
Software Hazard and Safety Analysis

John McDermid

University of York,
Heslington,

York, YO10 5DD
UK

Abstract. Safety is a system property and software, of itself, cannot be
safe or unsafe. However software has a major influence on safety in many
modern systems, e.g. aircraft and engine controls, railway signalling, and
medical equipment.
The paper outlines the principles of system hazard and safety analysis,
and briefly describes work on adapting classical hazard and safety anal-
ysis techniques to apply to software. It then briefly discusses the role of
formal analysis in software hazard and safety assessment, indicating both
the state of practice and the aims of some ongoing research projects.
Note: this paper is provided to support a tutorial on software hazard and
safety analysis, and is not intended to be a definitive treatment of the
issues.

1 Introduction

Safety is concerned with protection of human life, the environment and property.
There is no such thing as absolute safety – all human endeavour has attendant
risks. However we say that a system is safe (enough) if the risk of causing damage
to life, the environment or property is acceptable. Normally we measure risk as
a combination of the probability of damage occurring and the extent of damage,
e.g. the number of lives which are expected to be lost. Acceptability of such
risks is a complex issue; ultimately it is a societal judgement. Discussion of
acceptability of risk is outside the scope of this paper.

Damage, as defined above, can arise in two basic ways – by uncontrolled or
unintended transfer of energy, and through failure to contain harmful materials,
e.g. toxins or radioactive sources (the purist might argue that this too is a failure
of energy containment). Software is not a harmful substance, nor does it have
high energy levels – thus it cannot be safe or unsafe of itself. However it is
used in many systems where it contributes to safety, e.g. through control over
hazardous physical processes [1]. We use the term software hazard and safety
analysis to refer to the process of assessing the contribution of software to safety
in its broader system context.

In essence there are four safety-relevant parts of a system development pro-
cess:

W. Damm and E.-R. Olderog (Eds.): FTRTFT 2002, LNCS 2469, pp. 23–34, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



24 John McDermid

– Identifying hazards and associated safety requirements;
– Designing the system to meet its safety requirements;
– Analysing the system to show that it meets its safety requirements;
– Demonstrating the safety of the system by producing a safety case.

We briefly give an overview of a typical safety process, then consider these
process elements in turn.

2 Safety Processes and Software

Safety processes parallel and complement system development processes, being
concerned with identifying and controlling ways in which systems may behave,
or fail, so as to be unsafe. The processes are normally structured around the
notion of a hazard – a circumstance which can lead to damage, e.g. the loss of
braking on a car is a hazard. The early phases of the safety process are concerned
with identifying hazards, and then determining the associated risk. If the risk is
deemed unacceptable, then remedial design work must be undertaken – to make
the hazard less likely to occur or to mitigate the consequences. The results of
such analysis are often referred to as derived safety requirements, or DSRs.

Once hazard analysis has been undertaken, design and implementation can
continue, with the aim of producing a system which meets all its requirements,
including the DSRs. Whilst the above implies that there is a clean break between
requirements and design, in practice there is a progressive shift in focus and often
significant design iteration. Also there will inevitably be the need for trade-offs
between different requirements, including DSRs, to meet overall project goals.

Once the design and implementation is complete, and as it is being inte-
grated, analysis and testing is undertaken to show that the system meets its
requirements, including DSRs. The analysis and test results provide evidence
that the system is safe. However it is becoming increasingly common to provide
a safety case, not just analysis results, for inspection by a third party, e.g. a
certification agency. The safety case complements the evidence by providing the
arguments which show why the evidence is (deemed) sufficient to demonstrate
safety of the system.

In practice, processes are much more complex than implied above, but the
essence of the activities is as described. Also, most real-world projects are gov-
erned by standards – of which there are many. References 2 to 6 are some of the
more widely used standards in the defence and aerospace sector. Hermann [7]
gives an overview of these, and many other, standards.

Most safety standards are concerned with how engineered systems can fail
and can give rise to hazards. Software can only “fail” due to systematic causes,
e.g. requirements or design errors, and the usual analysis processes do not apply.
Instead, the community have taken the view that the best way to approach the
issue is to have design processes which reduce the likelihood of introducing such
flaws into software. Consequently many standards for the development of safety
critical software have been written. References 8 to 10 are some of the better
known standards in this area. However some standards cover both system and



Software Hazard and Safety Analysis 25

software issues: IEC 61508 [10] deals with system issues and the Australian Stan-
dard Def(Aust) 5679 [4] also addresses software issues. Generally these standards
try to control software-related risk through the notion of safety integrity levels,
or SILs.

Superficially these standards are very different but, on closer inspection, there
are many areas of commonality, e.g. the concept of hazard, the intent to reduce
risk, and so on. An attempt has been made to rationalise these different pro-
cesses [11] and to show that there is significant commonality in these standards.
However there is divergence in how they treat systematic issues, and this has
led to a number of authors questioning the notion of SILs and the soundness of
the guidance in the standards [12, 13]. We defer any further discussion of SILs
to our treatment of safety cases.

3 Software Hazard Analysis and Derived Requirements

In considering software it is reasonable to assume that the early stages of the
system safety process have identified hazards, and have determined those hazards
to which software can contribute. We thus assume that the system safety process
has identified hazardous failure conditions (HFCs) for the software which are
conditions which are either sufficient in themselves, or sufficient in conjunction
with other credible conditions, to give rise to a (system level) hazard.

Assuming also that there is a specification for the software in a system, we
have two questions to answer:

– If the software functions as specified, does this give rise to any HFCs?
– Are there plausible failure modes of the software, or of the underlying com-

puting hardware which are not contained by the software, which can give
rise to HFCs?

Software hazard analysis amounts to answering these questions and deter-
mining consequential actions.

If specifications are informal then these questions can only be addressed
through the use of human skill and judgement. The majority of techniques used
at this stage of the process are informal, based on functional models of the system
– the method perhaps most widely used in the aerospace sector is functional
failure analysis (FFA) (see [6]). FFA uses three “guidewords” to prompt analysis:

– Function provided when not intended (commission);
– Function not provided when required (omission)
– Function provided incorrectly.

The analysis considers each function in turn and decides whether or not these
hypothetical failure modes are credible and, if they are, what the consequences
might be. For failure modes which are deemed credible, and where the conse-
quences are severe, some remedial action will be identified. The remedial action
may be for a specification change if the problem is “deep seated”, or to produce



26 John McDermid

DSRs for system components, e.g. to detect and mitigate failures, perhaps by
using alternative sensors or control algorithms.

This type of analysis is judgemental and error prone. Indeed it has been
estimated that typical analyses only identify 80% of hazards (or high level causes
of hazards). It is thus tempting to consider the use of formal methods so that
the analysis can be made more certain.

If the specifications are in the form of state machines, and the HFCs can be
formalised, then the first question above amounts to model checking. This is not
the place for a survey of model-checking techniques, but references 14–16 give
an idea of the state of the art in this area. Where specifications are not in the
form of state machines it is less clear cut how to address the first question, see
the discussion of research issues below.

Considering the second question amounts to applying the FFA guidewords, or
a more precise interpretation thereof, to the specification to produce a “mutated”
specification incorporating possible failure scenarios. Next we need to determine
whether or not any HFCs can arise from the “mutated” specification. Typically
we have transitions annotated with labels of the form:

e[c]/a

to be read “when event e occurs and condition c holds then (take the transition
and) perform action a”. Omission can be characterised as “a does not happen
when event e occurs and condition c holds”, and so on. The third guideword
needs the most interpretation, as the notion of erroneous can be taken to mean
inappropriate transitions taken, inappropriate actions, and so on. This gives rise
to problems of combinatorial explosion, see the research issues below.

Analysis of the “transition mutations” shows that they reduce to a relatively
small number of regular forms, all of which can be represented as additional
transitions in the state machine (inevitably introducing non-determinism). Once
more model checking can be used to see if HFCs can arise – although the compu-
tational cost is much higher. In fact it is possible to automate the generation of
the mutated state machines, and then to determine which mutants, if any, give
rise to the HFCs (Reference 17 describes the overall approach in the context of
UML, although not the details of the automation.)

The results of this “hazard analysis” need some interpretation. First, some
situations which are formally possible may be physically impossible, and must
be discounted. Second, some may show deep flaws in the system concept, and
thus must give rise to a change in the system specification. Third, the analy-
sis may identify DSRs on parts of the design which are critical to avoiding the
HFCs. Generally these will be simpler than full functional correctness, e.g. cor-
rect operation of an interlock, and will be the focus of more detailed design and
analysis. These DSRs must be represented in a means which is compatible with
the specification approach used; in our case we have chosen to use a form of
rely-guarantee conditions [17].

The approach outlined above is intended to be generic, although we have
appealed to work in York for more concrete illustrations of the ideas. Similar
ideas can be found elsewhere, e.g. in Leveson’s SpecTRM method [18].



Software Hazard and Safety Analysis 27

4 Software Design and Implementation

There are two important aspects to software design and implementation – the
software engineering process and the (software) safety process. Many academics
advocate the use of refinement from (formal) specifications, and it might be
thought that safety is an area where such processes ought to be used (indeed
this is one of the requirements of DS 00-55). However using refinement is not so
straightforward, as we now endeavour to explain.

The idea of program refinement [19] goes back over 30 years, and the idea has
been extended into a formal framework, e.g. the seminal work of Carroll Morgan
[20]. However it has become acknowledged that refinement has its difficulties
and, for example, non-functional properties such as safety and security are not
necessarily preserved through refinement, e.g. weakening a pre-condition may ad-
mit an unsafe behaviour which is not present in the more abstract specification.
Problems with refinement have been known for some time [21]. More recently,
acknowledgement of these problems has led to the introduction of the notion
of retrenchment [22] which tries to find formally defensible ways of developing
programs whilst breaking the standard rules of formal refinement. However we
do not view retrenchment, in its current state, as being mature enough to ap-
ply to real systems. Instead we assume a more informal approach to developing
programs has to be adopted, and thus turn our attention to the safety process.

The safety process has two main concerns:

– Flowing down DSRs to low level components;
– Assessing the design for additional potential contributions to HFCs, and

hence deriving further DSRs.

The first of these is part of the normal “requirements flow down” in system
development, except that our concern is only with DSRs. In system safety a
more systematic approach is used. This is based on fault trees, and known as
preliminary system safety assessment (PSSA) [6]. In the software case, the fault
tree would be built from an HFC down to the level of failure modes of soft-
ware components. The component level DSRs are (safety) properties which the
component must guarantee for the system to behave safely. Unfortunately, the
guidance in the system safety standards is inadequate for dealing with software
based systems [23], and considerable judgement is needed for this part of the
process. Perhaps the best description of the approach is in Leveson’s SpecTRM
[18].

The second safety concern requires us to consider ways in which any “extra”
functionality introduced in producing the design may contribute to HFCs. In a
way the problem is like that of hazard analysis except that, at this stage, it is
possible to say much more about which types of failure mode are credible as
much more is known about the design and implementation, e.g. the mapping
of software to the computing hardware. Approaches like FFA are sometimes
employed, but it is more common to use adaptations of HAZOP as this considers
both causes and consequences of deviations from intended behaviour (Leveson
uses the term “deviation analysis”).



28 John McDermid

HAZOP is similar to FFA, in that it hypothesises failure modes, but the range
of guidewords is much greater, including: early, late, too much, too little, etc.
Adaptations of HAZOP to computer systems have sometimes simply accepted
the normal HAZOP guidewords [24] (originally developed for the chemical indus-
try) or sought to adapt them to computer systems and software [25]. In principle
model checking could be applied in the same way as described at specification
level – but too our knowledge this work has only ever been done manually, due
to the complexity of the designs which need to be analysed.

In theory, new hazardous behaviours can be introduced at each level in the
design decomposition, thus design analysis needs to be repeated at each level.
Such analysis could be done, but it would be very onerous. Our experience is
that the analysis tends to be done once at a level quite close to the code –
where there is a simple refinement to the implementation. In other words, it is
carried out a level where no more new potentially hazardous behaviours will be
introduced in the development process.

Ultimately software has to be realised by implementation in a programming
language, and the DSRs “flowed down” to the program – in the form of pre- and
post-conditions. There is really only one commercial tool which supports such a
use of formal annotations and formal analysis – the SPARK Examiner [26]. We
discuss program level issues in more detail in the next section, but first consider
some trends in software development which have an impact on the way software
is developed and analysed.

The discussion above implicitly assumes that al programs are produced man-
ually from a specification or, more likely, at the “bottom” of a hierarchy of
specifications. This is probably true of the majority of current safety critical
applications, but there are trends to the use of greater automation.

Current projects are considering, or using, design notations such as Matlab/
Simulink [27] and employing such tools to generate code from the designs. This
is somewhat in conflict with the use of classical formal verification approaches,
as these tools do not usually include pre- and post-conditions in the code. In
theory, if the code generators were trustworthy, this would not be an issue.
However, these tools are continually evolving so it is difficult to be confident in
their output – without further checks. This is perhaps mainly a research issue at
present, but it will become more of an issue as code generation is more routinely
used for generating critical code. This suggests the need for analysis techniques
which are independent of the way in which the code is produced, and which do
not require insertion of pre- and post-conditions in the code.

5 Software Safety Analysis

The aim of software safety analysis is to show that the software meets the DSRs,
locally, and overall does not contribute (in unacceptable ways) to the HFCs.
In principle this can be done using safety analysis techniques or using software
engineering techniques. We believe that it is most appropriate to employ software
engineering methods, but we start by considering safety analysis techniques as
this gives a basis for explaining this point of view.



Software Hazard and Safety Analysis 29

Researchers in software safety have adapted standard system safety tech-
niques, e.g. fault trees and failure modes and effects analyses to software, but
with mixed success. Perhaps the most fully developed approach is due to Leve-
son [28, 29] who pioneered the application of fault trees to software. In essence
software fault-tree analysis is a modified form of wp-calculus, but focusing on
causes of HFCs or violations of DSRs, not establishing partial correctness. Our
experience, and that of others, is that software fault trees work well in particular
circumstances, but are difficult to apply to large programs, without mechanical
support for expression evaluation, etc. There is a growing view that the use of
static code analysis and proof techniques is much more cost-effective, especially
when tool supported. (we consider testing below.)

In the UK, Defence Standard 00-55 [9] requires the application of static code
analysis to safety-critical software. The standard has probably not been applied
in its entirety, but elements of it have been used on a number of projects. For
example, static code analysis techniques have been applied retrospectively to the
software on the C130J aircraft. All the code was developed to the requirements
of DO178B. Some of the code was written in SPARK Ada [26], and hence used
the SPARK tools. Other code in C, full Ada, etc. was analysed using Malpas
[30]. The approach was initially to apply static analysis in a blanket way, but
later this was refined to use a hazard directed approach, i.e. focusing on DSRs
and HFCs.

There are limited publications on the work but there are some “snapshots” of
the project, e.g. reference 31. To the author’s knowledge about 550 kLoC of code
has been analysed. Initially around 50 potentially safety critical code anomalies
were found, but these were removed in later builds of the software (and the
error correction suitably verified). Interestingly, the project found that informal
familiarisation with code was by far the most effective and cost-effective way of
finding faults – followed by full semantic analysis (i.e. proof). Simpler and cheap
static analysis, e.g. information and data flow, found relatively few problems.
This shows the capability of the technology, applied to software developed in
conventional ways.

More recently, QinetiQ have been applying a rather different approach to
software which has been derived from control law definitions, including Mat-
lab models. The approach has been to use an intermediate language (Z) and to
translate the specifications and code into a common form, and to verify equiva-
lence. As the structure of the conjectures produced is very regular it is possible
to use tactics to automate the analysis. The principles are discussed in reference
32, although this does not discuss practical applications in detail. At the time
of writing, about 80% of a build of the EuroFighter flying control software had
been analysed in this way, and QinetiQ aim to verify 100% of the next build –
fully automatically. (Note: this provides much of the capability we identified at
the end of section 4.) Interestingly, relatively few anomalies have been found,
and there are questions about the cost-effectiveness of the approach, especially
as the specifications being used as the basis for verification are very low level.



30 John McDermid

Note that this is concerned more with program-specification conformance than
verification that the programs do not violate DSRs.

Other researchers have used model checking on specifications, to show that
the software as specified (at a detailed level) does not contradict DSRs. This con-
trasts with the QinetiQ approach as it is abstracting from low-level specifications
to system-level properties, not addressing specification-code correspondence. An
example of the use of this approach on a model of an aircraft system is given
in reference 33. Arguably this approach is more compelling than that used by
QinetiQ as it is more naturally hazard directed. A potential limitation of this
approach is that it does not address errors that might be introduced at program
level. However, such issues are addressed by conventional verification activities
– and the capacity to introduce new safety problems is very limited if there is a
true refinement between the low level specification and the program.

As indicated above, although there needs to be a focus on safety, there is also a
need to show that programs function as intended. There is no value in replicating
such work in assessing safety. Thus we take it as read that testing is undertaken,
both to show that the software behaves as expected on real hardware, and as
part of the overall validation process. It is worth observing that many safety
problems relate to requirements errors, not mistakes in coding. Thus testing
has an important role in validating safety requirements. Indeed, it is common
to do “fault injection testing” as may be difficult to validate fault detection
and recovery specifications (including DSRs) any other way. There are other
interesting testing issues but, given the remit of the tutorial, we have focused on
the application of formal techniques to safety properties, and will not consider
testing further.

So far we have focused on functional properties of programs, but we also need
to consider non-functional issues, e.g. timing. With some classes of processor,
timing properties are amenable to automated (formal) analysis [34]. However
modern processors pose significant challenges for static timing analysis [35], and a
combination of static analysis and testing must be used. Space precludes further
discussion of non-functional properties of programs.

In general, the choice of suitable combinations of analysis techniques is a
complex issue. Many of the software safety standards identify suitable (recom-
mended) sets of techniques for developing and assessing software, although there
is surprising divergence between the recommendations of different standards [11].
We briefly return to this point when discussing the software safety case.

6 Software Safety Cases

The notion of a safety case was introduced by Lord Cullen following the Piper
Alpha disaster [36]. In essence a safety case consists of arguments why a system
is believed to be safe enough to be operated. This argument is backed up by
supporting evidence, e.g. test and other analysis results. In many situations a
safety case report will be produced which contains the primary arguments, with
the supporting evidence relegated to other documents or electronic media, due
to their bulk.



Software Hazard and Safety Analysis 31

In current industrial practice software safety is usually argued by appeal to
a process, i.e. safety is asserted to arise from use of a process appropriate for a
given SIL. For example, in DO178B, an accomplishment summary is produced
that shows that key parts of the process have been followed; the requirements,
e.g. for independent checks on activities, grow more stringent with the severity
of the HFCs. There are growing doubts about the validity of the approach, for
example the C130J analysis showed no noticeable correlation between SIL (DAL
in DO178B terminology) and fault density. Some other concerns about use of
SILs are set out in reference 13. One of the key concerns is that DO178B and
other standards seem more to be governing quality, than safety, in that there is
little focus on HFCs.

An alternative form of safety case would provide evidence that the software
meets relevant DSRs and makes only acceptable contributions to HFCs. It is
intended that the adaptation of classical safety analysis techniques to software,
and the use of formal analysis on specifications/programs, can facilitate the pro-
duction of such a safety case. However this is far from current practice. Further,
although there is some informal acceptance of this approach to software safety
cases the community is not in agreement as to what constitutes adequate soft-
ware safety evidence. For example, how, if at all, should the software safety
evidence vary with the criticality of the hazard? Some attempt is being made
to develop a systematic approach to software safety arguments and evidence,
see for example [36], but much remains to be done. This leads naturally to the
identification of some research issues – to which we now turn.

7 Research Issues

There are research issues to be addressed at all stages in the safety process, not
just for safety cases. Some of the more important issues are:

– How can formal approaches be used to explore the potentially hazardous fail-
ure behaviour of systems specified using techniques other than state charts?
What are suitable requirements representations, and how can the hypotheti-
cal failure modes (omission, commission, etc.) be formalised and the analysis
automated?

– What are appropriate HAZOP/FFA guidewords to apply to software de-
signs? The work in reference 25 suggests one approach, but there are other
possibilities and, by its very nature, a set of failure guidewords is hard to
validate.

– How should non-functional properties of specifications be analysed – at all
levels in the design process? Can formal analysis be extended to address
application domain properties such as stability of control systems [38]?

– How can changes in designs and specifications be assessed efficiently?
– How can model-checking and other techniques be enhanced to deal with the

challenges of “combinatorial explosion” that arise when considering failure
behaviours as well as “intended” behaviour?



32 John McDermid

– What constitutes “sufficient” software safety evidence, and how should this
vary with severity of hazard, acceptable probability of occurrence of the
HFC, and so on?

– How can hazard and safety analysis techniques be applied to modern software
engineering approaches such as object-oriented design? How can domain-
specific tools such as Matlab be employed most effectively in a system safety
process?

– What is an appropriate balance between automation and human involvement
in the safety process [39]? Automation is essential to deal with problems of
scale – but it is necessarily based on models, not reality. Humans are good
at extrapolating beyond models; automata are not. How do we get the best
of human and machine capabilities?

Addressing these research issues requires a combination of skills in software
engineering, safety engineering, theory of computer science (especially in the area
of optimising model checking, without making it unsound), tool development,
and perhaps in certain application domains. Many of the challenges are also
long-term, as the scale and complexity of systems and software being developed
are growing faster than our ability to analyse them. This is an area where co-
operation between diverse research groups is needed to make significant progress.

8 Conclusions

Software safety is an immature discipline – yet it is an important one due to the
ever-growing reliance of modern, complex, systems on computers and software to
function safely. For many years, hazard and safety analysis have been carried out
informally and, despite the strictures of standards such as 00-55 in the UK, most
practical software safety assessment has relied on testing and review. However
things are now changing.

The capability of formal techniques, and the capacity of modern computers,
means that it is becoming increasingly practical to apply automated analyses to
realistic systems, as the C130J and EuroFighter examples show. However there
remain many research challenges and it is clear that automation is not a panacea.
One of the biggest issues that needs to be addressed is how to use automation
to deal with problems of scale, whilst enabling human judgement to be applied
at critical points in the process.

Acknowledgements

This work is funded in part by the Engineering and Physical Science Research
Council (EPSRC) under grant GR/R70590/01.



Software Hazard and Safety Analysis 33

References

1. Leveson, N.G., Safeware: System Safety and Computers, Addison Wesley, 1995.
2. US Department of Defense, Military Standard 882C (Change Notice 1): System

Safety Program Requirements, 1996.
3. UK Ministry of Defence, Defence Standard 00-56 Issue 2: Safety Management

Requirements for Defence Systems, 1996.
4. Australian Department of Defence, Australian Defence Standard Def(Aust) 5679:

Procurement of Computer-based Safety Critical Systems, 1998.
5. Society of Automotive Engineers Inc, Aerospace Recommended Practice (ARP)

4754: Certification Considerations for Highly-Integrated or Complex Aircraft Sys-
tems, 1996.

6. Society of Automotive Engineers Inc, Aerospace Recommended Practice (ARP)
4761: Guidelines and methods for conducting the safety assessment process on civil
airborne systems and equipment, 1996.

7. Hermann, D., Software Safety and Reliability, IEEE Computer Society Press, 1999.
8. RTCA and EUROCAE. Software Considerations in Airborne Systems and Equip-

ment Certification, Radio Technical Commission for Aeronautics RTCA DO-
17B/EUROCAE ED-12B, 1993

9. UK Ministry of Defence, Defence Standard 00-55 Requirements of Safety Related
Software in Defence Equipment, 1997

10. IEC (International Electrotechnical Commission). IEC-61508: Functional safety of
electrical/electronic/ programmable electronic safety-related systems, 1997.

11. Y Papadopoulos, Y., McDermid, J. A., The Potential for a Generic Approach to
the Certification of Safety-Critical Systems in the Transportation Sector, Reliability
Engineering and System Safety, Vol. 63, Issue 1, 1999.

12. Redmill, F. Safety Integrity Levels – Theory and Problems, in Lessons in System
Safety, Proceedings of the Eighth Safety-Critical Systems Symposium, Springer
Verlag, 2000.

13. McDermid, J. A., Software Safety: Where’s the Evidence?, in Proc. 6th Australian
Workshop on Industrial Experience with Safety systems and Software, Australian
Computer Society, 2001.

14. Clarke, E.M., Grumberg, O., Peled, D.A., Model Checking, The MIT Press, 1999
15. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J., Symbolic Model

Checking: 1020 States and Beyond, Information and Computation, Volume 98,
Number 2, 1992.

16. Clarke, E., Grumberg, O., Somesh, J., Lu, Y., Veith, H., Progress on the State
Explosion Problem in Model Checking, in Informatics: 10 years Back. 10 Years
Ahead, Wilhelm, R. (Ed.), LNCS 2000, Springer Verlag, 2001.

17. Hawkins R. D., McDermid, J. A., Performing Hazard and Safety Analysis of Object
Oriented Systems, in Proceedngs of ISSC, Denver, August 2002.

18. Leveson, N. G., Safeware Engineering Corporation – SpecTRM,
http://www.safeware-eng.com/.

19. Wirth, N., Program Development by Stepwise Refinement, Communications of the
ACM, Volume 14, Number 4, 1971.

20. Morgan, C. C., Programming from Specifications, Prentice Hall, 1994.
21. Neilsen, D. S., From Z to C: Illustration of a Rigorous Proof Method, DPhil Thesis,

Oxford 1989.
22. Banach, R., Poppleton, M., Sharp Retrenchment, Modulated Refinement, and Sim-

ulation, Formal Aspects of Computing, 11, 498–540, 1999



34 John McDermid

23. S K Dawkins, S. K., Kelly, T. P., McDermid, J. A., Murdoch, J., Pumfrey, D. J.,
Issues in the Conduct of PSSA, In Proceedings of ISSC, Orlando, 1999

24. UK Ministry of Defence, Defence Standard 00-58: HAZOP Studies on Systems
Containing Programmable Electronics, 1996.

25. McDermid, J. A., Pumfrey, D. J., A Development of Hazard Analysis to aid Soft-
ware Design, in Proceedings of COMPASS’94, Gaithersburg, 1994.

26. Barnes, J. G., High Integrity Ada: The SPARK Approach, Addison Wesley, 1997.
27. http://www.mathworks.com/
28. Leveson, N. G., Harvey, P. R., Software Fault Tree Analysis, Journal of Systems

and Software, 1983.
29. Leveson, N. G., Shimeall, T. J., Safety Verification of Ada Programs using Software

Fault Trees, IEEE Software, 1991.
30. http://www.tagroup.co.uk/malpas.htm
31. Harrison, K. J., Static Code Analysis on the C-130J Hercules Safety Critical Soft-

ware, Aerosystems International, 1999
32. O’Halloran, C., Smith, A., Verification of Picture-Generated Code, in Proceedings

of the 14th IEEE Conference on Automated Software Engineering, 1999
33. Damm W., et al, Formal Verification of an Avionics Application using Abstraction

and Model Checking, in Towards System Safety, F Redmill, F., Anderson, T. (Eds),
Springer Verlag, 1999

34. Eccles, M. A., STAMP Tool Assessment, BAe-WSC-RP-R&D-0031, BAe Warton,
1995.

35. Bate, I. J., Conmy, P. M., McDermid, J. A., Generating Evidence for Certification
of Modern Processors for use in Safety-Critical Systems, in Proceedings of the
5th International High Assurance Systems Engineering Symposium, Albuquerque,
2000.

36. Cullen, the Hon. Lord, The Public Enquiry into the Piper Alpha Disaster, HMSO,
ISBN 0-10-113102, 1990.

37. Weaver, R. A., McDermid, J. A., Kelly, T. P., Software Safety Arguments: Towards
a Systematic Categorisation of Evidence, in Proceedings of ISSC, Denver, August
2002.

38. Blow, J., Buttle, D., Galloway, A. J., Differential Proof Contexts in SPARK, sub-
mitted for publication, 2002.

39. Galloway, A. J., McDermid, J. A., Murdoch, J. M., Pumfrey D. J ., Automation of
System Safety Analysis: Possibilities and Pitfalls, in Proceedings of ISSC, Denver,
August 2002.


	Introduction
	Safety Processes and Software
	Software Hazard Analysis and Derived Requirements
	Software Design and Implementation
	Software Safety Analysis
	Software Safety Cases
	Research Issues
	Conclusions
	References

