browser) and specifies to which extent the client characteris-
tics support the HTTP specifications.

Characterization of Web-based Services. Let us first examine the charac-
terization of Web-based services. As the variety of services and functions offered
over the Web is steadily increasing, and puts dramatic performance demands
on Web servers, the workload characterization of a benchmark should attempt
to model realistic Web traffic and aim to capture this large variety of services.
That is to say, the requests cannot be limited to static resources, but rather
the workload should at least include dynamic services, which typically impose
higher resource demands on Web servers [2]. Streaming multimedia services pro-
vided over the Web are also becoming increasingly popular and should be taken
into account in the workload model. Security is a further issue which is often
neglected in existing Web server benchmarks. With the increasing number of sen-
sible and private transactions being conducted on the Web, security has raised
its importance; therefore, modern workload characteristics should also include
encrypted client-server interactions.

In Table 1 we summarize the core parameters that are involved in the specifi-
cation of the offered workload. The definition of the parameters is oriented to the
user session and resembles that described in [7,8,23]. The first set of parameters
reviews some basic terminology, the second contains user-oriented parameters,
while the third concerns Web object characteristics.

Characterization of the Request Stream. There are several possibilities to
generate the stream of Web requests that will reach the tested system. The choice
of a methodology impacts on the characteristics of the offered Web workload as
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Table 1. Main parameters involved in the specification of Web workload.

Name Meaning
Web page A collection of objects constituting a multipart document

intended to be rendered simultaneously; the base object
is the first fetched from the server, then it is parsed, and
all embedded objects are subsequently requested

User session A sequence of requests for Web pages (clicks) issued by
the same user during an entire visit to the Web site

Session length The number of Web pages constituting a user session
Session interarrival rate The rate at which new user sessions are generated
User think time The time between two consecutive Web pages retrievals
Object sizes The size of the collection of objects stored on the Web system
Request sizes The size of objects transferred from the Web system
Object popularity The relative frequency of requests made to individual objects
Embedded objects The number of objects (not counting the base object)

composing a single Web page
Temporal locality How likely a requested object will be requested again in the

near future

well as on the mapping of the synthetic content on the Web-server system that
will be analyzed in Sect. 5. As shown in Fig. 3, the generation of the stream of
Web requests falls into main four approaches.

Web request stream
specification

Filelist based HybridAnalytical
distribution driven

Trace−based

Fig. 3. Possible approaches to generate the stream of Web requests.

In the trace-based approach, the characteristics of the Web workload is based
on pre-recorded (or synthetically generated) trace logs derived by server access
logs [20]. The workload characteristics can be reproduced by replaying (or sam-
pling) the requests as logged in the trace. An alternative is to create an abstract
model of the Web site and extract session-oriented high-level information (such
as session lengths and inter-arrival times) through a preliminary trace analysis
that pre-processes server logs [25]. Some techniques to infer Web session charac-
teristics from trace logs have been described in [1,27]. The trace-based approach
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allows the benchmark tool to mimic the user behavior in a realistic way. However,
the conclusions drawn from the experiments depends on the trace representa-
tiveness, as a trace can present workload properties that are strictly peculiar to
it and do not have general validity. Furthermore, it can be hard to adjust the
workload to imitate future conditions or varying demands.

It should also be remarked that, unlike the early days of the Web, server
access logfiles are becoming a precious source of business and marketing infor-
mation. As a consequence, companies and organizations are not willing to give
their traces for free (or even at all), if not after years when the realism of these
traces is at least doubtful. A further issue of the trace-based approach regards
the reconstruction of the user sessions from the trace logs, which is not a triv-
ial task [1]. For example, as sessions are identified through their IP address, it
may happen that clients behind the same proxy are considered as coming from
the same machine, which may lead to an improper characterization of the Web
workload. Another issue that may complicate the reconstruction of user sessions,
especially for highly accessed Web systems, concerns the coarse time resolution
at which requests are recorded in server access logs [20].

In the filelist based approach, the tool provides a list of Web objects with their
access frequencies. The object sizes are typically based upon the analysis of logs
from several Web sites. During the workload generation phase, the next object to
be retrieved is chosen on the basis of its access frequency. Time characteristics are
typically not taken into account, hence the stream of requests depends only on
the filelist while the inter-arrival request time is set. The filelist approach lacks
of flexibility with respect to the workload specification, and also ignores the
concept of user sessions As discussed in [4,3,8,12], Web traffic is bursty, session-
oriented, and characterized by heavy-tailed distributions, which have high or
even infinite variance and therefore show extreme variability on all time scales.
To emulate these workload characteristics, it is not sufficient to mimic the user
activity by requesting a set of files as quickly as possible; it is necessary to
provide some support for modeling the session-oriented nature of Web traffic.
As a consequence, a benchmark that uses just a filelist is not able to reproduce
a realistic Web workload. When using filelists, the only feasible alternative is
to provide some support to define the characteristics of a user session (such as
user think times) otherwise the workload generator will not be able to emulate
a realistic load. Furthermore, the overall size of the file set being used should be
checked to ensure that the server caching mechanism is fully exercised.

In the analytical distribution-driven approach, the Web workload characteris-
tics are specified by means of mathematical distributions. The requests are issued
according to the parameters of the workload model. The probability distributions
may be used to generate random values that reproduce all the characteristics of
the request stream during the execution of the benchmarking test. An alternative
is to pre-generate all user sessions and the resulting sequence of requests, and
to store them in a trace file which will be used by the workload generator. The
analytical distribution-driven approach allows a tool to define a detailed Web
workload characterization because all features are specified through mathemat-
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ical models. Some can argue about the realism and accuracy of the workload
characterization, but changing the parameters of a distribution or a distribution
itself to evaluate the performance under different conditions is a really easy task.

The hybrid approach is a mix of the filelist and analytical techniques.
For example, the objects to be accessed may be specified through a filelist,
while session-oriented parameters, such as session lengths and user think times,
are modeled through analytical distributions. In the hybrid method, parame-
ters shaping the main characteristics of session-oriented workload are modeled
through stochastic models.

Web Client Characterization. The first important characterization for a
Web client regards the alternative between an open and a closed loop model.
In a closed model, a pre-determined number of clients sends requests only after
having received the previous server responses. Although this model does not
give a realistic view of the offered load, it is adopted by several tools that aim to
evaluate performance of a Web system subject to constant load. However, this
behavior becomes unrealistic and not acceptable for a distributed Web-server
system under heavy load conditions. Indeed, as Web traffic increases, clients
spend most of their time waiting for responses and, substantially, they issue
requests at the response rate imposed by the system responses. This situation
is far from reality, in which the clients access a distributed popular Web site
concurrently and independently from the server responses. Hence, an open client
model, characterized by periodic client interarrival times, is typically preferred
when evaluating the performance of a distributed Web-server system.

Another main feature related to the client requests is represented by the
HTTP protocol that is supported by the emulated browser. The client should be
capable of requesting objects using both HTTP/1.0 and HTTP/1.1. Indeed, the
latter provides some interesting features (such as persistent connections, request
pipelining, and chunked transfer encoding [20]) which affect the performance of
the Web system under testing [8,19]. In particular, persistent connections are
used to limit the number of opened TCP connections (thereby reducing resource
consumption on the Web-server system) and to avoid slow start each time a new
object is requested. It would be also important to have full support for various
request methods (GET, POST, HEAD) in the request header. Further issues
regard the possibility to allow for session tracking via cookies and to support
SSL/TLS encryption in such a way to request secure Web services.

To properly mimic the resource usage of the Web-server system, the emulated
client could also use multiple parallel connections for the retrieval of embedded
objects in a Web page. Although this is a deprecated technique for its impact on
the Web servers, it is commonly employed by modern browsers (together with
closing active connection by means of TCP resets) to reduce the latency time
experimented by users. This implies that the browser behavior cannot be naively
emulated by a simple model in which the client opens a single TCP connection
at a time for the retrieval of a single Web object.
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4.2 Requirements for Distributed Web-Server Systems

In this section we identify the requirements pertaining to the workload charac-
terization component which are suitable to perform the benchmarking of dis-
tributed Web-server systems. Besides the workload characteristics which should
mimic at best those of real Web traffic and an open system model for client
requests, the distinguishing feature that characterizes the benchmarking of dis-
tributed Web-server systems regards the mechanisms supported by the client for
request routing.

No particular support is required to the benchmark of Web clusters, as the
Web switch completely masks the distributed nature of the architecture to the
clients that interact with the Web system as if it were a one server node. On the
other hand, some request routing support must be provided for benchmarking
geographically distributed Web-server systems in which multiple IP addresses
may be visible to client applications. The most important feature to add to the
client model is the DNS mechanism with all main steps related to the address
lookup phase. This would allow us to test the impact of alternative routing mech-
anisms, such as DNS-based routing, URL rewriting, and HTTP redirection [13].
To support the last technique, the client should also be able to redirect the
request as indicated in the response header.

4.3 Comparison of Selected Tools

In this subsection we analyze how the selected Web benchmarks specify their
workload. We appreciate that most benchmark tools allow us to customize and
extend the workload model in order to test different scenarios. On the other
hand, the option for workload configuration of SPECweb and TCP-W bench-
marks are quite limited because their goal is to measure the performance of
different systems in a well-defined and standardized scenario. Obviously, we do
not penalize these benchmarks for a limit that is intrinsic in their design.

Httperf permits two approaches to generate the request stream that is, hybrid
and trace-based [32]. Both methods enable a session-oriented workload charac-
terization and the requests for both static and dynamic services. In the hybrid
approach, single or multiple URL sequences may be specified, together with
some session oriented parameters, such as user think times. In the trace-based
approach, user sessions are defined in a trace file. The requests are issued ac-
cording to an open model. Both HTTP/1.0 and HTTP/1.1 protocols are fully
supported, including cookies (although only one cookie per user session). Pri-
mary SSL support is provided, including the possibility of specifying session
reuse, which is an important feature as it avoids handshaking every client re-
quest. Httperf allows also to specify some realistic browser characteristics, such
as the use of multiple concurrent connections.

SURGE relies on a analytically generated workload aimed at dealing with
the self-similarity issues of the Web characteristics [7,8]. The workload model
derives from empirical analysis of Web server usage to mimic real-world traffic
properties. In SURGE, the workload is measured in terms of User Equivalent,
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defined as a single process in an endless loop, alternating between requests and
thinking times. Therefore, the user behavior is modeled as a bursty two-state
ON/OFF process, where ON periods correspond to the transfer of Web objects,
and OFF periods correspond to the silent intervals after that all objects in a
Web page have been retrieved. It has been demonstrated that the superposition
of a large number of ON/OFF sources results in self-similar traffic, if the du-
rations of ON and OFF phases are described by heavy-tailed distributions [12,
43]. The characteristics of the request stream are specified through heavy-tailed
distributions as regarding file size, request size, file popularity, embedded ob-
ject references, temporal locality, and OFF times. Support for HTTP/1.0 and
HTTP/1.1 protocols is provided (the latter with request pipelining), while no
security support is provided. The browser activity is emulated using only one
connection at time. SURGE remains the most accurate tool for the characteri-
zation of static requests. Its main limits, especially for the analysis of multi-tier
Web systems, are that the workload model does not take into account request
for dynamic services and that the generation of requests follows a closed-loop
model.

The S-Clients workload is intentionally not realistic, being characterized by
a single file which is requested at a specified fixed rate [6]. This choice provides
excellent measurements of the server performance and capacity, but does not ex-
ercise other system resources, starting from the disk as the file is always get from
the cache. With S-Clients it is not possible to specify any browser behavior, only
the plain HTTP/1.0 protocol is supported, and no session encryption is allowed.
These aspects make the workload characterization provided by S-Clients inap-
propriate from the point of view of the workload realism, while it is appreciable
its sustained load solution for stress testing distributed Web-server systems, as
discussed in Sect. 6.

WebStone denotes the characteristics of the request stream through a file
list [30]. The benchmark workload includes both static and dynamic services,
the latter generated through CGIs and server APIs. Since the maximum size of
the filelist is limited to 100 files, it is difficult to model typical workloads of dis-
tributed Web-server systems which consist of thousands of files. Moreover, there
is no way of specifying a session-oriented workload, since requests are intended to
be issued consecutively. The workload is generated following a closed loop model.
The emulation of the browser characteristics is quite limited, as WebStone sup-
ports only standard HTTP/1.0 without keep-alive. Support for encryption and
authentication is not officially included, although a patched version exists which
enables it [31].

WebBench follows a hybrid approach, where the workload characterization
is done through test suites that is, appropriate combinations of request streams
(which model specific user interactions) along with their reproduction modali-
ties [45]. Static, dynamic (CGI and API), and secure services may be configured.
Both HTTP/1.0 and HTTP/1.1 protocols are supported. The two main draw-
backs are related to the impossibility to specify the session-oriented nature of
client requests and to the closed loop model.
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Web Polygraph permits a fairly complete specification of the Web workload,
characterized by a session-oriented request stream, Web pages, popularity of files,
cacheability at the client, server delays due to network congestion [42]. Many of
these propierties may be specified through probability distributions. Requests
may be issued through both HTTP/1.0 and HTTP/1.1 protocols, in an open or
closed loop model. An interesting feature is the presence of already configured
Web workloads oriented to layer-4 and layer-7 Web clusters.

A different common observation is in order about the workload of
SPECweb99 and TPC-W benchmarks. They define standardized Web workloads
which are not intended to be customized by the user. Hence, they cannot be used
to define workloads for different categories of Web sites. The basic workload of
SPECweb99 [38] includes both static and dynamically generated content, while
an enhanced version supports also secure services [39]. The static workload is
characterized by four classes of file sets, modeling different types of Web servers
and spread into a precomputed number of directories. Directory access and class
access are chosen according to a Zipf distribution. The dynamic workload models
two common features of commercial Web servers: advertising and user registra-
tion. The client model is closed because a fixed number of clients is executed
during each experiment.

The TPC-W benchmark specification (note that it is not a tool) defines
the details of the Web services and content at the site and the workload of-
fered by clients [26,41]. It specifies a database structure oriented to e-commerce
transactions for an online bookstore together with its Web interface. Clients
are characterized by Web interactions that is, well-defined sequences of Web
page traversals which pursue particular actions such as browsing, searching, and
ordering. Request streams are session-oriented, with think times between Web
page retrievals. It also includes secure connections because some client actions
(e.g., online buying) require SSL/TLS encryption.

No tool provides explicit support to DNS routing that is of key importance in
geographically distributed Web-server systems and Content Delivery Networks.
Most benchmarking tools perform only one DNS lookup at the beginning of the
test, that is unrealistic since a DNS lookup is needed per each client session.
There is no much support even to other (application based) request routing
mechanisms, for example only Web Polygraph and WebBench support HTTP
redirection.

5 Content Mapping on Servers

An interesting issue of a benchmarking tool for distributed Web-server systems
is the replication of the synthetic content among the multiple server nodes.
Once the synthetic workload has been specified, it must be replicated on the
Web nodes composing the Web-server system prior that the workload generation
engine starts to generate the request stream. This constitutes an error-prone
operation which should be automated as much as possible. Another peculiarity
of distributed Web-server systems is that the replication strategy may differ on
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the basis of the system architectures, because the content is not always replicated
among all the servers.

Let us first examine the problem of mapping the Web site content onto
the Web servers in the case of one Web server, for which we identify three
alternatives: full support, partial support, and no support.

The most attractive feature to the benchmark user is a full support that
is, once the benchmark user provides the specification of the entire Web site
content (the tree of static documents as well as the set of data to be placed on
the back-end servers), it is automatically generated and uploaded on the Web
and back-end server disks. A partial support means that only a portion of the
Web site content (that , static documents) is put on the server disk, while other
content (that is, dynamic services) is left up to the benchmark user. If the bench-
mark does not provide any support for the content generation and mapping, the
content must be generated and uploaded manually on the server. Manual gener-
ation is errore-prone and is often unfeasible due to the large number of involved
files. Thus, the presence of a mapping component is strongly encouraged.

Webstone provides a partial support for Web content creation [30]. It is
possible to specify and generate a set of static files with given sizes, while dy-
namic content creation is left to the user. The other Web benchmarking tools,
although providing in some cases already predefined Web contents (SPECweb99,
WebBench), neither perform content mapping across different Web servers nor
install them. Every decision is left to the benchmark user.

The benchmark study of a distributed Web-server system has an additional
requirement because the site content may be fully replicated, partially replicated,
or partitioned among the multiple server nodes. The two last configurations are
typically used to increase the secondary storage scalability [10,44] or to enhance
the features of specialized server nodes providing dynamically generated content
or streaming media files. It is also important to observe that fully replication can
be easily avoided only if we use a layer-7 Web switch that can take content-aware
dispatching decisions. An alternative is to use a layer-4 Web switch combined
with a distributed file system, because any selected server node should be able
to respond to client requests for any part of the Web site content.

We can easily observe that none of the selected benchmarking tools includes
any utility for fully or partial content replication among multiple servers.

6 Workload Generation Engine

An important component of a Web benchmarking tool is the workload generation
engine, which is responsible for reproducing the specified workload in the most
accurate and efficient way.

Distributed Web-server systems are characterized by a huge number of ac-
cesses, which have to be emulated with a usually limited amount of resources.
This may be obtained by generating and sustaining overload [6] that is, con-
stantly offering a load that exceeds the capacity of the distributed Web system.
In this section, we identify the main features of workload generation, analyze the



222 M. Andreolini, V. Cardellini, and M. Colajanni

requirements that are specific for distributed Web systems, and discuss how the
selected Web benchmarking tools behave with respect to the identified features
and requirements.

6.1 Classification of Alternatives

The two main features in a workload generator are the engine architecture denot-
ing the computational units used to generate Web traffic (processes or threads)
and mutual interactions, and the coordination scheme defining the ability of
configuring and synchronizing the computational unit executions.

Engine Architectures. We give a possible taxonomy of workload generator
architectures in Fig. 4. In a centralized architecture, a single instance of the
workload generator runs on a single node, whereas in distributed architectures
the engine is spread across multiple nodes.

Workload generation
engine

Single node
(centralized)

Multiple nodes
(distributed)

Single
process

Multiple
processes

Multiple
threads

Hybrid Single
process
per node

Multiple
processes
per node

Multiple
threads

per node
per node
Hybrid

Fig. 4. Architecture of a workload generator.

The architecture characterization defines the nature of the computational
units on each client node. In single-process architectures, one process is responsi-
ble for the generation of the whole workload on the node on which it is running.
In multiple-process architectures, the task of generating client requests is split up
among several user-level processes. The multiple-process approach is relatively
straightforward, but suffers from two drawbacks. First, it is CPU-intensive be-
cause of frequent context switches, especially when many user processes are
spawned on the same machine. Second, since process address spaces are usually
separated, most information (e.g., the workload configuration) must be repli-
cated, thus wasting main memory that is an important resource for the scalabil-
ity of the load generated by the client node.
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In multi-threaded architectures, light-weight processes sharing the same ad-
dress space are used to generate the appropriate portion of workload, while in
hybrid architectures each node runs several user processes, each handling multi-
ple threads. The multi-threaded architecture does not suffer from context switch
drawbacks. In general, light-weight processes guarantee for a better scalability,
but multi-threaded programming incurs in a higher degree of complexity. Shar-
ing the address space surely leads to a better memory utilization than in the
multi-process architecture, at the cost of implementing synchronization prim-
itives which could block client activity. Finally, several threads usually share
one set of system resources, which could be exhausted (for example, the file
descriptor set used to reference TCP connections).

The hybrid architecture aims to combine the advantages of multi-threaded
architectures (lower CPU overhead due to less frequent context switches) with
those of multi-process architectures (increase in available system resources such
as socket descriptors).

Coordination Schemes. The task of configuring and coordinating the execu-
tion of the computational units may be performed manually or automatically. In
the latter case, two coordination schemes are possible: master-client and master-
collector-client.

In the master-client scheme (see Fig. 5), the client generation task is delegated
to a master component, which reads the configuration and performs several op-
erations. First, it decides how many computational units have to be started and
how they are distributed among the client nodes, in order to offer the specified
workload. Then, it distributes part of the workload specification (for example,
the filelist) among all clients. Finally, it synchronizes the start of the benchmark-
ing experiment.

Distributed
Web system

...

Client node 1

Client

Client

...

Client node K

Client

Client

Master node

Master

Fig. 5. The master-client coordination scheme.
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The master-client approach is further extended in the master-collector-client
coordination scheme, illustrated in Fig. 6. One or more collector processes are
activated on each client node, either manually or automatically through a mas-
ter process (for clarity of representation, Fig. 6 shows only one collector). The
master connects to each collector, distributes the workload configuration, and
synchronizes the start of the benchmarking experiment. Each collector reads its
portion of configuration from the master, spawns the necessary amount of com-
putational units, and waits for a start signal from the master. Master, collector,
and clients are logically separated, but they may reside on the same node.

Master

Master node

Client

Client

Client node 1

Collector

Client

Client

Client node K

Collector

Distributed
Web system

Fig. 6. The master-collector-client coordination scheme.

We can conclude that is clearly preferable to have an automated generation
of client emulators among different nodes than referring to manual activations.
This is especially true if the coordinator is able to share the Web workload among
multiple nodes according to the capacity of each client node.

6.2 Requirements for Distributed Web-Server Systems

Distributed Web-server systems are typically subject to a large amount of traf-
fic, which has to be reproduced somehow to evaluate their performance under
realistic conditions. Thus, the scalability of the workload generation engine is
a strict requirement for a benchmarking tool. Single node architecture is not
adequate since operating system resource constraints typically limit the number
of concurrent clients. The generation of Web workload should be distributed
across as many nodes as possible. The amount of available client nodes for tests
is usually limited to few tenths. Thus, it is desirable to generate the maximum
amount of workload on a given node. This holds especially when client nodes
have heterogeneous capacities. An unbalanced assignment of workload may de-
termine the under-utilization of some nodes and the partial inability to generate
requests on others.
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Being the scalability of the workload generation engine an important require-
ment for the performance evaluation of distributed Web systems, we observe that
it is quite difficult to achieve it using a centralized architecture. The only solu-
tion to keep one process spawning many concurrent client sessions is to use an
event-driven approach, combined with non-blocking I/O [18]. This single pro-
cess polls the network for events and reacts accordingly. This approach involves
programming non-blocking I/O, which can be tricky and much more difficult
than in a multi-process or multi-threaded model. Moreover, one process may
run out of file descriptors if the machine is not well tuned. On the other hand,
this approach does not suffer from context switch overheads, provided that the
client node does not execute other resource intensive tasks.

6.3 Comparison of Selected Tools

In this section we analyze how the selected benchmarking tools generate the load
offered to the Web system.

Httperf generates the specified workload through one process, implement-
ing an event-driven approach with non-blocking I/O [32]. As a consequence,
the workload generator keeps a single CPU constantly occupied, so it is recom-
mended not to run more than one httperf process per CPU. Furthermore, the
maximum number of concurrent sessions is bounded by typical process limits
such as the maximum number of open descriptors. As there is no coordination
scheme, several instances of httperf must be executed manually on distinct nodes
to scale to the desired workload; an helper utility can be used to automate this
task [29]. The workload generation engine of httperf is adequate to the perfor-
mance evaluation of distributed Web systems.

In SURGE the client activity is modeled through a User Equivalent, which
is represented by a thread [7,8]. The benchmarking experiment is activated by
invoking a master which spawns a predefined number of client processes. Each
client process generates a prefixed number of client threads (i.e., User Equiv-
alents). Therefore, SURGE architecture can be defined as being centralized,
multiple-process and multiple-thread. The coordination scheme is a master-
collector-client, although on a single node. Since no support is provided to au-
tomatically distribute clients among multiple nodes, several instances of the
SURGE master have to be activated manually on distinct client nodes, in order
to scale the workload.

The workload generator of S-Clients is executed by a single process on one
client node [6]. The engine aims at generating excess load by using non-blocking
connects and closing the socket if no connection was established within a given
interval. There is no means to automatically start different workload generators
on distinct nodes, but this operation has to be performed manually. Further-
more, since timers are implemented using the rdtsc primitive [14], the ability to
generate connections with a specified rate depends heavily on the CPU speed of
the client, and the CPU type, which should be a Pentium. The most interesting
feature of S-Clients for the benchmarking of distributed Web systems is the use
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of non-blocking connections combined with timeouts, as it allows to guarantee
a specified connection rate.

In WebStone, the activity of Web users is emulated through a preconfigured,
fixed number of Web clients [30]. The architecture of WebStone is distributed
and multi-process; each Web client is executed as a distinct user process that
requests files continuously. Web clients are distributed over several nodes through
another user process, called Web master. The workload generator of WebStone
is not able to sustain high loads and, consequently, it is not adequate for the
performance evaluation of distributed Web-server systems.

In WebBench, Web clients are emulated through client processes running
on distinct nodes [45]. The architecture of WebBench is distributed and may
be either single-process or multi-threaded. In the first case, each client runs
as a user process (called physical client), in the latter, multiple clients run as
threads (called logical clients). A controller on a distinct node coordinates the
client execution. The recommended coordination scheme is master-client with
one physical client per node. It is also possible to specify a master-collector-client
scheme where logical clients are locally coordinated. In both cases, processes
residing on client nodes must be started manually. The features of the WebBench
workload generation engine are not sufficient for the benchmarking of distributed
Web-server systems.

The workload generation engine in Web Polygraph has a centralized, single-
process architecture, which is capable of sustaining overload [42]. Optionally,
server agents may be used to emulate parts of a distributed Web server system,
besides exercising real components. A drawback of Web Polygraph is the lack
of some support to automatically distribute the generation of requests across
multiple client nodes.

The TPC-W benchmark specification requires that client requests be issued
by a given number of “emulated browsers”, which remains constant throughout
the experiment [26,41]. The number of clients is obtained as a function of the
database table size and appropriate scaling factors. As a consequence, it is dif-
ficult to generate a considerable amount of traffic without modifying the Web
content.

SPECWeb99 distributes clients on several machines in order to achieve work-
load scalability [38]. If the operating system supports POSIX threads, clients
are executed as threads, otherwise as processes. Thus, the architecture of the
SPECWeb99 engine is distributed and multi-process or multi-threaded. Clients
are executed by processes called collectors, which must be manually activated
before starting the test. A master process connects to the collectors, sends them
the configuration parameters and synchronizes the runs. The workload genera-
tion allows for a certain degree of scalability but cannot be sustained when the
distributed Web system is under stress.
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7 Data Collection and Analysis

The measurement and collection of data during the benchmarking test is of
key importance. If done superficially, it leads to improper conclusions about
the performance of the resources constituting the system. A first issue concerns
the definition of the metrics and the statistics which can yield the most useful
information about the components of the distributed Web-server system. Then
it is important to investigate the data collection strategies that are somehow
related to the previous choices.

7.1 Classification of Alternatives

The most common metrics for Web system performance are reported in Ta-
ble 2 [28].

Table 2. Typical Web performance metrics.

Name Meaning
Throughput The rate at which data is sent through the network
Connection rate The number of open connections per second
Request rate The number of client requests per second
Reply rate The number of server responses per second
Error rate The percentage of errors of a given type
DNS lookup time The time to translate the hostname into the IP address
Connect time The time interval between the initial SYN and the final

ACK sent by the client to establish the TCP connection
Latency time The time interval between the sending of the last byte

of a client request and the receipt of the first byte
of the corresponding response

Transfer time The time interval between the receipt of the first response
byte and the last response byte

Web object response time The sum of latency time and transfer time
Web page response time The sum of Web object response times pertaining to a

single Web page, plus the connect time
Session time The sum of all Web page response times and think times

in a user session

As Web workload is characterized by heavy-tailed distributions, most perfor-
mance metrics may assume highly variable values with non negligible probability.
Collecting just minimum, mean, and maximum times, error levels, is not an error,
but these metrics may not yield a representative view of the system behavior.
The metrics subject to high variability should be represented by means of higher
moments, percentiles or cumulative distributions [16,22]. Mean values may be
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meaningless about peaks due to heavy load. This holds for throughput and re-
sponse times (specifically, object and page response times), which may exhibit
high variations from the mean value.

These performance statistics require more expensive or more sophisticated
data collection strategies, because measurements should be collected and stored
to allow later creation of histograms. The alternative is to implement techniques
to dynamically calculate the median and other percentiles without storing all
observations [17]. Let us analyze the main approaches to the collection strategy
(that is, record storage, data set processing, and hybrid) and output analysis that
are strictly related.

In the record storage approach every record is stored. The generation of
meaningful statistics is entirely delegated to the output analysis. This technique
allows us to easily compute histograms and percentiles but it requires enormous
amount of memory. The main memory is often not sufficient, and the use of
secondary memory introduces other problems, such as delays and possible inter-
ferences in the experiment. Moreover, the elaboration of great amounts of data
tends to be resource expensive even if done post-mortem. Actually, a complete
collection and processing of all measurements is seldom necessary, and the use
of sampling techniques is the best alternative when we want to use the record
storage approach.

In the data set processing approach, measurements are not stored directly
into some repository, but are used to keep updated the data set with the in-
teresting statistics. Data set processing does not use great amounts of system
resources such as CPU or memory. This is the standard way for computing per-
formance indexes which do not require sophisticated statistics, such as minimum,
maximum, and mean values. It would be also possible to implement techniques
that dynamically calculate the median and other percentiles without storing all
observations [17], but even these more complex computation may interfere with
the experiment. The data set may coincide or not with the set of parameters
presented as final statistics. When they do not coincide, the generation of useful
statistics is partially delegated to the output analysis component that processes
the data set at the end of the benchmarking test.

None of the previous techniques is clearly the best. However, we can observe
that sophisticated statistics are really necessary only for those metrics which are
subject to high variance. In many other cases, min, max and mean values are
acceptable. For this reason, we consider also the hybrid approach that is a mix of
the previous two techniques. Each measurement may be stored, processed to keep
updated a data set, or both. This approach leads to a better trade-off between
main memory resource utilization and usefulness of the collected data. The per-
formance indexes that do not require sophisticated statistics may be computed
at run time, for the other indexes we can store the relative measurements and
postpone the evaluation during the output analysis after the experiment.

When multiple client emulators are used, it is necessary to use the data sets
and samples stored by each of them to compute the final metrics which are
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presented to the benchmark user in a clear form. This operation is mandatory
in the case of distributed Web-server systems.

7.2 Requirement for Distributed Web-Server Systems

A typical benchmarking tool for distributed Web-server systems distributes the
generation of high volumes of Web traffic across different client nodes. Data
collection is usually done at the level of each computational unit. While it is
good to have per-process (or per-thread) statistics, it is certainly crucial to have
global reports, to understand how well the whole system has performed. To
obtain global session statistics, cumulative distributions and percentiles (not
only per-node statistics), data sets and records must be aggregated before the
computation of global statistics. Therefore, aggregation of collected data is a key
feature that should characterize all tools for distributed Web-server systems. We
also consider important to have session-oriented statistics that is, final reports
including metrics relative to user sessions, in addition to global statistics, which
are quite useful for evaluating the performance of the whole system.

Besides the previous considerations, there is a serious problem that makes
traditional benchmarking tools for Web servers not useful to collect important
statistics for an accurate performance evaluation of distributed Web-server sys-
tems, especially in the design and prototype phase when different alternative
architectures and solutions must be evaluated. Indeed, all considered tools have
been designed for the interaction of multiple clients with one server and give
global metrics that cannot take into account that the server side consists of mul-
tiple components usually running on different machines. In a distributed Web-
server system, the interaction of the client with this system consists of several
steps, such as switching to the right server and invoking the appropriate process
for the generation of dynamic content. The delay of each of these phases makes
up for the response time seen by the clients. A high response time means a bad
system performance, but it does not indicate where the bottleneck is. The asso-
ciated overhead within each phase of the Web transaction must be measured and
evaluated, since bottlenecks in one component make the whole system slower.
Some of the phases of a Web transaction in a distributed system are very hard
(if not impossible) to measure at run time without making modifications to the
system components. For example, in a locally distributed Web system, the time
required by the switch to dispatch a client request cannot be measured from the
client side. In other cases, the performance of some components may be inferred
by the external performance metrics. For example, in one-way Web clusters with
a layer-4 Web switch, the initial client SYN is processed by the switch and sent
to the appropriate Web server, which establishes the TCP connection. Thus, the
connect time embodies switch and server latencies, leaving us with the doubt
about a potentially overloaded node. Instead, the latency time is an approxi-
mate measure of server performance, since TCP segments do not pass by the
switch once the connection has established with the appropriate server.

In layer-7 one-way Web clusters, the opposite is true. Connect time is an
approximate measure of switch overload, since it establishes TCP connections
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with clients prior to assigning requests to the appropriate servers. On the other
hand, the latency time embodies the Web switch and server delays, since every
client TCP segment directed to a server passes through the Web switch. In this
case, the latency time does not give sufficient information to localize a possibly
overloaded Web system component.

If one-way architectures allow an approximate evaluation of component per-
formance, this estimation is practically impossible in two-way architectures, since
both packet flows pass through the switch. Hence, the above mentioned proce-
dure may lead to gross evaluation errors. In general, there is no way for mea-
suring the performance of the Web switch and the single servers through client
measurements. Therefore, the right approach is that of enabling logging at ev-
ery system component and analyzing the resulting logs at the end of the test.
Monitor facilities and a log analyzer are required to this purpose. They should
be highly configurable because different applications may have different logfile
formats. Analyzing log outputs may require integration or modifications of the
network application software because the standard logs have too coarse granu-
larities (e.g., 1 second in the Apache server). Moreover, the statistics obtained by
the internal monitors must be integrated with those of the benchmark reports.

For geographically distributed Web systems, it is necessary to measure the
time taken by the request routing mechanism, such as DNS lookup and request
redirection times.

7.3 Comparison of Selected Tools

Httperf collects a large variety of metrics, both session- and request-oriented [32].
The most interesting non-session oriented metrics are connect time, latency time,
request and reply rate, throughput and error rates. Response time at the gran-
ularity of Web objects is not collected; session-oriented metrics include session
time and session rate. For each of these metrics, minimum, mean, maximum val-
ues and their standard deviations are computed through data sets. Support for
record storage through histograms is given only for some metrics such as session
length and connection duration. Httperf has a hybrid data collector and a cen-
tralized output analyzer. It also performs hybrid processing of the collected data.
A final report is presented with global and per-session statistics, thus providing a
way for detecting the degree of user concurrency in a distributed Web-server sys-
tem. However, it requires some extensions. For example, it would be interesting
to have the Web page response time as a metric. Moreover, the records should
be stored in histograms for later processing to evaluate higher order statistics.

SURGE stores only records of transaction time and Web object size for later
processing [7,8]. The output analyzer of SURGE is centralized and oriented to
record processing. It operates on server logs (in common log format) and on
the log file generated at the end of the benchmarking experiment. Final met-
rics provided to the benchmark use are session-oriented; a log-log cumulative
distribution table of Web page response times is also provided.

S-Clients collects a data set consisting of connection life time sums (which
are used to approximate transaction times, since HTTP/1.0 is used) and global
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counters of opened connections and successfully delivered responses [6]. S-Clients
presents only request rate and average response time of the requested URLs.

WebBench keeps at run-time the following data set: a global count of success-
ful requests, a sum of transaction times and a sum of transfer sizes [45]. These
data sets are required to compute the final metrics, that is, number of requests
per second and throughput. WebBench gives only two overall metrics: interac-
tion times per second and throughput in bytes per second. They are computed
locally on each client and centrally gathered by the controller.

Webstone uses a hybrid data collector and output analyzer [30]. The re-
trieval phases of a Web object (connect latency and transfer times) are marked
by timestamps which are all recorded, while global counters are kept through ap-
propriate data sets. WebStone provides a report with global and per Web object
connect times, response times, error rates. It also computes a global connection
rate and a metric known as Little’s Load Factor [28]. No session oriented metrics
are reported, no response time subdivision in latency and transfer is evaluated,
although the collected records allow a successive computation.

The data collector of Web Polygraph is hybrid [42]. It stores records for later
computation of reply size and hit/miss response times. It also keeps global counts
for error rates, client and server side throughput, cache hit ratio and byte hit
ratio. No provision for session oriented metrics is provided. In Web Polygraph,
each client and server agent process generates its own log file. They have to be
manually concatenated before processing by the report module. Reports include
several performance graphs for throughput, cache hits and misses response times,
persistent connection usage, error rates.

SPECweb99 uses its own performance metric [38]. Substantially, it is the
maximum number of connections supported by the Web server under certain
conditions (throughput ranging between 300000 and 400000 bits per second).
To this purpose, SPECweb99 collects throughput, request and response times
over a single connection. According to online documentation [38], this is done in
a data set way. There is no session oriented statistics. In SPECweb99, the output
analyzer is centralized: data collected from each client is gathered by the master
process which reports test results for that iteration. A report consists of sum-
mary, results, overall metric, and configuration information. The SPECweb99
metric is the median of the connection average result over 3 iterations.

The TPC-W benchmark specification defines the collection of the Web In-
teraction response time (WIRT), which is the time interval occurring between
the sending of the first byte of a client request that starts a Web interaction
and the retrieval of the last byte in the last response of the same Web interac-
tion [26,41]. This is necessary to compute the final metric that is, the throughput
of Web interactions per second. The specification also suggests running perfor-
mance monitors on the servers for monitoring CPU utilization, memory utiliza-
tion, page/swap activity, database I/O activity, system I/O activity and Web
server statistics. The TPC-W benchmark specification defines three performance
indexes: WIPS, WIPSb, WIPSo, that are counted as the number of Web interac-
tions per second during shopping, browsing and ordering sessions, respectively.
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The TPC-W specification recommends a report including graphs for the follow-
ing metrics: CPU utilization, memory utilization, page/swap activity, system
activity, Web server statistics (number of requests and error rates per second).
No session-oriented statistics are planned, but the provided graphs should give
an idea about the load conditions of the system.

8 Benchmark Support for Wide Area Networks

Benchmarking experiments of Web-server systems are usually carried out in a
closed, isolated, and high-speed local-area network (LAN) environment. These
laboratory experiments do not take into consideration network-related factors,
such as high and variable delays, transmission errors, packet losses, and net-
work connection limitations [28]. Modeling interactions that occur in the real
Web environment using clients machines connected to the Web-server system by
a low round-trip time, high-speed LAN may lead to incorrect results, because
the provision of Web-based services in the real world involves wide-area net-
work connections in which the presence of network components (such as routers)
make the environment noisy and error-prone and have influence on Web server
performance [33]. Therefore, to model interactions that occur in the real Web
environment using both clients machines connected to the Web-server system
by a low round-trip time, high-speed LAN may lead to incorrect results. Indeed,
as a result of benchmarking experiments carried out in LAN environments, it
occurs that performance aspects of the Web-server system that depend on the
network characteristics are not exposed or inaccurately evaluated. As a conse-
quence of WAN delays, Web server resources (such as listen socket’s SYN-RCVD
queue) remain tied up to clients for much longer periods and therefore the sys-
tem throughput decreases. Furthermore, in the wide-area Internet, packets are
lost or corrupted; this causes performance degradation as these packets have to
be retransmitted.

To take into account WAN effect in the benchmarking of distributed Web-
server systems two approaches are possible that is, WAN emulation in a LAN
environment and WAN environment. The first consists in emulating the WAN
characteristics in a controlled environment, where clients and server machines are
interconnected through a LAN network, by incorporating factors such as delays
and packet losses into the benchmarking tool. The WAN emulation approach
allows to perform the tests in a controllable, configurable, and reproducible en-
vironment, allowing easy changes in test conditions and iterative analysis [6,33,
37]. However, incorporating delays and packet losses due to WANs is not a trivial
task. On the other hand, experiments performed in a WAN environment allow to
identify many problems and causes of delays in Web transfers that do not mani-
fest themselves in a LAN environment [9,5,21]. At the same time, these wide-area
benchmarking experiments are hard to reproduce due to the uniqueness of the
test environment.

In the WAN environment, the benchmarking experiments are carried out
spreading the client machines in a wide area network. This approach suffers
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from the difficulty in changing the network parameters of interest for different
test scenarios. Furthermore, it may be hard to generate a high workload using
it as discussed in [9], in which SURGE clients have been spread among different
network locations.

The majority of currently available Web benchmarking tools that operate in
high-speed LAN environment ignore the emulation of WAN conditions. Some
efforts in this direction have been pursued in some already considered bench-
marking tools (S-Client [6], WebPolygraph [42], and SpecWeb99 [38], although
quite limited in the latter) and also in WASPclient [33].

There are two main approaches that aim to emulate WAN conditions in
a LAN environment that is, centralized and distributed. In the centralized ap-
proach, one machine acting as a WAN emulator is interposed between the client
machines and the Web-server system to model WAN delays and packet losses
by dropping and delaying packets. S-Clients follows this approach, by putting a
router between the S-Client machines and the server system aimed at introducing
an artificial delay and dropping packets at a controlled rate [6].

In the distributed approach, each client acts as a WAN emulator, by di-
rectly delaying and dropping packets. WASPclient implements an interesting
distributed approach [33], by using an extended Dummynet layer in the proto-
col stack of the client machines to drop and delay packets [36]. The centralized
approach is transparent to the operating system of both client and server ma-
chines; however its scalability is limited [33]. On the contrary, the distributed
approach has the advantage that it provides a higher scalability, but it requires
modifications to the operating system of the client machines.

9 Conclusions

This study leads us to conclude that many Web benchmark tools work fine when
used to analyze a single server system, but none of them is able to address all
issues related to the analysis of distributed Web-server systems. Many popular
tools, such as SURGE and Webstone, suffer age problems, as they do not sup-
port dynamic requests and more recent protocols. Very few of them consider
application-level routing of the requests, such as DNS and HTTP redirection,
URL rewriting. In summary, we notice the lack of ability to sustain realistic Web
traffic under critical load conditions, the difficulty or impossibility of emulating
realistic dynamic and secure Web services, the poor support in analyzing col-
lected statistics different from min, max, mean values. Hence, we can conclude
that there is a lot of room for further research and implementation in this area.
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[27] D. A. Menascé and V. A. F. Almeida. Scaling for E-business. Technologies, Mod-
els, Performance and Capacity planning. Prentice Hall, Upper Saddle River, NJ,
2000.
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