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Abstract. The purpose of this tutorial presentation is to introduce G-
Networks, or Gelenbe Networks, which are product form queueing net-
works which include normal or positive customers, as well as negative
customers which destroy other customers, and triggers which displace
other customers from one queue to another. We derive the balance equa-
tions for these models in the context of multiple customer classes, show
the product form results, and exhibit the traffic equations which – in
this case, contrary to BCMP and Jackson networks - are non-linear. This
leads to interesting issues of existence and uniqueness of the steady-state
solution. Gelenbe Network can be used to model large scale computer sys-
tems and networks in which signaling functions represented by negative
customers and triggers are used to achieve flow and congestion control.

1 Introduction

In this survey and tutorial, we discuss a class of queueing networks, originally
inspired by our work on neural networks, in which customers are either “signals”
or positive customers.

Positive customers enter a queue and receive service as ordinary queueing
network customers; they constitute queue length. A signal may be of a “negative
customer”, or it may be a “trigger”. Signals do not receive service, and disappear
after having visited a queue. If the signal is a trigger, then it actually transfers
a customer from the queue it arrives to, to some other queue according to a
probabilistic rule. On the other hand, a negative customer simply depletes the
length of the queue to which it arrives if the queue is non-empty. One can
also consider that a negative customer is a special kind of trigger which simply
sends a customer to the “outside world” rather than transferring it to another
queue. Positive customers which leave a queue to enter another queue can become
signals or remain positive customers.

Additional primitive operations for these networks have also been introduced
in [12]. The computation of numerical solutions to the non-linear traffic equations
of some of these models have been discussed in [6]. Applications to networking
problems are reported in [17]. A model of doubly redundant systems using G-
networks, where work is scheduled on two different processors and then cancelled
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at one of the processors if the work is successfully completed at the other, is
presented in [7]. The extension of the original model with positive and signals
[4] to multiple classes was proposed and obtained in various papers [9,11,15,19].

Some early neural network applications of G-networks are summarized in
a survey article [18]. From the neural network approach, the model in [9] was
applied to texture generation in colour images in an early paper [10].

The present survey Includes the results presented in [20], where multiple
classes of positive and signals are discussed, and we also include multiple classes
of triggers. Thus in this paper we discuss G-Networks with multiple classes of
positive customers and one or more classes of signals.

Three types of service centers with their corresponding service disciplines are
examined:

– Type 1 : first-in-first-out (FIFO),
– Type 2 : processor sharing (PS),
– Type 4 : last-in-first-out with preemptive resume priority (LIFO/PR).

With reference to the usual terminology related to the BCMP theorem [2],
we exclude from the present discussion the Type 3 service centers with an in-
finite number of servers since they will not be covered by our results.
Furthermore, in this paper we deal only with exponentially distributed service
times.

In Section 2 we will prove that these multiple class G-Networks, with Type
1, 2 and 4 service centers, have product form.

2 The Model

We consider networks with an arbitrary number n of queues, an arbitrary number
of positive customer classes K, and an arbitrary number of signal classes S.
External arrival streams to the network are independent Poisson processes for
positive customers of some class k and signals of some class c. We denote by Λi,k
the external arrival rate of positive customers of class k to queue i and by λi,m
be the external arrival rate of signals of class m to queue i.

Only positive customers are served, and after service they may change class,
service center and nature (positive signal), or depart from the system. The move-
ment of customers between queues, classes and nature (positive to signal) is
represented by a Markov chain.

At its arrival in a non-empty queue, a signal selects a positive customer
as its “target” in the queue in accordance with the service discipline at this
station. If the queue is empty, then the signalsimply disappears. Once the target
is selected, the signaltries to trigger the movement of the selected customer. A
negative customer, of some class m, succeeds in triggering the movement of the
selected positive customer of some class k, at service center i with probability
Ki,m,k. With probability (1 −Ki,m,k) it does not succeed. A signal disappears
as soon as it tries to trigger the movement of its targeted customer. Recall that
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signal is either exogenous, or is obtained by the transformation of a positive
customer as it leaves a queue.

A positive customer of class k which leaves queue i (after finishing service)
goes to queue j as a positive customer of class l with probability P+[i, j] [k, l],
or as a signal of class m with probability P−[i, j] [k,m]. It may also depart from
the network with probability d[i, k]. Obviously we have for all i, k:

n∑

j=1

R∑

l=1

P+[i, j][k, l] +
n∑

j=1

S∑

m=1

P−[i, j][k,m] + d[i, k] = 1 (1)

We assume that all service centers have exponential service time distribu-
tions. In the three types of service centers, each class of positive customers may
have a distinct service rate
rik. When the service center is of Type 1 (FIFO) we place the following con-
straint on the service rate and the movement triggering rate due to incoming
signals:

rik +
S∑

m=1

Ki,m,kλi,m = ci (2)

Note that this constraint, together with the constraint (3) given below, have
the effect of producing a single positive customer class equivalent for service cen-
ters with FIFO discipline. The following constraints on the movement triggering
probability are assumed to exist. Note that because services are exponentially
distributed, positive customers of a given class are indistinguishable for move-
ment triggering because of the Markovian property of service time.

– The following constraint must hold for all stations i of Type 1 and classes of
signals m such that

∑n
j=1

∑R
l=1 P

−[j, i][l,m] > 0

for all classes of positive customers a and b,Ki,m,a = Ki,m,b (3)

This constraint implies that a signal of some class m arriving from the net-
work does not “distinguish” between the positive customer classes it will try
to trigger the movement, and that it will treat them all in the same manner.

– For a Type 2 server, the probability that any one positive customer of the
queue is selected by the arriving signalis 1/c if c is the total number of
customers in the queue.

For Type 1 service centers, one may consider the following conditions which
are simpler than (2) and (3):

ria = rib
Ki,m,a = Ki,m,b

(4)

for all classes of positive customers a and b, and all classes of signals m. Note
however that these new conditions are more restrictive, though they do imply
that (2), 3) hold.



4 E. Gelenbe

2.1 State Representation

We denote the state at time t of the queueing network by a vector x(t) =
(x1(t), ..., xn(t)). Here xi(t) represents the state of service center i. The vector
x = (x1..., xn) will denote a particular value of the state and |xi| will be the
total number of customers in queue i for state x.

For Type 1 and Type 4 servers, the instantaneous value of the state xi of
queue i is represented by the vector of elements whose length is the number of
customers in the queue and whose jth element xi,j is the class index of the jth
customer in the queue. Furthermore, the customers are ordered according to the
service order (FIFO or LIFO); it is always the customer at the head of the list
which is in service. We denote by ci,1 the class number of the customer in service
and by ci,∞ the class number of the last customer in the queue.

For a PS (Type 2) service station, the instantaneous value of the state xi is
represented by the vector (xi,k) which is the number of customers of class k in
queue i.

3 Main Theorem

Let P (x) denote the stationary probability distribution of the state of the net-
work. It is given by the following product form result.

Theorem 1 Consider a G-network with the restrictions and properties described
in the previous sections. If the system of non-linear equations:

qi,k =
Λi,k + Λ+

i,k

ri,k +
∑S
m=1Ki,m,k[λi,m + λ−i,m]

(5)

Λ+
i,k =

n∑

j=1

R∑

l=1

P+[j, i][l, k]rj,lqj,l

+
n∑

j=1

R∑

l=1

n∑

h=1

S∑

m=1

R∑

s=1

rj,lqj,lP
−[j, h][l,m]Kh,m,sqh,sQ[h, i][s, k]

+
n∑

j=1

S∑

m=1

R∑

s=1

λj,mKj,m,sqj,sQ[j, i][s, k] (6)

λ−i,m =
n∑

j=1

R∑

l=1

P−[j, i][l,m]rj,lqj,l (7)

has a solution such that for each pair i, k : 0 < qi,k and for each sta-
tion i :

∑R
k=1 qi,k < 1, then the stationary probability distribution of the network

state is:

P (x) = G

n∏

i=1

gi(xi) (8)
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where each gi(xi) depends on the type of service center i. The gi(xi) in (5) have
the following form :
FIFO. If the service center is of Type 1, then

gi(xi) =
|xi|∏

n=1

qi,vi,n (9)

PS. If the service center is of Type 2, then

gi(xi) = |xi|!
R∏

k=1

(qi,k)xi,k

xi,k!
(10)

LIFO/PR. If the service center is of Type 4, then

gi(xi) =
|xi|∏

n=1

qi,vi,n (11)

and G is the normalization constant.

Notice that Λ+
i,k may be written as:

Λ+
i,k =

n∑

j=1

R∑

l=1

rj,lqj,lP
+[j, i][l, k]

+
n∑

j=1

R∑

l=1

S∑

m=1

qj,lQ[j, i][l, k]Kj,m,l[λj,m + λ−j,m] (12)

The conditions requiring that qi,k > 0 and on that their sum over all classes
at each center be less than 1 simply insure the existence of the normalizing
constant G in (8) and the stability of the network.

4 Proof of the Main Result

The proof follows the same lines as that for a similar result but more restrictive
result in [20] which does not cover the case of triggers. The reader who is not
interested in the technical details may prefer to skip this section. We begin with
some technical Lemmas.

Lemma 1 The following flow equation is satisfied:
n∑

i=1

R∑

k=1

Λ+
i,k +

n∑

i=1

S∑

m=1

λ−i,m

=
n∑

i=1

R∑

k=1

qi,kri,k(1− d[i, k])

+
n∑

i=1

R∑

k=1

n∑

j=1

R∑

l=1

S∑

m=1

qj,lQ[j, i][l, k]Kj,m,l[λj,m + λ−j,m]
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Proof : Consider (12), then sum it for all the stations and all the classes
and exchange the order of summations in the right-hand side of the equation :

n∑

i=1

R∑

k=1

Λ+
i,k =

n∑

j=1

R∑

l=1

rj,lqj,l(
n∑

i=1

R∑

k=1

P+[j, i][l, k])

+
n∑

i=1

R∑

k=1

n∑

j=1

R∑

l=1

S∑

m=1

qj,lQ[j, i][l, k]Kj,m,l[λj,m + λ−j,m]

Similarly, using equation (7)

n∑

i=1

S∑

m=1

λ−i,m =
n∑

j=1

R∑

l=1

rj,lqj,l(
n∑

i=1

S∑

m=1

P−[j, i][l,m])

Furthermore:

n∑

i=1

R∑

k=1

Λ+
i,k +

n∑

i=1

S∑

m=1

λ−i,m

=
n∑

j=1

R∑

l=1

rj,lqj,l(
n∑

i=1

R∑

k=1

P+[j, i][l, k] +
n∑

i=1

S∑

m=1

P−[j, i][l,m])

+
n∑

i=1

R∑

k=1

n∑

j=1

R∑

l=1

S∑

m=1

qj,lQ[j, i][l, k]Kj,m,l[λj,m + λ−j,m]

According to the definition of the routing matrix P (equation (1)), we have

n∑

i=1

R∑

k=1

Λ+
i,k +

n∑

i=1

S∑

m=1

λ−i,m

=
n∑

j=1

R∑

l=1

rj,lqj,l(1− d[j, l])

+
n∑

i=1

R∑

k=1

n∑

j=1

R∑

l=1

S∑

m=1

qj,lQ[j, i][l, k]Kj,m,l[λj,m + λ−j,m]

Thus the proof of the Lemma is complete.
��

In order to carry out the algebraic manipulations of the stationary Chapman-
Kolmogorov (global balance) equations, we introduce some notation and develop
intermediate results:

– The state dependent service rates for customers at service center j will be
denoted by Mj,l(xj) where xj refers to the state of the service center and
l is the class of the customer concerned. From the definition of the service
rate rjl, we obtain for the three types of stations :
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FIFO and LIFO/PR Mj,l(xj) = rj,l1{cj,1=l},
PS Mj,l(xj) = rj,l

xj,l
|xj | .

– Nj,l(xj) is the movement triggering rate of class l positive customers due to
external arrivals of all the classes of signals:
FIFO and LIFO/PR Nj,l(xj) = 1{cj,1=l}

∑S
m=1Kj,m,lλj,m

PS Nj,l(xj) = xj,l
|xj |

∑S
m=1Kj,m,lλj,m.

– Aj,l(xj) is the condition which establishes that it is possible to reach state
xj by an arrival of a positive customer of class l
FIFO Aj,l(xj) = 1{cj,∞=l},
LIFO/PR Aj,l(xj) = 1{cj,1=l},
PS Aj,l(xj) = 1{|xj,l|>0}.

– Zj,l,m(xj) is the probability that a signal of class m, arriving from the net-
work, will trigger the movement of a positive customer of class l.
FIFO and LIFO/PR Zj,l,m(xj) = 1{cj,1=l}Kj,m,l

PS Zj,l,m(xj) = xj,l
|xj |Kj,m,l.

– Yj,m(xj) is the probability that a signal of class m which enters a non empty
queue, will not trigger the movement of a positive customer.
FIFO and LIFO/PR Yj,m(xj) =

∑R
l=1 1{cj,1=l}(1−Kj,m,l)

PS Yj,m(xj) =
∑R
l=1(1−Kj,m,l)

xj,l
|xj | .

Denote by (xj + ej,l) the state of station j obtained by adding to the j − th
queue a positive customer of class l. Let (xi − ei,k) be the state obtained by
removing from the end of the list of customers in queue, a class k customer if it
is there; otherwise (xi − ei,k) is not defined.

Lemma 2 For any Type 1, 2, or 4 service center, the following relations hold:

Mj,l(xj + ej,l)
gj(xj + ej,l)
gj(xj)

= rj,lqj,l (13)

Nj,l(xj + ej,l)
gj(xj + ej,l)
gj(xj)

=
S∑

m=1

(Kj,m,lλj,m)qj,l (14)

Zj,l,m(xj + ej,l)
gj(xj + ej,l)
gj(xj)

= Kj,m,lqj,l (15)

The proof is purely algebraic.
��

Remark : As a consequence, we have from equations (12), (7) and (13):

Λ+
i,k =

n∑

j=1

R∑

l=1

Mj,l(xj + ej,l)
gj(xj + ej,l)
gj(xj)

P+[j, i][l, k]

+
n∑

j=1

R∑

l=1

S∑

m=1

qj,lQ[j, i][l, k]Kj,m,l[λj,m + λ−j,m] (16)

and
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λ−i,m =
n∑

j=1

R∑

l=1

Mj,l(xj + ej,l)
gj(xj + ej,l)
gj(xj)

P−[j, i][l,m] (17)

Lemma 3 Let i be any Type 1, 2, or 4 station, and let ∆i(xi) be:

∆i(xi) =
S∑

m=1

λ−i,mYi,m(xi)

−
R∑

k=1

(Mi,k(xi) +Ni,k(xi))

+
R∑

k=1

Ai,k(xi)(Λi,k + Λ+
i,k)

gi(xi − ei,k)
gi(xi)

Then for the three types of service centers, 1{|xi|>0}∆i(xi) =
∑S
m=1 λ

−
i,m

1{|xi|>0} .

The proof of Lemma 3 is in a separate subsection at the end of this paper in
order to make the text somewhat easier to follow.

��

Let us now turn to the proof of Theorem 1. The global balance equation of
the networks which are considered is:

P (x)[
n∑

j=1

R∑

l=1

(Λj,l +Mj,l(xj)1{|xj |>0} +Nj,l(xj)1{|xj |>0})]

=
n∑

j=1

R∑

l=1

P (x− ej,l)Λj,lAj,l(xj)1{|xj |>0}

+
n∑

j=1

R∑

l=1

P (x+ ej,l)Nj,l(xj + ej,l)D[j, l]

+
n∑

j=1

R∑

l=1

P (x+ ej,l)Mj,l(xj + ej,l)d[j, l]

+
n∑

i=1

n∑

j=1

R∑

l=1

S∑

m=1

Mj,l(xj + ej,l)P (x+ ej,l)P−[j, i][l,m]Yi,m(xi)1{|xi|>0}

+
n∑

i=1

n∑

j=1

R∑

l=1

S∑

m=1

Mj,l(xj + ej,l)P (x+ ej,l)P−[j, i][l,m]1{|xi|=0}

+
n∑

i=1

n∑

j=1

R∑

k=1

R∑

l=1

Mj,l(xj + ej,l)P (x− ei,k + ej,l)P+[j, i][l, k]Ai,k(xi)1{|xi|>0}
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+
n∑

i=1

n∑

j=1

R∑

k=1

R∑

l=1

Nj,l(xj + ej,l)P (x− ei,k + ej,l)Q[j, i][l, k]Ai,k(xi)1{|xi|>0}

+
n∑

i=1

n∑

j=1

R∑

k=1

R∑

l=1

S∑

m=1

Mj,l(xj + ej,l)P (x+ ei,k + ej,l)P−[j, i][l,m]Zi,k,m

(xi + ei,k)D[i, k]

+
n∑

i=1

n∑

j=1

R∑

k=1

R∑

l=1

S∑

m=1

n∑

h=1

R∑

s=1

(Mj,l(xj + ej,l)P (x+ei,k + ej,l − eh,s)P−[j, i][l,m]

Zi,k,m(xi + ei,k)Q[i, h][k, s]Ah,s(xh)1{|xh|>0})

We divide both sides by P (x), assume that there is a product form solution,
and apply Lemma 2:

n∑

j=1

R∑

l=1

(Λj,l +Mj,l(xj)1{|xj |>0} +Nj,l(xj)1{|xj |>0})

=
n∑

j=1

R∑

l=1

gj(xj − ej,l)
gj(xj)

Λj,lAj,l(xj)1{|xj |>0}

+
n∑

j=1

R∑

l=1

S∑

m=1

λj,mKj,m,lqj,lD[j, l] +
n∑

j=1

R∑

l=1

rj,lqj,ld[j, l]

+
n∑

i=1

n∑

j=1

R∑

l=1

S∑

m=1

rj,lqj,lP
−[j, i][l,m]Yi,m(xi)1{|xi|>0}

+
n∑

i=1

n∑

j=1

R∑

l=1

S∑

m=1

rj,lqj,lP
−[j, i][l,m]1{|xi|=0}

+
n∑

i=1

n∑

j=1

R∑

k=1

R∑

l=1

rj,lqj,lP
+[j, i][l, k]Ai,k(xi)

gi(xi − ei,k)
gi(xi)

1{|xi|>0}

+
n∑

i=1

n∑

j=1

R∑

k=1

R∑

l=1

S∑

m=1

λj,mKj,m,lqj,lQ[j, i][l, k]Ai,k(xi)
gi(xi − ei,k)
gi(xi)

1{|xi|>0}

+
n∑

i=1

n∑

j=1

R∑

k=1

R∑

l=1

S∑

m=1

rj,lqj,lP
−[j, i][l,m]Ki,m,kqi,kD[i, k]

+
n∑

i=1

n∑

j=1

n∑

h=1

R∑

l=1

R∑

k=1

R∑

s=1

S∑

m=1

rj,lqj,lP
−[j, i][l,m]Ki,m,kqi,kQ[i, h][k, s]

gh(xh − eh,s)
gh(xh)

Ah,s(xh)1{|xh|>0}
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We now apply (7) to the fourth, fifth, eigth and ninth terms of the second member
of the equation:

n∑

j=1

R∑

l=1

(Λj,l +Mj,l(xj)1{|xj |>0} +Nj,l(xj)1{|xj |>0})

=
n∑

j=1

R∑

l=1

gj(xj − ej,l)
gj(xj)

Λj,lAj,l(xj)1{|xj |>0}

+
n∑

j=1

R∑

l=1

S∑

m=1

λj,mKj,m,lqj,lD[j, l] +
n∑

j=1

R∑

l=1

rj,lqj,ld[j, l]

+
n∑

i=1

S∑

m=1

λ−i,mYi,m(xi)1{|xi|>0}

+
n∑

i=1

S∑

m=1

λ−i,m1{|xi|=0}

+
n∑

i=1

n∑

j=1

R∑

k=1

R∑

l=1

rj,lqj,lP
+[j, i][l, k]Ai,k(xi)

gi(xi − ei,k)
gi(xi)

1{|xi|>0}

+
n∑

i=1

n∑

j=1

R∑

k=1

R∑

l=1

S∑

m=1

λj,mKj,m,lqj,lQ[j, i][l, k]Ai,k(xi)
gi(xi − ei,k)
gi(xi)

1{|xi|>0}

+
n∑

i=1

R∑

k=1

S∑

m=1

λ−i,mKi,m,kqi,kD[i, k]

+
n∑

i=1

n∑

j=1

R∑

l=1

R∑

k=1

S∑

m=1

λ−j,mKj,m,lqj,lQ[j, i][l, k]
gi(xi − ei,k)
gi(xi)

Ai,k(xi)1{|xi|>0}

We group the first, sixth, seventh and ninth terms of the right side of the equa-
tion, and pass the two last terms of the first member to the second:

n∑

j=1

R∑

l=1

(Λj,l)

= −
n∑

i=1

R∑

k=1

(Mi,k(xi) +Ni,k(xi))1{|xi|>0}

+
n∑

i=1

R∑

k=1

gi(xi − ei,k)
gi(xi)

Ai,k(xi)1{|xi|>0}(Λi,k + Λ+
i,k)

+
n∑

i=1

S∑

m=1

λ−i,mYi,m(xi)1{|xi|>0}
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+
n∑

j=1

R∑

l=1

S∑

m=1

λj,mKj,m,lqj,lD[j, l] +
n∑

j=1

R∑

l=1

rj,lqj,ld[j, l]

+
n∑

i=1

S∑

m=1

λ−i,m1{|xi|=0}

+
n∑

i=1

R∑

k=1

S∑

m=1

λ−i,mKi,m,kqi,kD[i, k]

We now apply Lemma 3 to the sum of the three first terms of the second equation:

n∑

j=1

R∑

l=1

Λj,l

=
n∑

i=1

S∑

m=1

λ−i,m1{|xi|>0}

+
n∑

j=1

R∑

l=1

S∑

m=1

λj,mKj,m,lqj,lD[j, l] +
n∑

j=1

R∑

l=1

rj,lqj,ld[j, l]

+
n∑

i=1

S∑

m=1

λ−i,m1{|xi|=0}

+
n∑

j=1

R∑

k=1

S∑

m=1

λ−j,mKj,m,kqj,kD[j, k]

Now we group the first and fourth terms, and the second and fifth terms of the
right side of the equation.

n∑

j=1

R∑

l=1

Λj,l

=
n∑

i=1

S∑

m=1

λ−i,m

+
n∑

j=1

R∑

l=1

S∑

m=1

qj,lKj,m,l(λj,m + λ−j,m)D[j, l]

+
n∑

j=1

R∑

l=1

rj,lqj,ld[j, l]

Substituting the value of D[j, l] and the value of d[j, l],

n∑

j=1

R∑

l=1

Λj,l
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=
n∑

i=1

S∑

m=1

λ−i,m +
n∑

j=1

R∑

l=1

S∑

m=1

qj,lKj,m,l(λj,m + λ−j,m) +
n∑

j=1

R∑

l=1

qj,lrj,l

− (
n∑

i=1

n∑

j=1

R∑

l=1

R∑

k=1

S∑

m=1

qj,lKj,m,lQ[j, i][l, k](λj,m + λ−j,m)

+
n∑

i=1

n∑

j=1

R∑

l=1

R∑

k=1

rj,lqj,lP
+[j, i][l, k])

−
n∑

i=1

n∑

j=1

R∑

l=1

S∑

m=1

qj,lrj,lP
−[j, i][l,m]

and substituting for qjl in the second and third terms and grouping them we
have:

n∑

j=1

R∑

l=1

Λj,l

=
n∑

i=1

S∑

m=1

λ−i,m

+
n∑

j=1

R∑

l=1

Λj,l +
n∑

j=1

R∑

l=1

Λ+
j,l

−
n∑

j=1

R∑

l=1

Λ+
j,l −

n∑

i=1

S∑

m=1

λ−i,m

which yields thefollowing equality which is obviously satisfied,
n∑

j=1

R∑

l=1

Λj,l =
n∑

j=1

R∑

l=1

Λj,l,

concluding the proof.
As in the BCMP [2] theorem, we can also compute the steady state distribu-

tion of the number of customers of each class in each queue. Let yi be the vector
whose elements are (yi,k) the number of customers of class k in station i. Let y
be the vector of vectors (yi). We omit the proof of the following result.

Theorem 2 If the system of equations (5), (6) and (7) has a solution then, the
steady state distribution π(y) is given by

π(y) =
n∏

i=1

hi(yi) (18)

where the marginal probabilities hi(yi) have the following form :

hi(yi) = (1−
R∑

k=1

qi,k)|yi|!
R∏

k=1

[(qi,k)yi,k/yi,k!] (19)
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4.1 Proof of Lemma 3

The proof of Lemma 3 consists in algebraic manipulations of the terms in the
balance equations related to each og the the three types of stations.

LIFO/PR. First consider an arbitrary LIFO station and recall the definition of
∆i :

1{|xi|>0}∆i(xi) = 1{|xi|>0}
R∑

k=1

Ai,k(xi)(Λi,k + Λ+
i,k)

gi(xi − ei,k)
gi(xi)

− 1{|xi|>0}
R∑

k=1

Mi,k(xi) − 1{|xi|>0}
R∑

k=1

Ni,k(xi)

+ 1{|xi|>0}
S∑

m=1

λ−i,mYi,m(xi)

We substitute the values of Yi,m, Mi,k, Ni,k and Ai,k for a LIFO station :

1{|xi|>0}∆i(xi) = 1{|xi|>0}
R∑

k=1

1{ci,1=k} (Λi,k + Λ+
i,k)/qi,k

− 1{|xi|>0}
R∑

k=1

1{ci,1=k} ri,k

− 1{|xi|>0}
R∑

k=1

1{ci,1=k}
S∑

m=1

Ki,m,kλi,m

+ 1{|xi|>0}
S∑

m=1

λ−i,m

R∑

k=1

1{ci,1=k}(1−Ki,m,k)

We use the value of qi,k from equation (5) and some cancellations of termsto
obtain:

1{|xi|>0}∆i(xi) = 1{|xi|>0}
R∑

k=1

1{ci,1=k}(
S∑

m=1

Ki,m,kλ
−
i,m +

S∑

m=1

λ−i,m(1−Ki,m,k)

= 1{|xi|>0}
S∑

m=1

λ−i,m

R∑

k=1

1{ci,1=k}

and as 1{|xi|>0}
∑R
k=1 1{ci,1=k} = 1{|xi|>0}, we finally get the result :

1{|xi|>0}∆i(xi) = 1{|xi|>0}
S∑

m=1

λ−i,m (20)
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FIFO. Consider now an arbitrary FIFO station :

1{|xi|>0}∆i(xi) = 1{|xi|>0}
R∑

k=1

Ai,k(xi)(Λi,k + Λ+
i,k)

gi(xi − ei,k)
gi(xi)

− 1{|xi|>0}
R∑

k=1

Mi,k(xi) −
R∑

k=1

1{|xi|>0}Ni,k(xi)

+ 1{|xi|>0}
S∑

m=1

λ−i,mYi,m(xi)

Similarly, we substitute the values of Yi,m, Mi,k, Ni,k, Ai,k and qi,k:

1{|xi|>0}∆i(xi) = 1{|xi|>0}

R∑

k=1

1{ci,∞=k}(ri,k +
S∑

m=1

Ki,m,kλi,m +
S∑

m=1

Ki,m,kλ
−
i,m)

− 1{|xi|>0}

R∑

k=1

1{ci,1=k}ri,k − 1{|xi|>0}

R∑

k=1

1{ci,1=k}

S∑

m=1

Ki,m,kλi,m

+ 1{|xi|>0}

S∑

m=1

λ−i,m

R∑

k=1

1{ci,1=k}(1−Ki,m,k)

We separate the last term into two parts, and regroup terms:

1{|xi|>0}∆i(xi) = 1{|xi|>0}

R∑

k=1

1{ci,∞=k} (ri,k +
S∑

m=1

Ki,m,kλi,m +
S∑

m=1

Ki,m,kλ
−
i,m)

− 1{|xi|>0}

R∑

k=1

1{ci,1=k} (ri,k +
S∑

m=1

Ki,m,kλi,m +
S∑

m=1

Ki,m,kλ
−
i,m)

+ 1{|xi|>0}

S∑

m=1

λ−i,m

R∑

k=1

1{ci,1=k}

Conditions (2) and (3) imply that the following relation must hold:

R∑

k=1

1{ci,∞=k} (ri,k +
S∑

m=1

Ki,m,kλi,m +
S∑

m=1

Ki,m,kλ
−
i,m) =

R∑

k=1

1{ci,1=k} (ri,k +
S∑

m=1

Ki,m,kλi,m +
S∑

m=1

Ki,m,kλ
−
i,m)

Thus, as 1{|xi|>0}
∑R
k=1 1{ci,1=k} = 1{|xi|>0}, we finally get the expected

result :

1{|xi|>0}∆i(xi) = 1{|xi|>0}
S∑

m=1

λ−i,m (21)
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PS. Consider now an arbitrary PS station :

1{|xi|>0}∆i(xi) = 1{|xi|>0}
R∑

k=1

Ai,k(xi)(Λi,k + Λ+
i,k)

gi(xi − ei,k)
gi(xi)

− 1{|xi|>0}
R∑

k=1

Mi,k(xi) −
R∑

k=1

1{|xi|>0}Ni,k(xi)

+ 1{|xi|>0}
S∑

m=1

λ−i,mYi,m(xi)

As usual, we substitute the values of Yi,m, Mi,k, Ni,k, Ai,k :

1{|xi|>0}∆i(xi) = 1{|xi|>0}
R∑

k=1

1{|xi,k|>0}
(Λi,k + Λ+

i,k)
qi,k

xi,k
|xi|

− 1{|xi|>0}
R∑

k=1

ri,k
xi,k
|xi|

− 1{|xi|>0}
R∑

k=1

xi,k
|xi|

S∑

m=1

Ki,m,kλi,m

+ 1{|xi|>0}
S∑

m=1

R∑

k=1

λ−i,m
xi,k
|xi| (1−Ki,m,k)

Then, we apply equation (5) to substitute qi,k. After some cancelations of
terms we obtain :

1{|xi|>0}∆i(xi) = 1{|xi|>0}
R∑

k=1

xi,k
|xi|

S∑

m=1

Ki,m,kλ
−
i,m

+ 1{|xi|>0}
S∑

m=1

R∑

k=1

λ−i,m
xi,k
|xi| (1−Ki,m,k)

Finally we have:

1{|xi|>0}∆i(xi) = 1{|xi|>0}
R∑

k=1

xi,k
|xi|

S∑

m=1

λ−i,m (22)

Since 1{|xi|>0}
∑R
k=1

xi,k
|xi| = 1{|xi|>0}, once again, we establish the relation we

need. This concludes the proof of Lemma 3.
��
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