
Component-Based Synthesis
of Dependable Embedded Software�

Arshad Jhumka, Martin Hiller, and Neeraj Suri

Department of Computer Engineering, Chalmers Univ., Sweden
{arshad,hiller,suri}@ce.chalmers.se

Abstract. Standardized and reusable software (SW) objects (or SW
components – in-house or pre-fabricated) are increasingly being used
to reduce the cost of software (SW) development. Given that the basic
components may not have been developed with dependability as pri-
mary driver, these components need to be adapted to deal with errors
from their environment. To achieve this, error containment wrappers are
added to increase the reliability of the components. In this paper, we first
present a modular specification approach using fault intolerant compo-
nents, based on the concepts of category theory. We further introduce the
concept of wrapper consistency, based upon which, we present an algo-
rithm that systematically generates globally consistent fault containment
wrappers for each component, to make them fault tolerant. Subsequently,
we enhance the initial modular specification to deal with the wrapped
components, and show that safety properties of the system are preserved
under composition only if the wrappers are globally consistent.

1 Introduction and Problem Perspectives

The functionality and dependability of computer systems is increasingly being
defined by software (SW). However, to reduce the high cost associated with
the development of SW, components, for example pre-fabricated or from com-
ponent repositories, are being used while having to satisfy overall system/SW
dependability requirements. Given that these components may not have been
developed with dependability as a primary driver, i.e., the components may be
fault-intolerant, i.e., they do not tolerate faults that will violate the safety spec-
ification, the components may need to be adapted or transformed to be able
to contain errors coming from their environment, i.e., made fault tolerant. This
can be achieved by wrapping the different components with error containment
wrappers [16,8]. Error containment wrappers can be classified into two broad
categories, namely detectors and correctors [2]. Intuitively, detectors are used
to detect errors, whereas correctors are detectors that correct errors whenever
the system state is corrupted.

However, as pointed out in [14], the design of detectors, such as assertion
checks1, for error detection in software is a heuristic process, often with low levels
� Supported in part by Saab endowment, TFR Grants
1 We will use the term detector, assertion or wrapper interchangeably

W. Damm and E.-R. Olderog (Eds.): FTRTFT 2002, LNCS 2469, pp. 111–128, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

112 Arshad Jhumka, Martin Hiller, and Neeraj Suri

of efficiency to error coverage. Some conclusions mentioned were: (i) placement
of detectors is crucial for them to be effective, (ii) given the randomness of the
design process, some detectors detected non-existent errors in the system (so
called “false positives”), leading to decreased efficiency of the system, i.e., the
state of the system is such that it does not violate the safety specification [1]
defined, but is however flagged as erroneous, (iii) specification-based detectors
tend to have limited effectiveness, and (iv) specification-based detectors, together
with code-based detectors, have a higher effectiveness in detecting errors. In
other words, the state of the system is such that it does not violate the safety
specification [1] defined, but is flagged as erroneous by the detector wrappers.

For problem (i) cited above, we presented an approach in [9] for locating the
relevant detectors (and correctors). For problem (ii) above, in [12], we introduced
the concept of global assertion consistency to verify global conformance across
assertions. We defined global consistency as follows: Given a program P compris-
ing a set of detectors D = {di} and a safety specification S that P should satisfy,
the set D is said to be globally consistent if (P (D) =⇒ S). We also showed that
(P (D) =⇒ S) can be verified using the concept of abstract interpretation [3]. In
this paper, we will show that the detection of global consistency of assertions is
NP complete. Thus, for problems (ii)–(iv) above, in this paper, we develop an
algorithm, based on global assertion consistency, that automatically generates
consistent assertions, which can then be used to wrap the different components.
Overall, the global consistency property ensures that detectors detect only those
errors that will lead to safety violation of the program.

Paper Objectives. Further, once components are wrapped with detectors (and
correctors), one needs to ascertain that the wrapped components, i.e., fault tol-
erant components, can still be composed together into a system. We show that
fault tolerant wrappers used to wrap one component do not interfere with the
functionality and dependability of other components. In this paper, we show that
composability of fault tolerant components with globally consistent detectors is
indeed preserved, showing the viability of our algorithm. Overall, our contribu-
tions in this paper are: (i) We first present a modular specification approach of
a system, using concepts from category theory, (ii) We present the concept of
global assertion consistency, and show that its detection is NP complete, (iii)
Thus, we provide an algorithm that generates globally consistent detectors, and
(iv) fault intolerant components are transformed into fault tolerant components
by wrapping them with the globally consistent fault containment wrappers, and
(v) We enhance our initial specification with wrapper information, and show
that the fault tolerant components are composable if the wrappers are globally
consistent. We place our contribution more in context towards the end of the pa-
per when we discuss related work in Section 6. Here, we do not address temporal
aspects, which is part of our ongoing work.

The paper is structured as follows: Section 2 present the system and fault
models adopted in this paper. Section 3 presents an approach to specify and
verify a fault intolerant specification, based on the concepts of category theory.
In Section 4, we first show that detection of global consistency of detector is

Component-Based Synthesis of Dependable Embedded Software 113

intractable, and then present a heuristic to tackle the problem of generating
globally consistent detector wrappers. Section 5 extends our initial intolerant
specification with detector wrapper constraints, and we identify properties that
preserve composability of components. In order to develop a proper context for
comparison, we present an overview of related work in Section 6, and we present
a discussion of the approach and its applicability in Section 7. We conclude with
a summary of the paper in Section 8.

2 System & Fault Models

We make the following system and fault model assumptions:
System model: We assume that software (SW) is made up of different com-
ponents, communicating with each other through some form of communication,
such as message-passing, shared memory etc. We will use the abstract term signal
to denote these communication paradigms. We also assume gray-box knowledge
of SW, i.e., the internals of the software are known, but are, non-modifiable.
Thus, any transformation performed is achieved through the use of wrappers.
The choice for reasoning at the gray-box level is three-fold: (i) Maintainability
of the original SW is made easier since it is not modified, and “modification” is
only through error containment wrappers, (ii) Reuse of fault intolerant SW is
easier, and the relevant error containment wrappers can be generated, and (iii)
reasoning at a gray-box level allows for modular SW construction, with usage
flexibility for single processors or distributed systems.
Fault model: We assume transient data errors occurring at the communication
signal level. To detect these errors in embedded systems, where the emphasis
is on signal data values, assertions are often incorporated. These specify, for
example, range checks, or bounds on rate of change of data values.

Next, we will present a modular specification approach for specifying a com-
ponent based system, based on the concepts of category theory [6,19].

3 Modular Specification of Embedded Systems

Our modular specification framework is based on the concept of category the-
ory [6]. Category theory allows definition of a calculus of modules, and their
respective composition, i.e., module composition. It also allows module specifi-
cations and constraints to be reasoned about in the same framework. Specifi-
cation languages such as Z2 [20] are not suitable since Z does not really allow
hidden interfaces etc. Its object-oriented version, Object-Z [17], could have been
used but it does not offer a framework to reason about constraints in natural
way, i.e., whether constraints imposed are indeed correct etc. Similarly, formal
frameworks such as CSP3 [10] are restrictive for reasoning about transforming a
component into a fault tolerant one.
2 We refer to Z since they represent a class of state-based specification language.
3 We refer to CSP since they represent a class of event-based specification language

114 Arshad Jhumka, Martin Hiller, and Neeraj Suri

Components are algebraically specified, and they are interconnected to encap-
sulate their interactions. The composition operation then defines and constructs
an aggregated component describing the overall system from the individual com-
ponents and their interactions. We will first present the specification of basic
building blocks of a component, such as export interface, and show how they
are composed together into a component specification. Components are then
composed into a system.

3.1 Specification of Basic Building Blocks
A specification consists of two parts (a) a signature part, and (b) an axiom part.
The signature introduces syntactical elements that are used in the axiom part,
and consists of three parts: (a1) the Sorts part declares the domains, (a2) the
Constants (respectively Variables) part declares the time independent (respec-
tively time dependent) functions and/or predicates, and (a3) the Action part
declares predicates and functions representing event instances. The axiom part
defines the behavior of the building block, or specification.

In practice, a component is a SW module that imports some services from
its environment, and provides some services used by its environment. Formally,
a component can be composed of different specifications, such as import inter-
face, export interface etc. Each building block is specified algebraically, i.e., each
block specification consists of a signature and axiom part. To obtain the overall
component, these specifications are combined via specification morphisms.
Specification Morphism: A specification morphism m : A → B from a spec-
ification A to specification B maps any element of the signature of A to an
element of the signature of B that is compatible.

3.2 Component Specification from Basic Specifications

Syntax of Component Specifications. An algebraic specification of a com-
ponent C consists of four basic basic building blocks, namely (i) parameter
(PAR), (ii) export (EXP), (iii) import (IMP), and (iv) body (BOD). Each build-
ing block (specification) is individually specified, and are interconnected through
specification morphism, to obtain a component specification. Thus, a component
specification is a tuple, COMP = (PAR,EXP,IMP,BOD,e,s,i,v), consisting of 4
specifications and four specification morphisms, e, s, i and v, as shown in Fig. 1.

The BOD part of the component specification is constructed using the pushout
operation. Specifically, the pushout of two specification morphisms e : PAR →
EXP and i : PAR → IMP is an object BOD together with morphisms v :
EXP → BOD and s : IMP → BOD satisfying v ◦ e = s ◦ i and the following
general property: for all objects BOD’ and morphisms s′ : IMP → BOD′

and v′ : EXP → BOD′ with v′ ◦ e = s′ ◦ i, there is a unique morphism
b : BOD → BOD′ such that v ◦ b = v′ and s ◦ b = s′. Here, ◦ denotes
morphism composition.

We briefly explain the role of each specification: (i) The BODY (BOD) part
is the complete description of the component, i.e., it explains how resources pro-
vided by the import part are used to provide the services of the export interface,

Component-Based Synthesis of Dependable Embedded Software 115

PAR EXP

IMP BOD

Component

e

i
v

s

C

Fig. 1. Component specification with building blocks specification and specification
morphisms

i.e., it transforms the services obtained from the environment into services pro-
vided to the environment. Given our gray-box approach, the BOD part cannot
be modified to transform the component into a fault tolerant one.

The IMPORT (IMP), EXPORT (EXP), and the PARAMETER(PAR) parts
are the interfaces of the component. The PAR part contains the parameters of
the component, while the IMP (EXP) part defines the services needed (provided)
by the component.

The four specification morphisms e, i, s, v of the components describe the
links between the four specifications. Also, all items in PAR must have an im-
age in IMP and EXP to ensure correct definition of the morphisms e and i.
For example, IMP cannot introduce a type (sort) without the type being intro-
duced in the PAR part of the specification. One important aspect of specification
morphisms is that they preserve axioms. For example, one must prove that the
axioms defined in the export interface can be deduced from those defined in the
body specification. Thus, verification of a given component can be performed.

Semantics of Component Specification. For a given component specifica-
tion COMP = (PAR,EXP,IMP,BOD,e,s,i,v), the specification morphisms are
interpreted as functors (in the reverse direction), which are functions from one
category to another, i.e., they map objects onto objects and morphisms onto
morphisms. More specifically, they are called forgetful functors since they forget
those resources that are not in the image of the specification morphism, i.e.,
for a given specification morphism m : SPEC → SPEC1, the forgetful functor
corresponding to m is given by Vm : Cat(SPEC1) → Cat(SPEC). In pratice,
this means that hidden operations and hidden data domains are forgotten, i.e.,
not part of the export.

On the other hand, the body (BOD) specification is interpreted according to
the functorial semantics, since it represents the construction of the export inter-
face from the import interface. The functorial semantics is the composition of a
free functor (from import algebra to body algebra) and a forgetful functor (from
body algebra to export algebra). This means that, with the functorial seman-
tics, we allow free construction of the services to be exported with hidden data
domains and hidden operations omitted from the export interface. We also have
the restriction semantics, which is the composition of the unrestricted semantics

116 Arshad Jhumka, Martin Hiller, and Neeraj Suri

Cat(EXP)

Cat(BOD)Cat(IMP)

Cat(PAR)

RESTR

Vv

FREE

Vs

Vi
RFUNC

FUNC

Ve

Fig. 2. Semantics of morphisms

with a restriction construction of the export with respect to the parameter part.
The other specifications, i.e., PAR, IMP and EXP, have a loose interpretation,
in the sense that any algebra that satisfies the specification is admissible.

Formally, from the component specification, we define a construction seman-
tics of COMP, FREE as follows: FREE : Cat(IMP) → Cat(BOD) with re-
spect to the forgetful functor Vs : Cat(BOD) → Cat(IMP). Thus, the functorial
semantics of COMP is the functor FUNC : Cat(IMP) → Cat(EXP) which
constructs for each import algebra A a corresponding export algebra B such
that B = FUNC(A). This construction is mainly a free construction FREE(A)
defined by sorts, actions and axioms in the BOD part of the component spec-
ification. The functorial semantics is a composition of the free functor and the
forgetful functor with respect to the v morphism, i.e., FUNC = Vv ◦ FREE,
Fig. 2.

Thus, the meaning of a component specification is thus given as a functor
which maps import algebras I to export algebras FUNC(I).

Definition of component correctness:
Let COMP = (PAR,EXP,IMP,BOD,e,s,i,v) be a component specification.
COMP is said to be correct if the free functor FREE is strongly persistent, i.e.,
ID = Vs◦FREE, where ID is the identity functor on Cat(IMP) and FREE pre-
serves injectivity of homomorphisms. This just ensures that each import algebra
I is protected by the free construction, i.e., Vs ◦ FREE(A) = A.

3.3 System Specification from Components

Having specified and verified a given component, these components can now be
composed together through component morphisms to obtain the complete sys-
tem specification. Given two components Ci (a component importing services)
and Ce (a component exporting the services required) such that all elements
imported by Ci are exported (defined) by Ce, the composition operation builds
a component Cie. A module morphism is a pair (h, hp), see Fig. 3, of morphisms

Component-Based Synthesis of Dependable Embedded Software 117

PAR

IMP

C
i

i i

ii

EXP
j

PARj

IMPj

C

hp

h

BOD

EXP

jBOD BOD

b’

b’’

e

ie

Fig. 3. Composing two components

such that h associates services imported by Ci to corresponding services exported
by Ce. Morphism hp maps parameters of Ci to those of Ce. The component Cie

can then be computed from components Ci and Ce, i.e., it imports what com-
ponent Ce imports, exports what component Ci exports, and can be computed
from the pushout operation. If components Ci and Ce and morphisms h and
hp are correctly defined, then component Cie is correct. Also, during composi-
tion, the following should be verified: h ◦ ii = ee ◦ hp, where ii is morphism i
in component Ci, and ee is morphism e in component Ce. This ensures that the
associations made by hp is compatible with those defined in h.

System verification is performed as follows: any axiom in a given compo-
nent Ci is translated along a given component morphism as theorem in the Ce

component, i.e., one needs to ascertain that the behavior of Ci is preserved.
Also, correctness of the resulting composition Cie can be derived from the

correctness of Ci and Ce (using the notion of strong persistency).
Different components needed to construct the overall system are composed

together, as has been shown. Given such a system specification SPEC, a cor-
responding implementation P satisfying the SPEC can be obtained through
techniques such as refinement, which then obviates the need for verification.
Given the free construction allowed, any body implementation that transforms
the import services into the export services is allowed. Also, given the transitivity
property of refinement and the fact that P refines SPEC, our framework is still
valid if we reason at a lower level of abstraction, i.e., at the level of P . Thus, de-
pending on the level of implementation detail incorporated in the specification,
we can reason at different levels of abstraction within the same framework.

4 Addition of Error Containment Wrappers

The system specification provided is for a fault intolerant system, i.e., though
the behavior of the system has been verified, the behavior may be violated in

118 Arshad Jhumka, Martin Hiller, and Neeraj Suri

faulty scenarios. Hence, there is a need to add fault tolerance components to the
original system, i.e., adding error containment wrappers around components.

Adding error containment wrappers around components is inherently dif-
ficult, as indicated in [14] and Section 1. We previously [12] showed that the
consistency property of assertions help in designing effective detectors. For com-
pleteness, we will present a brief overview of the consistency property, as well as
the proof of intractability of its detection.

4.1 Consistency Property of Assertions

An assertion EAi in a program P defines a set of values, S(EAi), that a given
variable Vi can take. Two EAs placed in a given SW system are linked to each
other via code implementing a given function Fm (in subsequent discussion, we
will use P to denote the relevant function Fm).
Definition 1. EA1 and EA2 are said to be consistent with each other iff
Fm(S(EA1)) = S(EA2). They are inconsistent iff Fm(S(EA1))∩S(EA2) = {}.
They are partially consistent iff they are neither consistent nor inconsistent.

Thus, a predicate cons(Ai, Aj , P) is true iff Ai and Aj are consistent through
P (through the relevant Fm). A set of assertions SA = {Ai} defined in a program
P is said to be globally consistent iff, ∀i, j : cons(Ai, Aj , P).

Intuitively, the global consistency property states that any valid data value
should not be flagged as erroneous by any of the assertions in the system. The
converse is also true. Verification of consistency property can be achieved using
techniques such as abstract interpretation. Given that safety specification is de-
fined, we want to detect those states that can potentially lead to violation of the
safety specification, i.e., the set of detectors, including the safety specification,
should be globally consistent. The safety specification is considered as a global
property defined on the system to be satisfied. However, detection of the con-
sistency among a set of detectors is intractable. Thus, we present a heuristic,
analogous to predicate transformers [4], that generates consistent detectors.

4.2 NP Completeness of Global Consistency Detection

Before presenting the heuristic, we will briefly present the proof of NP complete-
ness of global consistency detection.

A program P consists of a set of components, P = {C1 . . . CN}. Each com-
ponent Ci has a set Vi of variables defined in it. A global safety property of a
system is a boolean valued function B defined over the variables in V =

⋃
i Vi

of the system. We define a set L = {L1 . . . LN} of detectors placed in individual
components, defined over the set V of variables. We use the notation B(L) to
indicate the value of predicate B in a system with L = {L1 . . . LN}.

Global consistency detection of wrappers (GLOB) is a decision problem. It
takes the form of:
Given: Program P , global safety property B, a set of system variables V .
Determine: if there exists a set L of wrappers Li’s defined over V such that
L ∪ B is globally consistent through P .

Component-Based Synthesis of Dependable Embedded Software 119

Claim: GLOB is NP-complete
Proof: First note that the problem is in NP. A verifier for the problem takes as
inputs the program P , the set L of wrappers and the global property B and then
verifies if the set L ∪ B is globally consistent. This can be done in polynomial
time. Then detecting the global consistency of wrappers belongs to the set NP.

We show NP-completeness of a simplified consistency detection where all
variables in V can take value “true” or “false”. Assume there is only one wrap-
per Li incorporated in Ci. We reduce the satisfiability problem of a boolean
expression to GLOB by constructing an appropriate set of wrappers.

The set is constructed as follows: Choose an Li ∈ L such that Li = “false”
and include a new variable vj ∈ V such that Li is now “true”. It is easily verified
that the predicate B is true for some set L if and only if the global safety property
is satisfiable.

4.3 Heuristic to Generate Globally Consistent Error
Containment Wrappers

Given the intractability of global consistency detection, we present a heuristic
that generates globally consistent wrappers. It works in a way analogous to
predicate transformers. Given our access to the code (which cannot be modified),
the heuristic perform a backtracking process.

We first present the main steps of the algorithm in more details, and then
the implementation details:

S 1,2 The algorithm starts at the end of the sink module and backtracks to its
start. Then, the process is iterated for every component.

S 3 All conditions for computing the different values of variables are calcu-
lated. Program slicing [18] techniques can be utilized for this.

S 4 Once all conditions for computing the different variables are obtained,
they are substituted in the condition for computing the output signal. For
example, suppose we have an output signal X and the condition for com-
puting its value is X := Y + 1. Suppose that the condition for computing
Y is Y := Z + 2, where Z is the input. Then, the new condition for X is
X := Z + 2 + 1 = X := Z + 3.

S 5 This condition for computing the output signal is substituted in the post-
condition defined on the output signal (say X), and by simplifying the
constraint obtained, we can obtain a constraint defined on the input sig-
nal (say Z). This constraint will be the input detector wrapper in the given
component (Ci).

S 6 This precondition is translated into the postcondition of the preceding
component (Ce). Formally, we translate this precondition along morphism
h to obtain the postcondition on the preceding component.

S 7+ Steps 1–6 are iterated until the source modules are reached, and constraints
on system inputs obtained.

120 Arshad Jhumka, Martin Hiller, and Neeraj Suri

Derive_EA(<global_property_EA>, <module_name>,
<module_interconnections>)

%global_property_EA is the safety specification defined
%on the system. In any round of execution, the safety spec
%is satisfied, i.e., is an invariant. Thus, the global_property_EA
%is considered as a postcondition on the output signal of the
%system, i.e., at the end of a round of execution.
1 while (NOT beginning of <module_name>)

{
2 for (all variables V in <module_name>)
3 conditions(V) :=

determine_from_module(<module_name>);
%Conditions for computing variable V
%determined from module

}
4 conditions(<OutputSignal>):=

get_all_conditions(<module_name>);
%All conditions for computing output signal

5 new_preconditions :=
output_EA[conditions(OutputSignal)/OutputSignal];
%new preconditions obtained by substituting
%output signal by the condition obtained. This is the input
%detector wrapper for the importing component.

6 postcond_preceding_module
:= new_preconditions;

%preconditions translated as postconditions
%in preceding module. This is the output detector wrapper
%for the exporting component.
7 preceding_module :=
get_id_preceding_module(module_interconnections,

module_name);
%gets the id of the other module with which
%module_name is communicating

8 if (preceding_module == NIL) break;
%source module reached
9 Derive_EA(postcond_preceding_module,

preceding_module,
module_interconnections);

Overall, pre- and postconditions (input and output wrappers) are generated
for each component upon backtracking. When a component Ci imports services
exported by another component Ce, the precondition defined in Ci is transformed
into a postcondition in Ce. Formally, the input wrapper in Ci is translated along
morphism h (see before) into an output wrapper in Ce.

One potential limitation of the above algorithm is the handling of loop con-
structs among components, or within a component. There are techniques that

Component-Based Synthesis of Dependable Embedded Software 121

can be used, such as instrumented semantics [7]. Techniques used for determin-
ing weakest preconditions [4] can also be used here. In the worst case, EA’s
which are not fully consistent may be obtained. Determining the applicability of
partially consistent EA’s is an avenue for future work.

4.4 Proof of Correctness of the Algorithm

Having presented the algorithm, we now present an informal proof of correctness,
i.e., that the algorithm will return EAs that are consistent with each other. We
make use of three lemmas for the proof.

As inputs to the algorithm, we have the global EA monitoring the output
signals. We also know the input signals to the modules. States of programs can
only be changed through assignment statements, however, the changes depend
on the state of the program at that point, i.e., there can be multiple data paths
linking the input signals and output signals, and the data path taken is deter-
mined by the state at that time. In the proof, we denote the output signal as
OutputSignal and FM denotes the function implemented by a given module M .
Lemma 1 Along any data path taken, there exists at least one assignment of
the form OutputSignal := F (...) for the output signal to have updated data.
Proof of Lemma 1: If there is no assignment where OutputSignal is the target
destination, then it will only contain its initialization data value or a constant
value. Hence, for it to have updated data, the assignment F (...) should be a
function of some other variables, i.e., F () should hold the conditions (variables)
used to compute the OutputSignal.
Lemma 2 The values held by the variables determining the value of OutputSig-
nal should either be input signal data values or result from applying a function
on the input signals.
Proof of Lemma 2 If the variables which determine the data value of Output-
Signal does not hold input signal data values (or values that depend on input
signal data values), it implies that OutputSignal does not depend on the input
signals. This is inconsistent with having input signals going into that module.

Using the two lemmas, we can deduce that OutputSignal can be expressed as
a function (FM) of the input signals. Hence, in the EA monitoring OutputSignal,
we can substitute OutputSignal by the function executing on the input sig-
nals. Thus, for a global EA of the form (a < OutputSignal < b) we replace
OutputSignal by FM (inputsignals), resulting in (a < FM (inputsignals) < b).
This expression can be simplified as appropriate. Thus, preconditions monitoring
the input signals are obtained. From Lemma 1 and 2, we show that the algorithm
does generate preconditions from output signals specification.
Lemma 3 The preconditions are consistent with the global EA.
Proof of Lemma 3 From the above, the precondition is as follows:
(a < FM (inputsignals) < b). Executing FM on the input signals will result in
OutputSignal, hence (a < OutputSignal < b), which is the global EA. Thus,
the precondition and postcondition will be consistent.

Lemmas 1, 2 and 3 constitute the overall proof of correctness of the algorithm.

122 Arshad Jhumka, Martin Hiller, and Neeraj Suri

5 Specification of Fault Tolerant Embedded Systems

Initially, we have provided a modular specification of a fault intolerant embedded
system, and explained how verification can be performed. To add fault tolerant
components to the system, error containment wrappers are added to the com-
ponents, given our focus on gray-box components. Since detection of globally
consistent wrappers is intractable, we have proposed a heuristic that can gener-
ate globally consistent wrappers, starting from a given safety specification, i.e.,
the heuristic generate wrappers that are consistent with the safety specification.
In subsequent sections, we show (i) how to enhance our specification with the
wrapper information, i.e., constraints provided by the wrappers, and (ii) that
the consistency condition on wrappers allows the fault tolerant components to
be composed together. Wrappers can be added both at the input and output of
a component for fault tolerance.

5.1 Addition of Detector Wrappers to Basic Specifications

Once input and output wrappers are obtained, it implies that there are con-
straints imposed on the components. Input wrappers constrain the values allowed
by the imported functions, while output wrappers constrain the data values out-
putted. These constraints formulate requirements for interface data types, which
may not be expressed in equational logic (as in the axiom part of the specifi-
cation). Given our focus on gray-box components, we allow these constraints to
be defined only at the interface level, not in the body specification. This allows
for the reuse of the free construction of the equational case for corresponding
specifications with constraints, except that we restrict the free constructions to
those interface algebras that satisfy the given constraints.

Given (input and output) wrappers W of constraints over a component C,
which is a free construction, we define SPECW =(SPEC,W), as a specification
with constraints. A SPECW -algebra is a usual SPEC -algebra that satisfies all
constraints defined in W . Given the constraints, we include one more part to
a specification, namely a constraints part, in addition to the variables, axioms
and sorts parts already defined in the specification. We enhance each basic spec-
ifications with the constraints part that define the imposed data requirements,
i.e., we wrap both import and export interfaces with relevant wrappers.

5.2 Building Fault Tolerant Components
from Fault Tolerant Building Blocks

Up to now, we have generated wrappers (constraints) on a given specification.
However, given that input constraints in an importing component Ciare trans-
lated as output constraints for an exporting component Ce, and output con-
straints into input constraints in a given component, this translates into the
ability to reason about translation of constraints along specification morphism.

Semantically, we make use of a Constraints functor, Constraints : CatSpec→
Sets, that associates a set of constraints with each specification, where CatSpec

Component-Based Synthesis of Dependable Embedded Software 123

is the category of specifications. This functor also maps every morphism m :
SPEC1 → SPEC2 onto a function Constraints(m) : Constraints(SPEC1) →
Constraints(SPEC2) which assigns to every constraint C ∈ Constraints
(SPEC1) on SPEC1 the translated constraint Constraint(m)(C), denoted
m′(C), defined on SPEC2. Intuitively, this means that any constraint defined
over the import interface is translated into a given constraint over the export
interface of a given component. In other words, input constraints defined on a
component are transformed into output constraints for the same component.

Given wrapped specifications SPECW1 = (SPEC1, W1), and
SPECW2 = (SPEC2, W2), a specification morphism m from SPECW1 to
SPECW2, denoted m : SPECW1 → SPECW2, is called consistent if W2 im-
plies the translated constraints m′(W1), i.e., W2 =⇒ m′(W1). Intuitively, it
means that the predicate cons(W1, W2, BOD) (defined in Sec. 4.1) evaluates to
true under the consistency condition of morphisms, and where BOD represents
the component implementation. Note that for consistency condition, we do not
require W2 ∪A2 =⇒ m′(W1), where A2 is the set of axioms for SPEC2, because
since we define W2 on the specification, rather than on signatures, any algebra
satisfying W2 is already a SPEC2 algebra satisfying A2.

At this point, we need to show that the wrappers generated by our heuristic
satisfy the consistent specification morphism condition.
Lemma 4: The specification morphisms of a given component are consistent.

We want to prove that the specifications, enhanced with the constraints im-
posed by the wrappers, yield consistent specification morphisms. To prove the
above, we need to prove that COMPW = (PARC,EXPC,IMPC,BOD,e,s,i,v) is
correct. A given component with wrappers, COMPW, is correct if it satisfies:
1. COMPW is constraints preserving, i.e., for all IMP-algebras I with I |= CI,

we have FUNC(I) |= CE
2. COMPW is strongly persistent with respect to the import constraints CI,

i.e., FREEs is strongly persistent on all IMP-algebras I where I |= CI
3. e : (PAR, CP) → (EXP, CE) and i : (PAR, CP) → (IMP, CI) are consis-

tent.

The first part amounts to proving that for every I |= CI, then (I |= CI) =⇒
(Vf (I) |= CE), where f : EXPC → IMPC. Given our definition of global
consistency, input constraints are translated into output constraints. Thus, the
component is constraint preserving.

For the second part, it is easy to see that COMPW is indeed strongly per-
sistent, i.e., the free construction, starting from an import algebra I |= CI,
protects the algebra. Since we adopt a gray-box approach, we reuse the original
free construction. So, if the original construction was strongly persistent, so is
the construction with constraints.

For the third part, consistency of morphisms e and i means only that the
constraints part of PAR, CP, are reflected in the constraints part of the export
and import interface, CE and CI.
Theorem: If COMPW is correct, then all specification morphisms e, s, i, v
are consistent.

124 Arshad Jhumka, Martin Hiller, and Neeraj Suri

Proof: Consistency of morphisms e, i is proven by part (3) of the conditions
for component correctness.

Consistency of morphism v is proven by part (1) of the correctness condition.
Consistency of morphism s is based upon how induced constraints on the body
part, BOD, of the component are obtained. In fact, given that we allow free
construction, we do not allow any constraints in the BOD part of the component.
However, given that there are constraints imposed on the import and export
interface (CI, and CE), these translate into induced body constraints. Thus,
CB = s′(CI) ∪ v′(CE). This ensures that morphism s is consistent. Note that
s′ = Constraints(s) and v′ = Constraints(v), i.e., the Constraints functor
applied to the morphisms.

It follows that the described approach of transforming a component into a
fault tolerant one satisfies the consistency condition on morphisms.

Theorem: The category of specifications with constraints and consistent speci-
fication morphisms has pushouts.

The proof of the above theorem is direct and can be found in [6], and can be
built in a similar way to that of the specification without constraints.

Thus, a component specification with constraints,
COMPW = (PARC,EXPC,IMPC,BOD,e,s,i,v), consists of three specifications
with constraints, namely PARC, EXPC, and IMPC where PARC = (PAR,CP),
EXPC = (EXP,CE), and IMPC = (IMP,CI), a specification without constraints,
namely BOD, and four specification morphisms. However, given that constraints
are translated along morphisms, there is a set of constraints, CB, induced on
BOD, and is given by CB = s′(CI) ∪ v′(CE). In [12], the induced constraints
are called annotations. Given that we used abstract interpretation for global
consistency verification, that builds an abstract context for each variable and
that each abstract context is derived from constraints imposed on the import
interface (by wrappers), these abstract contexts, denoted as annotations, are the
induced constraints on the BOD part of the specification.

Thus, from the above theorem, the wrappers generated using the heuristic
(that preserves consistency of wrappers) allow for component specification.

5.3 Fault Tolerant System Synthesis
from Fault Tolerant Components

Having discussed the construction of components with wrappers, we now look
at how to construct a system from components with wrappers, i.e., components
with constraints. We will keep the same approach as for the initial case of no
constraints, but we will identify requirements that allow for composition of such
components with wrappers.

Given two components with constraints, COMPWi and COMPWe, and a
a component morphism cm : COMPWi → COMPWe, i.e., a pair cm = (h, hp)
of specification morphisms where hp : (PARi, CPi) → (PARe, CPe) and h :
(IMPi, CIi) → (EXPe, CEe), the composition COMPW3 of COMPWi and

Component-Based Synthesis of Dependable Embedded Software 125

(PAR1,CP1) (EXP1,CE1)

(IMP1,CI1) BOD1

BOD2(IMP2,CI2)

(PAR2,CP2)

(PAR1,CP1)

(EXP2,CE2)

BOD3
b2

b1

id

h

hp

Ce

Ci

e e

ie

se

v e

e i

ii

si

v i

Fig. 4. Module specification from fault tolerant components

COMPWe via cm, written COMPW3 = COMPWi ◦cm COMPCeis given as
in Fig. 4.

The component morphism cm = (h, hp) is called consistent if h and hp are
consistent specification morphisms. If the morphisms h and hp are not consistent,
then correctness and composability is not guaranteed.

Lemma 5: Morphism h is consistent.

Proof: Given that we translate input constraints Wi in an importing component
Ci into output constraints We on an exporting component Ce, then h′(Wi) = We,
which satisfies the condition for consistent morphism.

Lemma 6: Morphism hp is consistent

Proof: Components Ci and Ceto be composed have consistent specification
morphisms. Given that during composition, ee ◦ hp = h ◦ ii, and from lemma 1,
we get that morphism hp is consistent, where ee, ii means the e, i morphism of
the exporting (Ce) and importing (Ci) components respectively.

Claim: The wrappers generated by the heuristic preserve the composation of
the wrapped components.

Proof: The proof follows naturally from the previous two lemmas.

Given that input and output wrappers within a component are consistent (via
consistent specification morphisms) and that the consistency of wrappers are
preserved across different components (via consistent component morphisms),
the set of wrappers in the system is called globally consistent.

6 Related Work

An approach to transform a fault intolerant system into a fault tolerant one
has been presented in [13]. They represented a program as a state machine, and

126 Arshad Jhumka, Martin Hiller, and Neeraj Suri

they proceeded to identify those transitions that may violate a given safety spec-
ification (invariant), according to the level of fault tolerance needed (i.e., fault
masking, fail safe etc). Their work differs from ours in the sense that they assume
white box software. In this paper, we assume gray-box software, i.e., knowledge
of the component implementation is known, but is however non-modifiable. Such
components may be obtained from repositories, which for maintenance reasons,
are not modified.

[15] presents an transformational method for specifying and verifying fault
tolerant, real time programs. The set of transitions possible in a given intoler-
ant program is increased with faulty transitions. The authors used the concept
of refinement for obtaining fault tolerant programs, and they provided differ-
ent refinement conditions for fault tolerance verification. However, the authors
reasoned at a white-box level, as opposed to our gray-box level approach here.

Work in [14] showed that design of detectors (assertion checks) is difficult. We
have shown that detection of globally consistent detectors is NP complete, thus
explaining the observation made. We further provided a heuristic that effectively
tackled the problem of generation of globally consistent wrappers.

[5,19] showed usage of category theory in system specification. Our initial in-
tolerant specification is similar to their approaches. However, work in this paper
differs from theirs in many respect, namely: (i) we showed how wrappers can be
automatically generated, (ii)identified consistency properties of morphisms that
preserve composability.

Formal methods such as Z [20] present analogous approaches of verifying
consistency of assertions, by verifying whether an output assertion is consistent
with an input assertion. In Z, postconditions are always verified against pre-
conditions. Using category theory, we have looked at a calculus of components,
however we believe that a calculus of schemas, as in Z, would retain most of the
properties mentioned here. However, the assertions may not be globally consis-
tent. Invariants are defined, which need to be preserved by operations. However,
their suitability is rarely assessed, giving rise to defensive programming style.
CSP [10] though allows hiding during composition, but is however not suitable
for our purpose here. We referred to Z and CSP here as they are representative
of a class of state-based and event-based formal methods.

Finally, we mention work in [16,8] that advocates the use of wrappers for
adding fault tolerance.

7 Discussion

In this section, we provide a general discussion on the heuristic and consistency
of wrappers generated, and on the applicability of the approach in general.

As mentioned in the introduction, it may be the case that fault intolerant
components are available, which have been formally verified. However, given the
level of dependability required in embedded systems, wrappers are needed to
transform these fault intolerant components into fault tolerant ones. The heuris-
tic eases generation of wrappers that maintains composability of the components.

Component-Based Synthesis of Dependable Embedded Software 127

Thus, generation of such wrappers can be automated, such as with the use of
compilers. Also, given that we reuse the same free construction by not allowing
constraints being imposed on the construction of the export services, verification
need not be performed over again. Given the consistency condition imposed, and
that the component is correct by construction, this implies that the morphisms
are consistent and that the corresponding component with wrappers is correct
by construction.

We also note that the global consistency property of wrappers allow for com-
positional verification, which is useful in software maintenance. Initially, we men-
tioned that to verify such a specification, axioms in one component are translated
into theorems or lemmas along component morphisms in another component.
However, if a component is modified for software maintenance, the whole proof
procedure needs to be re run, to ascertain correctness. This means that one free
construction is chosen over another free construction. However, having consis-
tent wrappers, hence consistent morphisms, any subsequent verification remains
local, i.e., we only need to ensure that the input and output wrappers of that
given component are still consistent, i.e., the change in the component preserves
consistency of the specification morphisms. Given that the module morphisms
are still consistent, we do not have to do a whole proof procedure again for
correctness verification.

Our approach can also be automated, by incorporating the heuristic in a
compiler. After the first pass of performing syntax analysis, the heuristic can
be run as a second pass, whereby wrappers are generated. Also, tools such as
Moka [19] can be enhanced and used to automate the consistency check.

One potential limitation, in addition to having loops, may be that the wrap-
pers generated may be cumbersome. However, we argue that with the level of
dependability and performance needed in safety-critical systems, generation and
use of such wrappers is justified, especially with the fact that their generation
can be automated.

8 Summary and Conclusions

In this paper, we have explained the concept of global consistency of detectors.
We have shown that its detection is intractable, and we have provided a heuristic,
analogous to predicate transformers, that generate globally consistent wrappers
(detectors). We have first specified a fault intolerant system, and explained its
subsequent verification. Then, using our heuristic, we have generated a set of
fault tolerance components, i.e., detector wrappers in the form of assertions, we
have shown how to systematically transform a given fault intolerant specification
into a fault tolerant one. We have also shown that having globally consistent
wrappers do preserve composability of components.

Earlier, we pointed out a limitation of our heuristic, which is that, due to
loop structures within and among components, consistent wrappers may not
be obtained. In such cases, we endeavor to take advantage of the fact that, for
consistency, we require W2 =⇒ m′(W1), and not the stronger W2 = m′(W1)

128 Arshad Jhumka, Martin Hiller, and Neeraj Suri

condition, as in this paper. Thus, as future work, we will look into generating
wrappers that are consistent in the more general case, as mentioned above.

References

1. B. Alpern, F.B. Schneider, “Defining Liveness”, Information Processing Letters,
21(4):181–185, 1985

2. A. Arora, S. Kulkarni, “Detectors and Correctors: A Theory of Fault-Tolerance
Components”, Proc ICDCS, pp 436–443, May 1998.

3. P. Cousot, R. Cousot, “Static Determination of Dynamic Properties of Programs”,
Int. Symposium on Programming, 1976

4. E.W. Dijkstra, “A Discipline of Programming”, Prentice Hall, 1976
5. M. Doche et al, “A Modular Approach to Specify and Test an Electrical Flight

Control System”, 4th Intl. Workshop on Formal Methods for Industrial Critical
Systems, 1999

6. H. Ehrig, B. Mahr, “Fundamentals of Algebraic Specification 2: Modules Specifi-
cations and Constraints”, EATCS Monographs on Theoretical Computer Science,
Vol. 21, Springer Verlag, 1989

7. A. Ermedahl, J. Gustafsson, “Deriving Annotations For Tight Calculation of Ex-
ecution Time”, Proc EuroPar’97, RT System Workshop

8. T. Fraser et al, “Hardening cots software with generic software wrappers”, IEEE
Symposium on Security and Privacy, pp. 2–16, 1999

9. M. Hiller, A. Jhumka, N. Suri, “An Approach for Analysing the Propagation of
Data Errors in Software”, Proc. DSN’01, pp. 161-170, 2001

10. C. A. R. Hoare, “Communicating Sequential Processes”, Prentice Hall, 1985
11. T. Jensen et al, “Verification of Control Flow Based Security Properties”, Proc.

IEEE Symp.on Security and Privacy, pp. 89–103, 1999
12. A. Jhumka, M. Hiller, V. Claesson, N. Suri, “On Systematic Design of Consis-

tent Executable Assertions For Distributed Embedded Software”, to Appear ACM
LCTES/SCOPES, 2002

13. S. Kulkarni, A. Arora, “Automating the Addition of Fault Tolerance”, Proc. Formal
Techniques in Real Time and Fault Tolerant Systems, pp. 82–93, 2000

14. N.G. Leveson et al, “The use of self checks and voting in software error detection:
An empirical study.”, IEEE Trans. on Soft. Eng., 16:432–443, 1990

15. Z. Liu, M. Joseph, “Verification of Fault-Tolerance and Real-Time”, Proc. FTCS
1996, pp220-229.

16. F. Salles et al, “Metakernels and fault containment wrappers”, Proc. FTCS,
pp. 22–29, 1998

17. G. Smith, “The Object-Z Specification Language. Advances in Formal Methods”,
Kluwer Academic Publishers, 2000

18. F. Tip, ”A Survey of Program Slicing Techniques,” Journal Prog. Languages, Vol.3,
No.3, pp.121–189, Sept. 95

19. V. Wiels, “Modularite pour la conception et la validation formelles de systemes”,
PhD thesis, ENSAE - ONERA/CERT/DERI, Oct 97

20. J. Woodcock, J. Davies, “Using Z: Specification, Refinement, and Proof”, Prentice
Hall, 1996

	Introduction and Problem Perspectives
	System & Fault Models
	Modular Specification of Embedded Systems
	Specification of Basic Building Blocks
	Component Specification from Basic Specifications
	System Specification from Components

	Addition of Error Containment Wrappers
	Consistency Property of Assertions
	NP Completeness of Global Consistency Detection
	Heuristic to Generate Globally Consistent Error Containment Wrappers
	Proof of Correctness of the Algorithm

	Specification of Fault Tolerant Embedded Systems
	Addition of Detector Wrappers to Basic Specifications
	Building Fault Tolerant Components from Fault Tolerant Building Blocks
	Fault Tolerant System Synthesisfrom Fault Tolerant Components

	Related Work
	Discussion
	Summary and Conclusions
	References

