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Abstract. The parallel fuzzy c-means (PFCM) algorithm for cluster-
ing large data sets is proposed in this paper. The proposed algorithm is
designed to run on parallel computers of the Single Program Multiple
Data (SPMD) model type with the Message Passing Interface (MPI).
A comparison is made between PFCM and an existing parallel k-means
(PKM) algorithm in terms of their parallelisation capability and scala-
bility. In an implementation of PFCM to cluster a large data set from
an insurance company, the proposed algorithm is demonstrated to have
almost ideal speedups as well as an excellent scaleup with respect to the
size of the data sets.

1 Introduction

Clustering is the process of grouping a data set in such a way that the simi-
larity between data within a cluster is maximised while the similarity between
data of different clusters is minimised. It offers unsupervised classification of
data in many data mining applications. A number of clustering techniques have
been developed, and these can be broadly classified as hierarchical or parti-
tional [I]. Hierarchical methods produce a nested series of partitions of the data,
while partitional methods only produce one partitioning of the data. Examples
of hierarchical clustering algorithms include the single-link, complete-link, and
minimum variance algorithms [I]. Examples of partitional methods include the
k-means algorithm [2], fuzzy c-means [3/4], and graph theoretical methods [5].
For increasingly large data sets in today’s data mining applications, scala-
bility of the clustering algorithm is becoming an important issue [6]. It is often
impossible for a single processor computer to store the whole data set in the
main memory for processing, and extensive disk access amounts to a bottle-
neck in efficiency. With the recent development of affordable parallel computing
platforms, scalable and high performance solutions can be readily achieved by
the implementation of parallel clustering algorithms. In particular, a computing
cluster in the context of networked workstations is becoming a low cost alter-
native in high performance computing. Recent research in parallel clustering
algorithms has demonstrated their implementations on these machines can yield
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large benefits [7]. A parallel k-means clustering algorithm has been proposed by
Dhillon and Modha [§], which was then implemented on an IBM POWERpar-
allel SP2 with a maximum of 16 nodes. Their investigation with test data sets
has achieved linear relative speedups and linear scaleup with respect of the size
of data sets and the desired number of clusters. Stoffel and Belkoniene [9] have
implemented another parallel version of the k-means algorithm over 32 PC’s on
an Ethernet and shown a near linear speedup for large data sets. Scalability of
the parallel k-means algorithm has also been demonstrated by others [10/11].

For clustering techniques generating crisp partitions, each data point belongs
to exactly one cluster. However, it is often useful for each data point to admit
multiple and non-dichotomous cluster memberships. This requirement has led
to the development of fuzzy clustering methods. One of the widely used fuzzy
clustering methods is the fuzzy c-means (FCM) algorithm [B/4]. FCM is a fuzzy
partitional clustering approach, and can be seen as an improvement and a gener-
alisation of k-means. Because of FCM’s high computational load and similarity
to k-means, it is anticipated that a parallel implementation of the FCM algo-
rithm would greatly improve its performance. To the best of our knowledge, such
a parallel implementation of the FCM algorithm has not yet been developed.

It is the aim of this paper to propose a parallel version of the FCM clustering
algorithm, and to measure its speedup and scaleup capabilities. The algorithm
is implemented to cluster a large data set provided by an Australian insurance
company, and its performance is compared to a parallel implementation of the
k-means algorithm using the same data set. In Sect.[2, a brief outline of the FCM
algorithm is presented. We propose the parallel fuzzy c-means (PFCM) clustering
algorithm in Sect.[3. A brief description of an existing parallel k-means (PKM)
algorithm [8] is given in Sect. [4 for comparison. In Sect. [, we describe how
the PFCM is implemented to cluster an insurance data set, with experimental
results comparing the performance of PFCM and PKM. Conclusions are drawn
in Sect.

2 The Fuzzy c-Means Algorithm

Suppose that there are n data points =1, xa, . . ., ¥, with each data point z; in IR%,
the task of traditional crisp clustering approaches is to assign each data point to
exactly one cluster. Assuming that c clusters are to be generated, then ¢ centroids
{vi,va,..., 0. v, € R are calculated, with each v; as a prototype point for
each cluster. For fuzzy clustering, ¢ membership values are calculated for each
data point x;, which are denoted by w;; € [0,1],j =1,...,¢;4=1,...,n. This
concept of membership values can also be applied to crisp clustering approaches,
for which uj; € {0,1} and 37, uj; =1 Vi.

The FCM clustering algorithm was proposed by Dunn [3] and generalised by
Bezdek [4]. In this method, the clustering is achieved by an iterative optimisation
process that minimises the objective function:

J=30 > (wi)™ llzs — vl (1)

i=1 j=1
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subject to
c
j=1
In (D), || - || denotes any inner product norm metric. FCM achieves the optimisa-

tion of J by the iterative calculations of v; and u;; using the following equations:

Do (ugi) ™
D iy (i)™

’Uj:

3)

and

2 -1
¢ di;\ ™
uji = (Z <d;) > where dji = ||5131 — ’UjH . (4)

k=1

The iteration is halted when the condition Max {||u§§+1) - ug? I} < €Vj,iis met

for successive iterations t and 41, where € is a small number. The parameter m €
[1,00) is the weighting exponent. As m — 1, the partitions become increasingly
crisp; and as m increases, the memberships become more fuzzy. The value of
m = 2 is often chosen for computational convenience.

From (@) and (@), it can be seen that the iteration process carries a heavy
computational load, especially when both n and c are large. This prompts the
development of our proposed PFCM for parallel computers, which is presented
in the next section.

3 The Parallel Fuzzy c-Means Algorithm

The proposed PFCM algorithm is designed to run on parallel computers belong-
ing to the Single Program Multiple Data (SPMD) model incorporating message-
passing. An example would be a cluster of networked workstations with the
Message Passing Interface (MPI) software installed. MPI is a widely accepted
system that is both portable and easy-to-use [12]. A typical parallel program can
be written in C (or C++ or FORTRAN 77), which is then compiled and linked
with the MPI library. The resulted object code is distributed to each processor
for parallel execution.

In order to illustrate PFCM in the context of the SPMD model with message-
passing, the proposed algorithm is presented as follows in a pseudo-code style
with calls to MPI routines:
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Algorithm 1: Parallel Fuzzy c-Means (PFCM)

1: P = MPI_Comm_size();
2: myid = MPI_Comm_rank();
3: randomise my_u0ld[j][i] for each x[i] in fuzzy cluster j;
4: do {
5: myLargestErr = 0;
6: for j =1 toc
7: myUsum[j] = O;
8: reset vectors my_v[j] to O;
9: reset my_ul[jl[i] to O;
10: endfor;
11: for i = myid * (n / P) + 1 to (myid + 1) * (n / P)
12: for j=1toc
13: update myUsum[j];
14: update vectors my_v[j];
15: endfor;
16: endfor;
17: for j=1toc
18: MPI_Allreduce(myUsum[j], Usum[j]l, MPI_SUM);
19: MPI_Allreduce(my_v[jl, v[j1, MPI_SUM);
20: update centroid vectors:
v[jl = v[j] / Usum[j];
21: endfor;
22: for i = myid * (n / P) + 1 to (myid + 1) * (n / P)
23: for j=1toc
24 : update my_ulj][i];
25: myLargestErr = max{|my_ulj][i] - my_u01ld[j][i]|};
26: my_u01d[j][i] = my_u[j][i];
27: endfor;
28: endfor;
29: MPI_Allreduce(myLargestErr, Err, MPI_MAX);

30: } while (Err >= epsilon)

In Algorithm 1, subroutine calls with the MPI prefix are calls to the MPT li-
brary [12]. These calls are made whenever messages are passed between the
processes, meaning that a transfer of data or a computation requires more than
one processes. Line 1 means that P processors are allocated to the parallel pro-
cessing jobs (or processes). Each process is assigned an identity number of myid
=0,...,P—1 (line 2). Following the indexing notation in Sect. [ each data
point is represented by the vector variable x[i] where ¢ = 1,...,n, and each
cluster is indentified by the index j where j = 1,...,c. The algorithm requires
that the data set be evenly divided into equal number of data points, so that each
process computes with its n/P data points loaded into its own local memory.
If a computation requires data points stored in other processes, an MPI call is
required. Likewise, the fuzzy membership function u;; is divided up among the
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processes, with the local representation my_u[j] [1] storing the membership of
the local data only. This divide-and-conquer strategy in parallelising the storage
of data and variables allows the heavy computations to be carried out solely in
the main memory without the need to access the secondary storage such as the
disk. This turns out to enhance performance greatly, when compared to serial
algorithms where the data set is often too large to reside solely in the main
memory. In line 3, my_u01d[j] [i] represents the old value of my_u[j] [i], and
its values are initialised with random numbers in [0, 1] such that (@) is satisfied.

Lines 4-30 of Algorithm 1 are the parallelisations of the iterative computation
of (3) and (). Lines 5-10 reset several quantities to 0: the variable myUsum[j]
stores the local summation of (my_u01d[j][i])™ , which corresponds to the
denominator of (B); my_v[j] stores the vectorial value of cluster centroid j; and
also my_u[j] [i], the membership function for the next iteration.

Lines 11-21 compute the cluster centroids v;. The first half of the compu-
tation (lines 11-16) deals with the intermediate calculations carried out within
each process, using only the data points local to the process. These calcula-
tions are the local summation versions of (B)). Since the evaluation of v; requires
putting together all the intermediate results stored locally in each process, two
MPT calls are requested (lines 18, 19) for the second half of the computation.
The MPI_Allreduce() subroutine performs a parallel computation over P pro-
cesses using the first argument as its input variable, and the output is stored in
its second argument. Here a summation is carried out by using MPI_SUM to yield
an output. For example, in line 18 each process would have a different value of
myUsum[1] after the calculations in lines 11-16 using local data points; but only
one value of Usum[1] would be generated after the summation, which is then
stored in the Usum[1] variable in every process.

Lines 22-28 are used to compute the fuzzy membership function my_u[j] [1].
Equation () is employed for the calculation in line 24, using the most updated
values of v[j]. In order to terminate the algorithm upon convergence of the
system, we calculate the largest difference between u;;’s of successive iterations
(line 25, 29). In line 25, this value is temporarily obtained within each pro-
cess; then a subsequent value Err covering all processes is obtained by calling
MPI_Allreduce() with MPI_MAX (line 29). The algorithm comes to a halt when
Err is smaller than the tolerance epsilon ().

In the next section, an existing parallel k-means (PKM) algorithm is outlined
for comparison. The focus is on the similarities and differences between the
PFCM and PKM algorithms, which accounts for the respective performances to
be presented in Sect.

4 The Parallel k-Means Algorithm

The PKM algorithm described here was proposed by Dhillon and Modha [8]
in 1999. It is suitable for parallel computers fitting the SPMD model and with
MPT installed. Algorithm 2 below is transcribed from [§] with slightly modified
notations for consistency with Algorithm 1 in the last section.
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Algorithm 2: Parallel k-Means (PKM)

1: P = MPI_Comm_size();
2: myid = MPI_Comm_rank();
3: MSE = LargeNumber;
4: if (myid = 0)
5: Select k initial cluster centroids m[jl, j = 1...k;
6: endif;
7:  MPI_Bcast(m[jl, 0), j = 1...k;
8: do {
9: 01dMSE = MSE;
10: my_MSE = 0;
11: for j =1tok
12: my_m[j] = 0; my_n[j]l = O;
13: endfor;
14: for i = myid * (n / P) + 1 to (myid + 1) * (n / P)
15: for j =1 tok
16: compute squared Euclidean
distance d_Sq(x[i], m[j1);
17: endfor;
18: find the closest centroid m[r] to x[il;
19: my_m[r] = my_m[r] + x[i]; my_n[r] = my_n[r] + 1;
20: my_MSE = my_MSE + d_Sq(x[i], m([r]);
21: endfor;
22: for j =1¢tok
23: MPI_Allreduce(my_n[j]l, n[j], MPI_SUM);
24: MPI_Allreduce(my_m[j], m[j], MPI_SUM);
25: n[jl = max(m[jl, 1); m[jl = m[j]1 / nljl;
26: endfor;
27: MPI_Allreduce(my_MSE, MSE, MPI_SUM);

28: } while (MSE < 01dMSE)

In Algorithm 2, the same strategy of dividing the data set into smaller portions
for each process is used. Intermediate results using local data within each process
are stored in local variables with the my_ prefix. The variable MSE stores the
mean-squared-error for the convergence criterion. Since the k-means algorithm
forms crisp partitions, the variable n[j] is used to record the number of data
points in cluster j. The initialisation of the centroids takes place in lines 4-7. This
is performed locally in one process, then the centroids are broadcast to every
process using MPI_Bcast (). This approach is not adopted for the initialisation
of the fuzzy membership function in Algorithm 1 (line 3) because of two reasons:
my_u01d[j] [i] is a local quantity to each process, so the initialisation can be
done locally; and there are ¢ x n membership values in total, which should be
computed in parallel across all processes for sharing the load. It is interesting
to note that although the PFCM algorithm appears to be more complicated, it
only requires three MPI_Allreduce’s, which is the same number of calls as in
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PKM (Algorithm 2). This is certainly desirable as extra MPI_Allreduce calls
means extra time spent for the processes to communicate with each other.

In the next section, we illustrate how the PFCM algorithm is implemented
to cluster a large data set in business. The computational performance of PEFCM
is then measured and compared to PKM.

5 Experiments

The proposed PFCM algorithm is implemented on an AlphaServer computing
cluster with a total of 128 processors and 64 Gigabytes of main memory. 32
Compaq ES40 workstations form the cluster, each with 4 Alpha EV68 processors
(nodes) running at 833 MHz with 2 Gigabytes of local main memory. A Quadrics
interconnect provides a very high-bandwidth (approx. 200 Megabytes/sec per
ES40) and low-latency (6 msec) interconnect for the processors. We use C for
the programming, and MPI is installed on top of the UNIX operating system.

Since it is our aim to study the speedup and scaleup characteristics of the
proposed PFCM algorithm, we use MPI_Wtime () calls in our codes to measure
the running times. We do not include the time taken for reading in the data set
from the disk, as that is not part of our algorithm. The data set for our experi-
ments is provided by an Australian motor insurance company, which consists of
insurance policies and claim information. It contains 146,326 data points of 80
attributes, totalling to around 24 Megabytes.

First of all, we study the speedup behaviour of the PFCM algorithm. Speedup
measures the efficiency of the parallel algorithm when the number of processors
used is increased, and is defined as

running time with 1 processor

Speedup = (5)
For an ideal parallelisation, speedup = 1. Fig. 1 shows the speedup measure-
ments for five different sizes of the data set. The five speedup curves correspond
ton =29 211 213 215 and 2'7 respectively. These parameters are kept constant
for Fig. 1: m = 2,e = 0.01,and ¢ = 8. A logo is applied on the running times
for better presentation. For a particular n, the dotted line represents the mea-
sured running time, while the solid line represents the running time of an ideal
speedup. In other words, the closer the two curves are to each other, the better
the speedup. It can be seen from Fig. 1 that the speedups are almost ideal for
large values of n. But for smaller n’s, the speedup deteriorates. The cause for
the deterioration is likely to be that when many processors are used and n is
relatively small, the running time becomes very short, but the time spent in
inter-processors communication cannot be reduced in the same rate, thus wors-
ening the speedup.

For a comparison of speedup behaviours between PFCM (Algorithm 1) and
PKM (Algorithm 2), a set of corresponding measurements are plotted in Fig. 2
for the PKM algorithm with the same values of n and k¥ = 8. By comparing
Fig. 1 and Fig. 2, it can be seen that although the running times for PFCM are
longer in general, it has a better speedup than PKM, especially for small n’s.

P x running time with P processors
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Fig. 1. Speedup curves of PFCM with m = 2 and ¢ = 8. Time measurements with five
data set sizes are shown. Dotted lines represent recorded times and solid lines represent
ideal speedup times
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Fig. 2. Speedup curves of PKM with £ = 8. Time measurements with five data set
sizes are shown. Dotted lines represent recorded times and solid lines represent ideal
speedup times

In Fig. 3, the size of the data set is fixed to n = 2!7 while the number of de-
sired clusters is changed, with ¢ = 2,4, 8,16, 32 respectively for the five speedup
curves. This experiment is to measure how well the PFCM algorithm performs
in speedup when c increases. Fig. 3 shows that the speedup is almost ideal for
small ¢’s, and close to ideal for large ¢’s. Thus we can say that the speedup
behaviour of the proposed PFCM algorithm is not sensitive to the number of
desired clusters.

For an effective deployment of PFCM to data mining applications involving
large data sets, it is important to study its scaleup behaviour. Scaleup measures
the effectiveness of the parallel algorithm in dealing with larger data sets when
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Fig. 3. Speedup curves of PFCM with m = 2 and n = 2!7. Time measurements with
five values of ¢ are shown. Dotted lines represent recorded times and solid lines represent
ideal speedup times
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Fig. 4. Scaleup of PFCM with m = 2,¢ = 8, and n = 2'2 x P. Time per iteration in
seconds are measured

more processors are used. In Fig. 4, n = 22 x P, which means the size of the data
set is made to increase proportionally with the number of processors used. Other
parameters are kept constant: ¢ = 8, m = 2,and € = 0.01. It can be observed
from Fig. 4 that the running time per iteration varies by 0.025 second only. This
means that as far as running time is concerned, an increase in the size of the
data set can almost always be balanced by a proportional increase in the number
of processors used. We can thus say that the proposed PFCM algorithm has an
excellent scaleup behaviour with respect to n.

6 Conclusions

A parallel version of the fuzzy c-means algorithm for clustering large data sets is
proposed. The use of the Message Passing Interface (MPI) is also incorporated
for ready deployment of the algorithm to SPMD parallel computers. A compar-
ison is made between PFCM and PKM, which reveals a similar parallelisation
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structure between the two algorithms. An actual implementation of the proposed
algorithm is used to cluster a large data set, and its scalability is investigated.
The PFCM algorithm is demonstrated to have almost ideal speedups for larger
data sets, and it performs equally well when more clusters are requested. The
scaleup performance with respect to the size of data sets is also experimentally
proved to be excellent.
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