
Adjusting Time Slices to Apply Coscheduling
Techniques in a Non-dedicated NOW�

Francesc Giné1, Francesc Solsona1, Porfidio Hernández2, and Emilio Luque2

1 Departamento de Informática e Ingenieŕıa Industrial, Universitat de Lleida, Spain.
{sisco,francesc}@eup.udl.es

2 Departamento de Informática, Universitat Autónoma de Barcelona, Spain.
{p.hernandez,e.luque}@cc.uab.es

Abstract. Our research is focussed on keeping both local and parallel
jobs together in a time-sharing NOW and efficiently scheduling them by
means of coscheduling mechanisms. In such systems, the proper length of
the time slice still remains an open question. In this paper, an algorithm
is presented to adjust the length of the quantum dynamically to the
necessity of the distributed tasks while keeping good response time for
interactive processes. It is implemented and evaluated in a Linux cluster.

1 Introduction

The challenge of exploiting underloaded workstations in a NOW for hosting
parallel computation has led researchers to develop techniques to adapt the
traditional uniprocessor time-shared scheduler to the new situation of mixing
local and parallel workloads. An important issue in managing parallel jobs in
a non-dedicated cluster is how to coschedule the processes of each running job
across all the nodes. Such simultaneous execution can be achieved by means
of identifying the coscheduling need during execution [3,4] from local implicit
runtime information, basically communication events. Our efforts are addressed
towards developing coscheduling techniques over a non-dedicated cluster.

In such a system, parallel jobs performance is very sensitive to the quantum
[1,6]. The quantum length is a compromise; according to the local user necessity,
it should not be too long in order not to degrade the responsive time of inter-
active applications, whereas from the point of view of the parallel performance
[1] shorter time slices can degrade the cache performance, since each process
should reload the evicted data every time it restarts the execution. However, an
excessively long quantum could degrade the performance of coscheduling tech-
niques [6]. A new technique is presented in this paper to adjust dynamically the
quantum of every local scheduler in a non-dedicated NOW according to local
user interactivity, memory behavior of each parallel job and coscheduling deci-
sions. This technique is implemented in a Linux NOW and compared with other
alternatives.
� This work was supported by the MCyT under contract TIC 2001-2592 and partially
supported by the Generalitat de Catalunya -Grup de Recerca Consolidat 2001SGR-
00218.

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 234–239.
c© Springer-Verlag Berlin Heidelberg 2002

Adjusting Time Slices to Apply Techniques in a Non-dedicated NOW 235

2 DYNAMICQ: An Algorithm to Adjust the Quantum

Our framework is a non-dedicated cluster, where every node has a time sharing
scheduler with process preemption based on ranking processes according to their
priority. The scheduler works by dividing the CPU time into epochs. In a single
epoch, each process (task) is assigned a specified quantum (taski.qn:time slice of
task i for the nth epoch), which it is allowed to run. When the running process
has expired its quantum or is blocked waiting for an event, another process
is selected to run from the Ready Queue (RQ). The epoch ends when all the
processes in the RQ have exhausted their quantum. The next epoch begins when
the scheduler assigns a fresh quantum to all processes.

It is assumed that every node has a two level cache memory (L1 and L2),
which is not flushed at a context switch. In this kind of environment, the proper
length of time slices should be set according to process locality in order to
amortize the context switch overhead associated with processes with large mem-
ory requirements [1,5]. For this reason, we propose to determine the proper
length of the next time slice (task.qn+1) according to the L2 cache miss-rate
(mrn =

L2−cache−missesn

L1−cache−missesn
),where Li−cache−missesn is the number of misses of

Li cache occurred during the nth epoch. It can be obtained from the hardware
counters provided by current microprocessors [2].

It is assumed that every local scheduler applies a coscheduling technique,
named predictive coscheduling, which consists of giving more scheduling priority
to tasks with higher receive-send communication rates. This technique has been
chosen because of the good performance achieved in a non-dedicated NOW [4].

Algorithm 1 shows the steps for calculating the quantum. This algorithm,
named DYNAMICQ, will be computed by every local scheduler every time that
a new epoch begins and will be applied to all active processes (line 1).

In order to preserve the performance of local users, the algorithm, first of
all, checks if there is an interactive user in such a node. If there were any,
the predicted quantum (taskp.qn+1) would be set to a constant value, denoted
as DEFAULT QUANTUM 1 (line 3). When there is no interactivity user, the
quantum is computed according to the cache miss-rate (mrn) and the length of
the previous quantum (taskp.qn). Although some authors assume that the miss-
rate decreases as the quantum increases, the studies carried out in [1] reveal
that when a time slice is long enough to pollute the memory but not enough to
compensate for the misses caused by context switches, the miss-rate may increase
in some cases since more data, from previous processes, are evicted as the length
of time slice increases. For this reason, whenever the miss-rate is higher than
a threshold, named MAX MISS, or if it has been increased with respect to the
preceding epoch (mrn−1 < mrn), the quantum will be doubled (line 6).

When applying techniques, such as the predictive coscheduling technique [4],
an excessively long quantum could decrease the performance of parallel tasks.
Since there is no global control, which could schedule all the processes of a paral-
lel job concurrently, a situation could occur quite frequently in which scheduled

1 Considering the base time quantum of Linux o.s., it is set to 200ms.

236 F. Giné et al.

1 for each active task(p)
2 if (INTERACTIVE USER)
3 taskp.qn+1 =DEFAULT QUANTUM;
4 else
5 if((mrn¿MAX MISS) —— (mrn−1 < mrn)) && (taskp.qn¡=MAX SLICE)
6 taskp.qn+1 = taskp.qn ∗ 2;
7 else if(taskp.qn >MAX SLICE)
8 taskp.qn+1 = taskp.qn/2;
9 else
10 taskp.qn+1 = taskp.qn;
11 endelse;
12 endelse;
13 endfor;

Algorithm 1. DYNAMICQ Algorithm.

processes that constitute different parallel jobs contended for scheduling their
respective correspondents. Thus, if the quantum was too long, the context switch
request through sent/received messages could be discarded and hence the paral-
lel job would eventually be stalled until a new context-switch was initiated by the
scheduler. In order to avoid this situation, a maximum quantum (MAX SLICE)
was established. Therefore, if the quantum exceeds this threshold, it will be re-
duced to half (line 8). Otherwise, the next quantum will be fixed according to
the last quantum computed (line 10).

3 Experimentation

DYNAMICQ was implemented in the Linux Kernel v.2.2.15 and tested in a
cluster of eight Pentium III processors with 256MB of main memory and a L2
four-way set associative cache of 512KB. They were all connected through a
Fast Ethernet network. DYNAMICQ was evaluated by running four PVM NAS
parallel benchmarks [5] with class A: IS, MG, SP and BT. Table 1 shows the
time ratio corresponding to each benchmarks’s computation and communica-
tion cost. The local workload was carried out by means of running one synthetic
benchmark, called local. This allows the CPU activity to alternate with inter-
active activity. The CPU is loaded by performing floating point operations over
an array with a size and during a time interval set by the user (in terms of time
rate). Interactivity was simulated by means of running several system calls with
an exponential distribution frequency (mean=500ms by default) and different
data transferred to memory with a size chosen randomly by means of a uni-
form distribution in the range [1MB,...,10MB]. At the end of its execution, the
benchmark returns the system call latency and wall-clock execution time.

Four different workloads (table 1) were chosen in these trials. All the work-
loads fit in the main memory. Three environments were compared, the plain
Linux scheduler (LINUX), predictive coscheduling with a static quantum
(STATICQ) and predictive coscheduling applying the DYNAMICQ algorithm.

Adjusting Time Slices to Apply Techniques in a Non-dedicated NOW 237

Table 1. local(z) means that one instance of local task is executed in z nodes.

Bench. %Comp. %Comm. Workload (Wrk)
IS.A 62 38 1 SP+BT+IS
SP.A 78 22 2 BT+SP+MG
BT.A 87 13 3 SP+BT+local(z)
MG.A 83 17 4 BT+MG+local(z)

0

5

10

15

20

25

0.125 0.25 0.5 1 2 4 8 16 32

M
M

R
 %

 Time Slice (s)

MMR(wrk1)
MMR(wrk2)

MISS_THRESHOLD

0

0.5

1

1.5

2

2.5

3

3.5

0.125 0.25 0.5 1 2 4 8 16 32

S
lo

w
do

w
n

Time Slice(s)

Slowdown(wrk1)
Slowdown(wrk2)

0

20

40

60

80

100

120

140

0.125 0.25 0.5 1 2 4 8 16 32

M
W

T
(s

)

Time Slice(s)

MWT(wrk1)
MWT(wrk2)

Fig. 1. STATICQ mode. MMR (left), Slowdown (centre) and MWT (right) metrics.

In the STATICQ mode, all the tasks in each node are assigned the same quan-
tum, which is set from a system call implemented by us.

Its performance was validated by means of three metrics: Mean Cache Miss-

rate: (MMR =
∑8

k=1

∑Nk

n=1
(mrnk

Nk
)

8 x100) where Nk is the number of epochs
passed during execution in node k; Mean Waiting Time (MWT), which is the
average time spent by a task waiting on communication; and Slowdown averaged
over all the jobs of every workload.

3.1 Experimental Results

Fig. 1(left) shows the MMR parameter for Wrk1 and Wrk2 in the STATICQ
mode. In both cases, we can see that for a quantum smaller than 0.8s, the cache
performance is degraded because the time slice is not long enough to compensate
the misses caused by the context switches. In order to avoid this degradation
peak, a MAX MISS threshold equal to 9% was chosen for the rest of the trials.

Fig. 1 examines the effect of the time slice length on the slowdown (centre)
and MWT (right) metrics. The rise in slowdown for a quantum smaller than 1s
reveals the narrow relationship between the cache behavior and the distributed
job performance. For a quantum greater than 6.4s, the performance of Wrk1
is hardly affected by the coscheduling policy, as we can see in the analysis of
the MWT metric. In order to avoid this coscheduling loss, the DYNAMICQ
algorithm works by default with a MAX SLICE equal to 6.4s.

Fig. 2 (left) shows the slowdown of parallel jobs for the three environments
(STATICQ with a quantum= 3.2s) when the number of local users (local bench-
mark was configured to load the CPU about 50%) is increased from 2 to 8.
LINUX obtained the worst performance due to the effect of uncoordinated

238 F. Giné et al.

Li
nu

x

S
ta

t

D
yn

Li
nu

x

S
ta

t

D
yn

2
4

80

1

2

3

4

5

6

S
lo

w
do

w
n(

pa
ra

lle
l)

Wrk3 Wrk4

Local Users

Li
nu

x

S
ta

t

D
yn

Li
nu

x

S
ta

t

D
yn

10%
50%

90%0

0,5

1

1,5

2

2,5

3

3,5

Sl
ow

do
w

n(
lo

ca
l)

Wrk3 Wrk4

%CPU

Fig. 2. Slowdown of parallel jobs (left). Slowdown of local tasks (right).

scheduling of the processes. STATICQ and DYNAMICQ obtained a similar per-
formance when the number of local users was low, although when the number
of local users was increased, a slight difference (� 9%) appeared between both
modes due to the heterogeneous quantum present in the cluster in DYNAM-
ICQ mode. Fig. 2 (right) shows the overhead introduced into the local task
(the CPU requirements were decreased from 90% to 10%). It can be seen that
the results obtained for Linux are slightly better than those for DYNAMICQ,
whereas STATICQ obtains the worst results. This is because the STATICQ
and DYNAMICQ modes give more execution priority to distributed tasks with
high communication rates, thus delaying the scheduling of local tasks until dis-
tributed tasks finish their quantum. This priority increase has little effect on local
tasks with high CPU requirements but provokes an overhead proportional to the
quantum length in the interactive tasks. This is reflected in the high slowdown
in STATICQ mode when local tasks have low CPU requirements (10%).

4 Conclusions and Future Work

This paper discusses the need to fix the quantum accurately to apply scoschedul-
ing techniques in a non-dedicated NOW. An algorithm is proposed to adjust the
proper quantum dynamically according to the cache miss-rate, coscheduling deci-
sions and local user performance. Its good performance is proved experimentally
over a Linux cluster. Future work will be directed towards extending our analysis
to a wider range of workloads and researching the way to set both thresholds,
MAX SLICE and MAX MISS automatically from runtime information.

References

1. G. Edward Suh and L. Rudolph. “Effects of Memory Performance on Parallel Job
Scheduling”. LNCS, vol.2221, 2001.

2. Performance-Monitoring Counters Driver,
http://www.csd.uu.se/˜mikpe/linux/perfctr

3. P.G. Sobalvarro, S. Pakin, W.E. Weihl and A.A. Chien. “Dynamic Coscheduling on
Workstation Clusters”. IPPS’98, LNCS, vol.1459, 1998.

Adjusting Time Slices to Apply Techniques in a Non-dedicated NOW 239

4. F. Solsona, F. Giné, P. Hernández and E. Luque. “Predictive Coscheduling Imple-
mentation in a non-dedicated Linux Cluster”. EuroPar’2001, LNCS, vol.2150, 2001.

5. F.C. Wong, R.P. Martin, R.H. Arpaci-Dusseau and D.E. Culler “Architectural Re-
quirements and Scalability of the NAS Parallel Benchmarks”. Supercomputing’99.

6. A. Yoo and M. Jette. “An Efficient and Scalable Coscheduling Technique for Large
Symmetric Multiprocessors Clusters”. LNCS, vol.2221, 2001.

	1 Introduction
	2 DYNAMICQ: An Algorithm to Adjust the Quantum
	3 Experimentation
	3.1 Experimental Results

	4 Conclusions and Future Work
	References

