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Abstract. This paper presents a deformable model based approach for auto-
mated segmentation of kidneys from tree dimensional (3D) abdominal CT im-
ages. Since the quality of an input image is very poor and noisy due to the large
slice thickness, we use a deformable model represented by NURBS surface,
which uses not only the gray level appearance of the target but also statistical
information of the shape. A shape feature vector is defined to evaluate geomet-
ric character of the surface and its statistical information is incorporated into the
deformable model through an energy formulation for deformation. Principal
curvature on the model surface, which is invariant to rotation and translation, is
adopted as a component of the vector. Furthermore, automated positioning pro-
cedure of an initial model is presented in this paper. We applied the proposed
method to the 33 abdominal CT images whose slice thickness is 10mm and
evaluated the effectiveness of the proposing method.

1 Introduction

The segmentation in medical images remains difficult task due to variation in image
quality and requires a laborious work especially in three dimensional (3D) images.
The medical images are often corrupted by noise which can cause difficulties when
applying the conventional methods, such as thresholding and region growing
approaches[1]. To address these problems, deformable models have been offering
accurate and robust approach, which ensures smoothly connected extracted regions
for noisy edges of an image[2]. In more sophisticated deformable models, the prior
information about geometrical shape or the location of organs is used to constrain
shape and appearance, as well as the statistical variation of these quantities[2,3]. For
example, Cootes et al.[4-6] have proposed the active shape model (ASM), which uses
PCA to analyze model’s shape variation. ASM represents the object shapes by a set of
boundary points. Thus some preprocessing, such as adjustment of the point
coordinates for the affine transformation of an input images, is necessary. Recently,
hierarchically organized models with affine-invariant statistical information, in
conjunction with point correspondences are presented, and the results seem to be
excellent [7].

The most common example of parameterized deformable model is Fourier model,
which can represent the smooth shapes compactly and whose a prior information can
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be derived from probability distributions of the Fourier coefficients [9]. However, it is
not easy to deform the model instinctively, especially in the case of 3D segmentation
[10].

In this paper, we present an automated segmentation procedure of kidneys in
abdominal CT images. The image quality in our research is very poor and noisy, due
to low spatial resolution between slices (Fig.1). In addition, the surrounding organs
such as the liver and spleen whose CT values are similar to those of kidney, are very
close to or in contact with a part of kidney.  Therefore we adopt a deformable model,
which uses not only the gray value of the target but also statistical information of the
shapes [11]. Our model is defined by NURBS surface in order to achieve easy
manipulation and representation of the smooth shapes [12].

2 Method for Segmenting the Kidney

The flowchart is shown in Fig.2. First, initial models of left and right kidneys are
located in an image automatically. Next, we deform the models so that the energy
functions can be minimized. Here, statistical information about the shape variation is
considered via the energy function. Finally, the post-processing extracts hilum of
kidneys.

In the following sub-sections, we first describe the model representation of the
kidney. Then the shape feature vector and its statistical information are defined.
Next, we present automated positioning procedure of initial models. Finally,
definition of the energy function and post-processing are described.

2.1 Model Description

A kidney model is defined by a Non-Uniform Rational B-Spline (NURBS) surface,
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Fig. 2. Flowchart of kidney segmentation process
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where u v R, ( )∈ are parameters of surface S u v( , ) , Pi j,
and wi j, are coordinate vector

and weight of control point, respectively. N x
is  number of control points in the

direction x ( , )= u v , and Bx
n denotes B-Spline basis function of order n in the

direction x . The reason of using the NURBS surface is that it has high flexibility for
designing a large variety of objects and can be easily modified by moving the control
points[12]. The details how we represent kidney’s shape by this NURBS surface are
given in [13]. An example of kidney models with control points ( N Nu v= =9 12, ) is

shown in Fig.3(a). Here, with white boxes are control points, where as black ones are
sampling points at regular intervals on the surface model to reduce computational cost
of deformation. Shape feature vectors and energy functions are defined with respect to
the sampling points, as described in the following subsections.

2.2 Shape Feature Vector and Its Statistical Information

Shape feature vector x  is defined at each sampling point and its components are
principal curvatures of 13 sampling points of interest, as it is shown in Fig.3(b),

x x x k S k SUV U V U V
= =( ,..., ) { ( ), ( )}' ' ' '1 26 1 2               ( , )' 'U V UV∈η (2)

where U V( )or represents a sampling point number in the direction u vor( ) .

k1 , k2 are minimum and the maximum of curvatures on the surface point (U V' ', ) ,

and ηUV  is a set of numbers of neighboring points of the ( , )U V th sampling point.
Here, it should be noticed that our shape feature vector defined by curvatures remains
unchanged under rotation and translation of an input image.

Statistical information about the shape variation is computed as mentioned below.
We extracted true surfaces of kidney directly manipulating control points of NURBS
model. Shape feature vectors were computed at each sampling point on the extracted
surfaces. Then their average vector xUV

 and covariance matrix ΣUV  of the feature
vectors were calculated after deciding the correspondence between control points of
different surfaces manually. These statistical information about the geometric feature
of the kidney are incorporated into the deformable model via an internal energy
function  in subsection 2.4.

2.3 Positioning of Initial Model

An initial guess for shape, scale and position of the model can influence the
segmentation accuracy significantly. In our early work, we have placed the initial
model in an image manually [11]. Here we describe a procedure for estimation of size
(scale) of the initial model and the position at which the initial model should be
located. Fig.4(a) shows a flowchart of the procedure.
Step1: Extract skin line and spine position by using thresholding.
Step2: Set two ROIs for left and right kidney using spine position and circumscribed
rectangular of the skin line, as it is shown in Fig.4(b). The following steps are applied
to each of ROIs.
Step3: Estimate the position, where correlation coefficient between CT image and 3D
gray template of kidney is maximum. Here, the templates (see Fig.4(c)) are generated
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from the training data set. During the matching process, size of the template is
rescaled in order to estimate the scale of the target. To reduce the computational cost,
this matching process is applied to the image whose slice interval is 10mm.
Step4: Estimate more precise initial position by using fine-scale image, which is
reconstructed by cubic interpolation (slice interval=1mm). In this process, we use a
mean surface model, which is calculated from the manually segmented regions. First,
the mean surface model is rescaled by using the target’s scale parameters and place it
at the position derived from Step3.  Then we move the model to its neighborhood and
find the position, where the standard deviation of CT values of all sampling points is
minimum.
Step5:  Locate the initial models at the searched positions in Step4.

2.4 Deformation by Minimizing Energy Function and Post-processing

The total energy function to be minimized is defined as follows,

E E w Ei
ext
i i= + int int       :weight, = left, right kidney( )w iint (3)

where Eext
i  is an external energy and E i

int is an internal energy. A greedy defor-

mation algorithm was used for minimization of energy function [13].
External energy function is defined as follows,
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where ∇d means a gradient operator with difference distance d , Gσ  is a Gaussian

function with standard deviationσ  and f denotes an original image. Here, function

Dir defines the similarity between direction of image gradient vector and that of
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normal vector of the surface. The value ranges from 0(dissimilar) to 1(similar). Since
the external energy is based on the gradient, it deforms the model to be close to
boundary of the object. However, quality of the image is very poor, especially in the
direction of body axis. Therefore we prepare two pairs of σ and d , and deform the
model hierarchically to avoid local minima and to reduce computational cost. First,
we use large values of σ and d to generate a gradient image with broad valley
around the boundary and fit the model to the boundary roughly. Then, we use gradient
image with small σ and d , and deform the model to be closer to the boundary.

The sum of Mahalanobis distances of the shape feature vectors is used as E i
int ,
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where MU and MV are numbers of sampling points on the surface. Other symbols
are explained in subsections 2.1, 2.2.

We expect several advantages of using Mahalanobis distance. If the deformed
model becomes similar to the mean shape of kidney, internal energy becomes smaller.
Our model uses statistical information from the covariance matrix directly, instead of
using PCA. Covariance matrix at each point represents the local shape variability
around that point. A part of surface with small variation can not be deformed easily,
while a part with large variation can be deformed greatly. In addition, our model
considers curvature correlation between the neighboring points.

In the post-processing, a region growing method[13], is applied to the region
extracted by deformable models and extract the hilum of kidney, where the ureter and
vessels connect to kidney in a very complicated way.

3 Experiments

The 33 abdominal CT images were used to evaluate the performance of the
procedure. The size of image is 512x512x18(~24) voxels, the resolution in slice
(=size of pixel) is 0.625 (or 0.63)mm and slice thickness are 10mm. We interpolated
gray values to make the isotropic voxel (1mm3/voxel). To compute statistical
information of left and right kidneys, all images are used.

Segmentation accuracy of extracted region is evaluated by two criterions [11]. First
criterion is the degree of correspondence between the segmented region and the true
(manually segmented) one, which ranges from 0 and 1. The high value means that the
two regions are overlapped each other. Second criterion is an average distance
between the extracted surface and the true one. It ranges from 0 to ∞ . The small
value means that the two surfaces are close to each other.

3.1 Experimental Results and Discussion

To evaluate the accuracy of initial positioning process, we measured the distance
between a gravity point of an automatically located initial model and that of a
manually segmented region. The average displacement was 4mm for right kidneys
(maximum: 10mm) and 4mm for left kidneys (maximum: 9mm). The major direction
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of displacements was the direction parallel to body axis where the image resolution is
low. Table1 gives quantitative comparison between extracted regions based on an
automatic positioning of initial models and that based on manual positioning.
Difference between the evaluation values of two regions are not significant. However
it is confirmed that the difference for right kidney is slightly larger than that of left
kidney. Main cause of failure is that CT value of the surrounding organs such as liver
and spleen are similar to those of kidney.

Fig.5(a),(c) are the segmentation results without the internal energy and Fig.5(b),
(d) show the results with the internal energy. Here, left and center figures are axial
and coronal slice images, respectively. The black line denotes border of the
segmented region, and the white line means border of true one. The deformation with
the internal energy avoides local minima and yields a result far better than the
deformation without it. Moreover, it is confirmed that the segmentation with the
internal energy is robust even in the cases of poor initialization. When we use the
internal energy, the average degree of correspondence is approximately 86.5% and the
aforementioned average distance is 1.13 voxels. Both of the values are superior to
those of the segmentation without the internal energy and the differences are 2.8%
(maximum: 15.4%) and 0.26 voxels (maximum: 1.51 voxel), respectively.  In these
circumstances, we conclude that the statistical information about the shape works
effectively and gives the relatively reliable results. However, the segmentation has
failed in some cases where the true contour was affected by the surrounding organs.

Examples of final extracted regions (after post-processing) of left and right kidneys
are shown in Fig.6. All results were evaluated by a physician. He observed  boundary
curves of extracted regions slice by slice and rated them on a 3-point scale: 1=good,
2=fair, 3=failure. Here “fair” means that the segmentation result is almost good but
failure in parts. The 30 of left kidneys were rated to be satisfactorily good or fair,
while the remaining three were failure. The 28 of right kidneys were rated good or
fair and five were failure. The segmentation accuracy of right kidneys was slightly
lower than the left one. The main reason of failure is poor initialization, in
conjunction with a notable variation of shape and pose of right kidneys, which is
occurred due to stress by liver. The increasing number of training samples will
definitely improve the results, in the future.

Table 1. Quantitative evaluation of segmentation results between automatic positioning of
initial models and manual positioning. [Average±SD.]

4 Conclusion

In this paper, we have presented a deformable model for automatically segmenting of
kidney. In this model, the shape feature vector is defined at each sampling point on
the surface and its statistical information is calculated from a manually segmented

Initial Positioning Method manual automatic manual automatic
Left Kidney 87.3±2.5 87.1±2.3 1.08±0.17 1.09±0.17
Right Kidney 86.5±2.2 85.7±3.4 1.14±0.18 1.18±0.26
Both Kidneys 86.9±2.3 86.5±2.8 1.12±0.18 1.13±0.22

a. Degree of Correspondence (%) b. Average Distance(voxel)
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training data. The shape variability is incorporated into the model through formulation
of an internal energy. The experimental results in the 3D abdominal CT images were
promising. Our current work focuses on extending the proposed model to include
statistical information about the global feature of the target, such as pose or
orientation [8].
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(a) Left kidney of data16 ( wint = 0 )

Fig. 5. Examples of extracted surfaces. The left and center
figures are axial and coronal slice images. Here, the black
contour denotes cross curve of segmented region, while
the white one denotes the manually segmented one. The
right is 3D resultant surface rendered in perspective

(b) Left kidney of data16 ( wint = 10)

(c) Right kidney of data27 ( wint = 0 )

(d) Right kidney of data27 ( wint = 10 )

Fig. 6. Examples of extract-
ed regions. (a),(c) Volume
region with coronal slice
image, (b),(d) Axial slice
with extracted curves.

(a) Data16 ( wint = 10)

(b) Data16 ( wint = 10)

(c) Data27 ( wint = 10)

(d) Data27 ( wint = 10 )
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