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Abstract. Characterizing the performance of image segmentation approaches has
been a persistent challenge. Performance analysis is important since segmentation
algorithms often have limited accuracy and precision. Interactive drawing of the
desired segmentation by domain experts has often been the only acceptable ap-
proach, and yet suffers from intra-expert and inter-expert variability. Automated
algorithms have been sought in order to remove the variability introduced by
experts, but no single methodology for the assessment and validation of such al-
gorithms has yet been widely adopted. The accuracy of segmentations of medical
images has been difficult to quantify in the absence of a “ground truth” segmen-
tation for clinical data. Although physical or digital phantoms can help, they have
so far been unable to reproduce the full range of imaging and anatomical char-
acteristics observed in clinical data. An attractive alternative is comparison to a
collection of segmentations by experts, but the most appropriate way to compare
segmentations has been unclear.
We present here an Expectation-Maximization algorithm for computing a proba-
bilistic estimate of the “ground truth” segmentation from a group of expert segmen-
tations, and a simultaneous measure of the quality of each expert. This approach
readily enables the assessment of an automated image segmentation algorithm,
and direct comparison of expert and algorithm performance.

1 Introduction

Medical image segmentation has long been recognized as a challenging problem. Many
different approaches have been proposed, and different approaches are often suitable for
different clinical applications.

Characterizing the performance of image segmentation approaches has also been a
persistent challenge. Interactive drawing of the desired segmentation by domain experts
has often been the only acceptable approach, and yet suffers from intra-expert and inter-
expert variability. Automated image segmentation algorithms have been sought in order
to remove the variability introduced by experts.

The accuracy of automated image segmentation of medical images has been difficult
to quantify in the absence of a “ground truth” segmentation for clinical data. Although
physical or digital phantoms can provide a level of known “ground truth” [1,2], they have
so far been unable to reproduce the full range of imaging characteristics (partial volume
artifact, intensity inhomogeneity artifact, noise) and normal and abnormal anatomical
variability observed in clinical data. A common alternative to phantom studies, has been
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a behavioural comparison: an automated algorithm is compared to the segmentations
generated by a group of experts, and if the algorithm generates segmentations sufficiently
similar to the experts it is regarded an acceptable substitute for the experts. Typically,
good automated segmentation algorithms will also require less time to apply, and have
better reproducibility, than interactive segmentation by an expert.

The most appropriate way to carry out the comparison of an automated segmen-
tation to a group of expert segmentations is so far unclear. A number of metrics have
been proposed to compare segmentations, including volume measures, spatial overlap
measures (such as Dice [3] and Jaccard similarities [4]) and boundary measures (such
as the Hausdorff measure). Agreement measures between different experts have also
been explored for this purpose [5]. Studies of rules to combine segmentations to form
an estimate of the underlying “true” segmentation have as yet not demonstrated any one
scheme to be much favourable to another. Per-voxel voting schemes have been used in
practice [6,7].

We present here a new Expectation-Maximization (EM) algorithm for estimating
simultaneously the “ground truth” segmentation from a group of expert segmentations,
and a measure of the quality of each expert. Our algorithm is formulated as an instance of
the Expectation-Maximization algorithm [8]. In our algorithm, the expert segmentation
decision at each voxel is directly observable, the hidden ground truth is a binary variable
for each voxel, and the quality of each expert is represented by sensitivity and specificity
parameters. The complete data consists of the expert decisions, which are known, and
the ground truth, which is not known. If we also knew the ground truth it would be
straightforward to estimate the expert quality parameters. Since the complete data is
not available, we replace the ground truth (hidden) variables with their expected values
under the assumption of the previous estimate of the expert quality parameters. We can
then re-estimate the expert quality parameters. We iterate this sequence of estimation of
the quality parameters and ground truth variables until convergence is reached.

This approach readily enables the assessment of an automated image segmentation
algorithm, and direct comparison of expert and algorithm performance.

We applied the estimation algorithm described here to several digital phantoms for
which the ground truth is known. These experiments indicate the approach is robust to
small parameter changes, and indicate how our algorithm resolves ambiguities between
different experts in a natural way. We applied the method to the assessment of a previ-
ously published automated image segmentation algorithm [9] for the segmentation of
brain tumors from magnetic resonance images [10]. We compared the performance
of three experts to that of the segmentation algorithm on ten cases. Illustrative results
are presented. We assessed multiple segmentations by a single expert for the task of
identifying the prostate peripheral zone from magnetic resonance images.

2 Method

We describe an EM algorithm for estimating the hidden ground truth and expert seg-
mentation quality parameters from a collection of segmentations by experts.

Let T be the hidden binary ground truth segmentation, (p,q) be the sensitivity
and specificity parameters characterising the performance of each expert, and D be the
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segmentation decisions made by each expert. Hence, the probability mass function of
the complete data is f(D,T|p,q).

We want to estimate the quality parameters of the experts as the parameters that
maximize the log likelihood function

p̂, q̂ = arg max
p,q

ln f(D,T|p,q). (1)

If we knew the ground truth segmentation, we could construct a 2 × 2 conditional
probability table, by comparing the decision Dij of expert j (for j = 1, ..., K) as to
presence or absence of a structure at voxel i with the ground truth. Let qj represent the
‘true negative fraction’ or specificity (i.e. relative frequency of Dij = 0 when Ti = 0)
and pj represent the ‘true positive fraction’ or sensitivity (relative frequency of Dij = 1
when Ti = 1). These parameters {pj ; qj} ∈ [0, 1] are assumed to depend upon the
expert, and may be equal but in general are not.

We assume that the experts decisions are all conditionally independent given the
ground truth and the expert quality parameters, that is (Dij |Ti, pj , qj) ⊥ (Dij′ |Ti, pj′ ,
qj′), ∀j �= j′.

Since we don’t know the ground truth T, we treat it as a random variable and instead
solve for the parameters which maximize the function Q(θθθ|θ̂θθ), where

θθθ = [θθθ1θθθ2 . . . θθθk] , θθθj = (pj , qj)T ∀j ∈ [1, . . . , K] (2)

Q(θθθ|θ̂θθ) = Eg(T|D,θ̂θθ) [ln f(D,T|θθθ)] . (3)

This can be written as

p̂, q̂ = arg max
p,q

Eg(T|D,p̂o,q̂o) [ln f(D,T|p,q)] (4)

= arg max
p,q

Eg(T|D,p̂o,q̂o)

[
ln

f(D,T,p,q)
f(p,q)

]
(5)

= arg max
p,q

Eg(T|D,p̂o,q̂o)

[
ln

f(D,T,p,q)f(T,p,q)
f(T,p,q)f(p,q)

]
(6)

= arg max
p,q

Eg(T|D,p̂o,q̂o) [ln f(D|T,p,q)f(T)] (7)

where p̂o, q̂o are the previous estimates of the expert quality parameters, and the last
follows under the assumption that T is independent of the expert quality parameters so
that f(T,p,q) = f(T)f(p,q).

The process to identify the expert quality parameters and ground truth consists of
iterating between 1) estimation of the hidden ground truth given a previous estimate
of the expert quality parameters, and 2) estimation of the expert quality parameters
based on how they performed given the new estimate of the ground truth. This algorithm
can be recognized as an EM algorithm, in which the parameters that maximize the log
likelihood function are estimated based upon the expected value of the hidden ground
truth. The process can be initialized by assuming values for the expert specific sensitivity
and specificity parameters, or by assuming an initial ground truth estimate. In most of
our experiments we have initialized the algorithm by assuming that the experts are each
equally good and have high sensitivity and specificity, but are not infallible. This is
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equivalent to initializing the algorithm by estimating an initial ground truth as an equal
weight combination of each of the expert segmentations.

2.1 Estimation of Ground Truth Given Expert Parameters

In this section, the estimator for the hidden ground truth is derived.

g(T|D, p̂o, q̂o) =
g(D|T, p̂o, q̂o)g(T)∑
T g(D|T, p̂o, q̂o)g(T)

(8)

=

∏
i

[∏
j g(Dij |Ti, p̂j

o, q̂j
o)g(Ti)

]
∑

T1

∑
T2

. . .
∑

TN

∏
i

[∏
j g(Dij |Ti, p̂j

o, q̂j
o)g(Ti)

] (9)

=

∏
i

[∏
j g(Dij |Ti, p̂j

o, q̂j
o)g(Ti)

]
∏

i

[∑
Ti

∏
j g(Dij |Ti, p̂j

o, q̂j
o)g(Ti)

] . (10)

g(Ti|Di, p̂o, q̂o) =

∏
j g(Dij |Ti, p̂j

o, q̂j
o)g(Ti)∑

Ti

∏
j g(Dij |Ti, p̂j

o, q̂j
o)g(Ti)

(11)

where g(Ti) is the a priori probability of Ti, and a voxelwise independence assumption
has been made.

We store for each voxel the estimate of the probability that the ground truth at each
voxel is Ti = 1. Since the ground truth is treated as a binary random variable, the
probability that Ti = 0 is simply 1 − g(Ti = 1|Di, p̂o, q̂o).

Let α =
∏

j:Dij=1 p̂j
o ∏

j:Dij=0(1−p̂j
o) and β =

∏
j:Dij=0 q̂j

o ∏
j:Dij=1(1−q̂j

o)
where j : Dij = 1 denotes the values of the index j for which the expert decision at
voxel i (i.e. Dij) has the value 1. Using the notation common for EM algorithms, let Wi

be the weight variable.

Wi ≡ g(Ti = 1|Di, p̂o, q̂o) (12)

=
g(Ti = 1)α

g(Ti = 1)α + (1 − g(T1 = 1))β
. (13)

The weight Wi indicates the probability of the ground truth at voxel i being equal to
one. It is a normalized product of the prior probability of Ti = 1, the sensitivity of each
of the experts that decided ground truth was one and the product of (1 - sensitivity) of
each of the experts that decided the ground truth was zero.

2.2 Estimation of the Quality Parameters of the Experts

Given the estimate of the value of the ground truth derived above, we can find the values
of the expert quality parameters that maximize the expectation of the log likelihood
function.

p̂, q̂ = arg max
p,q

Eg(T|D,p̂o,q̂o) [ln (f(D|T,p,q)f(T))] (14)

= arg max
p,q

Eg(T|D,p̂o,q̂o)


ln

∏
ij

f(Dij |Ti, pj , qj) + ln
∏

i

f(Ti)


 (15)



302 S.K. Warfield, K.H. Zou, and W.M. Wells

Since ln
∏

i f(Ti) is not a function of p,q, it follows that

p̂, q̂ = arg maxp,q

∑
j

∑
i

Eg(T|D,p̂o,q̂o) [ln f(Dij |Ti, pj , qj)] (16)

p̂j , q̂j = arg maxpj ,qj

∑
i

Eg(T|D,p̂o,q̂o) [ln f(Dij |Ti, pj , qj)] (17)

= arg maxpj ,qj

∑
i

[
Wi ln f(Dij |Ti = 1, pj , qj)

+(1 − Wi) ln f(Dij |Ti = 0, pj , qj)
]

= arg maxpj ,qj

∑
i:Dij=1

Wi ln pj +
∑

i:Dij=1

(1 − Wi) ln(1 − qj)

+
∑

i:Dij=0

Wi ln(1 − pj) +
∑

i:Dij=0

(1 − Wi) ln qj (18)

A necessary condition at a maximum of the above with respect to parameter pj is
that the first derivative equal zero. On differentiating Q(θθθ|θ̂θθ) with respect to parameter
pj and solving for 0, we find (similarly for q̂j)

p̂j =

∑
i:Dij=1 Wi∑

i:Dij=1 Wi +
∑

i:Dij=0 Wi
, (19)

q̂j =

∑
i:Dij=0(1 − Wi)∑

i:Dij=1(1 − Wi) +
∑

i:Dij=0(1 − Wi)
. (20)

We can interpret the weight estimate Wi as the strength of belief in the underlying
ground truth being equal to 1. In the case of perfect knowledge about the ground truth,
i.e. Wi ∈ {0.0, 1.0}, the estimator of sensitivity given by Equation 19 corresponds to
the usual definition of sensitivity as the true positive fraction. When the ground truth
is a continuous parameter, i.e. Wi ∈ [0, 1] as considered here, the estimator can be
interpreted as the ratio of the number of true positive detections to the total amount of
ground truth Ti = 1 voxels believed to be in the data, with each voxel detection weighted
by the strength of belief in Ti = 1. Similarly, the specificity estimator of Equation 20 is
a natural formulation of an estimator for the specificity given a degree of belief in the
underlying Ti = 0 state.

3 Results

We describe experiments to characterize our algorithm running on synthetic data for
which the ground truth is known, for assessment of an algorithm and experts segmenting
a brain tumor from MRI, and for assessing segmentations from MRI of the peripheral
zone of the prostate.



Validation of Image Segmentation and Expert Quality 303

Table 1. Digital phantom consisting of class 1 set to cover half the image, with each expert
segmentation identical to the ground truth. In each case, thresholding the converged ground truth
estimate at 0.5 recovered the known ground truth exactly. In each of the experiments with two
experts, each generating a segmentation identical to the known ground truth but with imperfect
initial estimates of expert quality, the final ground truth weights are identical to the known ground
truth and the algorithm has discovered the experts are operating perfectly, even when the a priori
probability for ground truth was varied.

# experts initial pj , qj Pr(Ti = 1) final p̂j , q̂j # iterations Wi|Ti = 1,
Wi|Ti = 0

1 {0.9, 0.9} 0.5 {0.9, 0.9} 1 0.9, 0.1
1 {0.9, 0.9} 0.4 {0.95, 0.80} 22 0.76, 0.04
1 {0.9, 0.9} 0.6 {0.80, 0.95} 22 0.96, 0.24
2 {0.9, 0.9}, {0.9, 0.9} 0.5 {1.0, 1.0}, {1.0, 1.0} 4 1.0, 0.0
2 {0.9, 0.9}, {0.9, 0.9} 0.4 {1.0, 1.0}, {1.0, 1.0} 4 1.0, 0.0
2 {0.9, 0.9}, {0.9, 0.9} 0.6 {1.0, 1.0}, {1.0, 1.0} 5 1.0, 0.0

Table 2. Ground truth class 1 was set to be a small square occupying roughly 11% of the 256x256
pixel image. In each experiment, thresholding the converged ground truth weights at 0.5 recovers
the known ground truth exactly. In each of the multi-expert experiments, the ground truth weights
converged to Wi = 1 at the class 1 voxels and Wi = 0 at the class 0 voxels. In the final experiment,
one of the experts segmentation was set equal to the ground truth, and one was set equal to the
ground truth shifted left 10 columns, and one was set equal to the ground truth shifted right 10
columns. The algorithm was able to discover one of the experts was generating a segmentation
identical to the ground truth, and that the other two experts were slightly incorrect. The correct
ground truth was indicated by the final ground truth weights and the quality estimates for each
expert accurately reflected the segmentations.

# experts initial pj = qj Pr(Ti = 1) final p̂j , q̂j # itns Wi|Ti = 1,
Wi|Ti = 0

1 0.9 0.5 {0.217, 0.997} 9 0.98, 0.44
1 0.9 0.12 {0.696, 0.973} 21 0.78, 0.04
2 0.9, 0.9 0.5 {1.0, 1.0},{1.0, 1.0} 8 1.0,0.0
2 0.9, 0.9 0.12 {1.0, 1.0},{1.0, 1.0} 4 1.0,0.0
3 0.9, 0.9, 0.9 0.12 {0.88,0.99},{1.0,1.0},{0.88,0.99} 11 1.0, 0.0

Results of Experiments with Digital Phantoms with Known Ground Truth Table 1 illus-
trates experiments with known ground truth and each class occupying half the image.
Table 2 illustrates experiments with known ground truth class 1 set to be a small square
occupying roughly 11% of the 256x256 pixel image.

Validation of Brain Tumor Segmentation from MRI Figure 1 illustrates our algorithm
applied to the analysis of expert segmentations of a brain tumor [10]. The analysis
indicates the program is generating segmentations similar to that of the experts, with
higher sensitivity than one of the experts, but with lower sensitivity than two other
experts.
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(a) border of ground truth esti-
mate.

(b) sum of manual segmenta-
tions.

(c) expert quality assessment.

expert p̂ j q̂ j
1 0.8951 0.9999
2 0.9993 0.9857
3 0.9986 0.9982

program 0.9063 0.9990

Fig. 1. Part of MRI with a brain tumor visible and the border of the estimated ground truth
overlayed, sum of expert segmentations, and quality assessment of three experts and a program.
The results indicate the program is comparable to the experts, performing better than one expert
and not as well as two other experts.

(a) ground truth estimate (b) sum of manual segmentations (c) overlay of (a) on MRI

Fig. 2. Ground truth segmentation estimate, sum of manual segmentations, and an overlay of
borders of regions from the ground truth estimate on the MRI. The voxel intensity in (a) is
proportional to the probability of the ground truth being 1 at each voxel. The overlayed borders of
regions of different ground truth probability are readily appreciated in (c). The lowest probability
is in regions where the expert segmentation is most difficult. The ground truth estimates rapidly
reaches a near final configuration. The final result does not depend strongly upon the expert
parameter initialization or the ground truth prior probability. A binary estimate of the ground
truth can be made by thresholding the ground truth estimate at 0.50, and in this case is
equivalent to taking all the voxels indicated as prostate peripheral zone by at least three of the
five segmentations, and then all the voxels indicated by two of the high quality segmentations
but not those voxels indicated by only two of the lower quality segmentations. Recall that our
algorithm simultaneously estimates the quality of each of the segmentations together with the
probabilistic ground truth estimate. This result cannot be achieved by a simple voting rule such as
selecting voxels indicated by three out of five segmentations.

Validation of Prostate Peripheral Zone Segmentation from MRI Figure 2 illustrates our
algorithm applied to the analysis of five segmentations by one expert of the peripheral
zone of a prostate as seen in a conventional MRI scan (T2w acquisition, 0.468750 x
0.468750 x 3.0 mm3). The ground truth estimates rapidly reaches a near final configu-
ration, and more slowly refines the last few significant figures of the ground truth and
expert parameter estimates. The final result does not depend strongly upon the expert
parameter initialization or the ground truth prior probability. The final expert parameter
estimates found are record in Table 3.
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Table 3. Quality estimates for the five prostate segmentations generated by one expert, and Dice
similarity coefficient (DSC), DSC ≡ 2|A∩B|

|A|+|B| with |A| the area of region A, comparing the
expert segmentation with the ground truth estimate with Ti ≥ 0.5. Results are shown for two
different assumptions of the prior probability of prostate peripheral zone being present at each
voxel and indicate the final estimates do not depend strongly on the ground truth prior probability
assumption. The rank order of the experts is the same in each case. Note that our algorithm provides
more information than DSC, for example, DSC of expert 2 and 4 is similar, but they have quite
different sensitivities.

Expert segmentations 1 2 3 4 5
g(Ti = 1) = 0.10

final p̂j 0.87509 0.987198 0.921549 0.907344 0.880789
final q̂j 0.999163 0.994918 0.999435 0.999739 0.999446
DSC 0.927660 0.957527 0.954471 0.949058 0.932096

g(Ti = 1) = 0.02
final p̂j 0.878533 0.991261 0.936831 0.918336 0.894861
final q̂j 0.998328 0.993993 0.99932 0.999359 0.999301
DSC 0.913083 0.951027 0.967157 0.954827 0.944756

4 Discussion and Conclusion

We have presented an algorithm for simultaneously constructing an estimate of the
“ground truth” segmentation from a collection of segmentations, and an estimate of the
quality of each segmentation generator. This can be used to assess new segmentations
by direct comparison to the ground truth estimate.

At least one digital brain phantom [2] was constructed from segmentations obtained
from high signal-to-noise images by manual correction of the output of an automated
segmentation algorithm. The approach described here provides a straightforward and
principled way to combine manual segmentations to provide a “ground truth” estimate
for the construction of such phantoms.
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