A Compact Rijndael Hardware Architecture
with S-Box Optimization

Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh

IBM Research, Tokyo Research Laboratory, IBM Japan Ltd., 1623-14,
Shimotsuruma, Yamato-shi, Kanagawa 242-8502, Japan
{akashi,e02716,chano,munetoh}@jp.ibm. com

Abstract. Compact and high-speed hardware architectures and logic
optimization methods for the AES algorithm Rijndael are described.
Encryption and decryption data paths are combined and all arithmetic
components are reused. By introducing a new composite field, the S-Box
structure is also optimized. An extremely small size of 5.4 Kgates is ob-
tained for a 128-bit key Rijndael circuit using a 0.11-pm CMOS standard
cell library. It requires only 0.052 mm? of area to support both encryp-
tion and decryption with 311 Mbps throughput. By making effective use
of the SPN parallel feature, the throughput can be boosted up to 2.6
Gbps for a high-speed implementation whose size is 21.3 Kgates.

1 Introduction

DES (Data Encryption Standard) [I4I1], which is a common-key block cipher
for US federal information processing standards, has also been used as a de
facto standard for more than 20 years. NIST (National Institute of Standard
Technology) has selected Rijndael [2] as the new Advanced Encryption Standard
(AES) [13]. Many hardware architectures for Rijndael were proposed and their
performances were evaluated by using ASIC libraries [SII8[T0/9] and FPGAs [3|
T7I6/1115]. However, they are simple implementations according to the Rijndael
specification, and none are yet small enough for practical use. The AES has to be
embeddable not only in high-end servers but also in low-end consumer products
such as mobile terminals. Therefore, sharing and reusing hardware resources,
and compressing the gate logic are indispensable to produce a small Rijndael
circuit.

The SPN structure of Rijndael is suitable for highly parallel processing, but
it usually requires more hardware resources compared with the Feistel structure
used in many other ciphers developed after DES. This is because, all data is
encoded in each round of Rijndael processing, while only half of data is processed
at once in DES. In addition, Rijndael has two separate data paths for encryption
and decryption.

In this paper, we describe a compact data path architecture for Rijndael,
where the hardware resources are efficiently shared between encryption and de-
cryption. The key arithmetic component S-Box has been implemented using

C. Boyd (Ed.): ASTACRYPT 2001, LNCS 2248, pp. 239-[254] 2001.
© Springer-Verlag Berlin Heidelberg 2001

240 A. Satoh et al.

look-up table logic or ROMs in the previous approaches, which requires a lot
of hardware support. Reference [16] proposed the use of composite field arith-
metic to reduce the computation cost of the S-Box, but no detailed hardware
implementation was provided. Therefore, we propose a methodology to optimize
the S-Box by introducing a new composite field, and show its advantages in
comparison to the previous work.

2 Rijndael Algorithm

Fig. [Ishows a Rijndael encryption process for 128-bit plain text data string and
a 128-bit secret key, with the number of rounds set to 10. These numbers are
used throughout this paper, including for our hardware implementation. Each
round and the initial stage requires a 128-bit round key, and thus 11 sets of round
keys are generated from the secret key. The input data is arranged as a 4 x 4
matrix of bytes. The primitive functions SubBytes, ShiftRows and MixColumns
are based on byte-oriented arithmetic, and AddRoundKey is a simple 128-bitwise
XOR operation.

SubBytes is a nonlinear transformation that uses 16 byte substitution ta-
bles (S-Boxes). An S-Box is the multiplicative inverse of a Galois field GF(2%)
followed by an affine transformation. In the decryption process, the affine trans-
formation is executed prior to the inversion. The irreducible polynomial used by
a Rijndael S-Box is

m(z) =28+ 2t + 25+ + 1. (1)

ShiftRows is a cyclic shift operation of the last three rows by different offsets.
MixColumns treats the 4-byte data in each column as coefficients of a 4-term
polynomial, and multiplies the data modulo z* + 1 with the fixed polynomial
given by

c(x) = {03}z + {01}22 + {01}z + {02}. (2)

In the decryption process, InvMixColumns multiplies each column with the poly-
nomial

¢ *(z) = {0B}2* + {0D}2? + {09}x + {OE} (3)

and InvShiftRows shifts the last three rows in the opposite direction from
ShiftRows.

The key expander in Fig. [l generates 11 sets of 128-bit round keys from one
128-bit secret key by using a 4-byte S-Box. These round keys can be prepared on
the fly in parallel with the encryption process. In the decryption process, these
sets of keys are used in reverse order. Therefore, all keys have to be generated and
stored in registers in advance, or the final round key in the encryption process
has to be pre-calculated for on-the-fly key scheduling. Because the first method
requires the equivalent of a 1,408-bit register (128 bits x 11), and is not suitable

A Compact Rijndael Hardware Architecture with S-Box Optimization 241

10001111 1 Encryption Block Key Expander
11000111 (1)
11100011 - : ;
po=| 11110001 1 10 128-bit plain text| 128-bit< 11 128-bit secret key
5-[11111000 |“F 7|0 ok s s round keys
01111100 ! 2 |32} fx
00111110
00011111 0] AddRoundKey I_a }5 —
)) 2 de Reon(1]
SubBytes e
Q| Ay Gyo| Gy S-Box ShlfﬁRYt) 4 v
1 OwWs
Ay all a ij [*13 e m ir’é)_r’@_r’@
Uyy| | iy |Gy xolumns I_f g—
a.lala.la bulbul bolb AddRoundKey [« Fo >
30| 31 732 "33 30| ¥31] V32| /33 ‘ ¢ ‘ * A N v A4
Qoo Dor| Gy aosam.‘am‘ A\ Ay vy ¥ ¥ kY Reon[9]
(|G| Oy FORIOTDY T —— a, SubBytes <<8] @+
G| Dy D “zsw a,\a,, ShiftRows 5-Box | ‘é_r’éé "9_'_.6"9
a,la,|a)a, [Eowoy s~ Sa,[a,]a MixColumns Pa———
AddRoundKey [« UFC] $
) 4 Rcon[10]
ay; b W vy ¥ <<8) D
Ayy| Ay ®C(x) ——-bm b, 03) SubBytes) 4 Y b 4) 4
a4, bulbi| P ShiftRows BB D P O O
| a| @ bulb by | [AddRowndKey |+ T F—— |
a}() aS

513_/ 33) b|by b3j 33) S,Iv’ 8& S,Iv’
Ay Kool Koi| Koo Koo boo|Dos| Doa| by
12| %3 ko ki kol k3 buo|bui| bz br
a ko k| Koy [
30/ %31 “32) “3f ﬂkn ks ksﬂ by| by, bsﬂﬁ,

S
P
~
M
2

Fig. 1. Encryption process of Rijndael algorithm

for compact hardware, the second approach was chosen for the implementation
described in the next section. Reonl[i] in Fig. [l is a 4-byte value, and the lower
3 bytes are 0 for all ¢, and the highest byte is the bit representation of the
polynomial z¢ mod m(x).

3 Data Path Architecture

3.1 Data Path Sharing between Encryption and Decryption

In order to minimize the size of our Rijndael hardware, resource sharing in the
data path is fully employed as shown in Fig. Bl This circuit can execute both
encryption and decryption. The 128-bit data (4 x 4 bytes) block is divided into
four 32-bit columns, and is processed column by column through the 32-bit data
bus. Therefore one round takes 4 clock cycles. It is not a good idea to make
the bus width smaller than 32 bits, because the MixColumns operation needs
32-bits of data at one time. A smaller bus requires more registers and selectors,
and resource sharing is hindered, resulting in an inefficient implementation.

242 A. Satoh et al.

The “Enc/Dec block” has 16-byte data registers, and they execute ShiftRows
(or InvShiftRows) operations by themselves. Each 4-byte column is transformed
by four parallel S-Boxes as SubBytes (or InvSubBytes). The order of ShiftRows
and SubBytes is different from that in Fig. [[l though this does not affect the
operations’ results.

Selectors change the circuit state between encryption and decryption. The
data path

-1

57t = 271 — ¢! and affine — MixColumns

is selected for encryption, and the path

I 6! — InvMixColumns

affine™ and 67! — z~
is used for decryption. ! and ¢ are isomorphism functions for field conversions.
Details are described in Section [l
By moving InvMixColumns from the front of each S-Box to the back, Mix-
Columns and InvMixColumns can be merged and some selectors are eliminated.
As a result, the circuit size and the critical path length are reduced. An addi-
tional InvMixColumns is required in the key expander, but the area impact is
minor.

3.2 S-Box Sharing with Key Expander

The key expander reuses the S-Boxes in the encryption/decryption block to
generate a 128-bit key in each round. The S-Boxes are used once by the key
expander, and four times by the encryption/decryption block, for a total of five
times in every round. While the key expander uses the S-Boxes, the ShiftRows (or
InvShiftRows) operation is executed simultaneously. As shown in Fig.[I], only the
AddRoundKey operation is executed in the initial round, and the MixColumns
(or InvMixColumns for decryption) is omitted in the final round. This operation
switching is carried out by controlling the 4:1 selector at the bottom of Fig.
The first round key used in AddRoundKey is the initial key data stored in the
key registers, and a transformation with the S-Boxes is not necessary. Therefore
the first round takes four cycles, and the entire encryption process takes 54 (=
4 + 5 x 10) cycles. The decryption process also takes 54 cycles. When a new
secret key is provided, the key expander takes 10 cycles to generate the initial
decryption key, which is the final round key in the encryption.

As described in Section [, Reonl[i] is a 4-byte constant value, and the highest
order byte is generated by modular multiplication on GF(28). The circuit RC in
Fig. Bl generates the constant values sequentially during the encryption process,
starting from {01}, and RC™! calculates the same values in reverse order from
{36}. These circuits are also merged as shown in this figure.

A Compact Rijndael Hardware Architecture with S-Box Optimization 243

Enc/Dec Block

ShiftRows |4

InvShiftRows

| | oI Data Reg

Key Expander

P,
=
=)

H
=
Me

@7

i

<

SubBytes

InvSubBytes

Ne
AddRoundKey

Fig. 2. Data path architecture

3.3 Factoring in MixColumns and InvMixColumns

MixColumns and InvMixColumns are modular multiplications with constant
polynomials and (3) that can be written as the constant matrix multiplica-
tions shown in Equations () and (5]) respectively.

bs 02 03 01 01
b |] 01020301
by | | 01010203
bo 03 01 01 02
02 02 00 00

__| 00020200

~ | 00000202

02 00 00 02

as
a2
ai
ag

as
a2
ai
ao

00 01 01 01 as
01000101 | | az @
01 01 00 01 a

01 01 01 00 ao

244 A. Satoh et al.

Initial Value {00000001},

Fig. 3. Rcon[i] generator

cs OE 0B 0D 09 as
c2 | | 09 0E OB OD as
ci| | OoD090EOB | | a4
Co 0B 0D 09 OE an
02 03 01 01 as
[o1020301 as
01010203 | | @
03 01 01 02 ao
08 08 08 08 as 04 00 04 00 as
N 08080808 | [as N 00040004 | | a2 5)
08 08 08 08 a 04 00 04 00 a
08 08 08 08 ao 00 04 00 04 ao

b3 =02X3+ X +a X3 =az+a
by =02Xo+ X7 +as Xo =as+aq
by =02X; + X3+ ag X1 =a1+ag
by =02Xo+ X3+ a1 Xo =ag+as

c3 =b3+ 72

5o Yo = 02(Y; +Y)

¢z =btZo 4 =Yt Mo) g0 b)) (7)
ca =b+2; Zy =Y2+Y, ' ° !

Yo =04
co =bo+ 2 0 (a2 + ao)

A Compact Rijndael Hardware Architecture with S-Box Optimization 245

As seen in Equation (), InvMixColumns contains a complete MixColumns
matrix. Therefore we merged these two functions into one circuit as shown in Fig.
Ml In addition, both functions can be broken into regular matrices whose non-
zero elements are only one of the values {08,04,02,01}. Therefore the number of
common terms can be greatly reduced by factoring, finally resulting in Equations
() and (). The result, shown in Table [I] is that the XOR logic gates are
decreased by 2/3 (from 592 XORs to 195 XORs) with only 2 XOR gates of
additional delay.

a

$—l—#

{02,01,00} {08,04,00}

-element -element
Matrices Matrices
%
v
v v
b c

MixColumns InvMixColumns

Fig. 4. MixColumns/InvMixColumns circuit

Table 1. Factoring effects of MixColumns and InvMixColumns

Original Matrices Our
MixColumns |InvMixColumns Total Implementation
Number of XOR 152 440 592 195
Delay (gates) 3 5 5 7

4 S-Box Optimization

4.1 Structure of New S-Box

Designing a compact S-Box is one of the most critical problems for reducing the
total circuit size of the Rijndael hardware. It is possible to implement the S-Box
as a practical circuit based on its functional specification by using automatic
logic synthesis tools, because the size of the S-Box function table is small; 256
entries X 1 byte. However, a significant reduction in the size of the S-Box was
achieved in [I6], by using composite field arithmetic [7]. In the following, we
propose further optimization of S-Box by introducing a new composite field.

246 A. Satoh et al.

Fig. [8 shows the outline of our S-Box implementation. The most costly op-
eration in the S-Box is the multiplicative inversion over a field A, where A is an
extension field over GF(2) with the irreducible polynomial m(z). To reduce the
cost of this operation, we adopted the following 3-stage method.

Extension
field A

Extension
field A

affine trans. isomorphism §

mversion

‘\ Composite
field B
inversion Single matrix @’
operation m

Composite
field B \\’

&2
field A isomorphism §

Extension
field A

Fig. 5. The computation sequence of our S-Box implementation

(Stage 1) Map all elements of the field A to a composite field B, using an
isomorphism function 6.

(Stage 2) Compute the multiplicative inverses over the field B.

(Stage 3) Re-map the computation results to A, using the function 1.

Even though isomorphism functions are required in this method, the cost of
those functions can mostly be hidden by merging them with the affine transfor-
mations.

4.2 Multiplicative Inversion over A New Composite Field

The composite field B in Stage 2 is constructed not by applying a single degree-8
extension to GF(2), but by applying multiple extensions of smaller degrees. To
reduce the cost of Stage 2 as much as possible, we built the composite field B by
repeating degree-2 extensions under a polynomial basis using these irreducible
polynomials:

A Compact Rijndael Hardware Architecture with S-Box Optimization 247

where ¢ = {10}2, A = {1100}2. The inverter over the field above has fewer

GF(2) operators compared with the composite field used in [16]
GF(2%) ca? 441 (©)
GF((2Y?) 2?2+ 1+wiy

where wy4 = {1001}5.

Our hardware implementation of Stage 2 is shown in Fig. 6l For any compos-
ite fields GF((2™)™) which are constructed using a degree-n extension after a
degree-m extension, computing the multiplicative inverses can be done as a com-
bination of operations over the subfields GF(2"), using the equation described
in [7/4]

Pt =(P")~'. P! where r = (2" —1)/(2™ — 1). (10)
In our case (n =2, m = 4), so Equation (I0) becomes
P~ = (pP'")~t. plo, (11)

The circuit in Fig. [l is an implementation of Equation (), with additional
optimizations. In the circuit, P¢ is computed first (note that the hardware
costs for computing 2-powers over Galois fields are very small) and then P7
is obtained by multiplying P by P'6 over GF(((2?)?)?). This operation re-
quires only two multiplications, one addition and one constant multiplication
over GF((2%)?). Because P17 is always an element of GF((2?)?) according to
Fermat’s Little Theorem (i.e., the upper 4 bits of P17 are always 0), computing
the upper 4 bits of P'7 is unnecessary [7]. (P'7)~! is computed recursively over
GF((22)?), then multiplied by P over GF(((22)?)?), and finally P~! is ob-
tained. This multiplication requires fewer circuit resources than usual, because
P17 is an element of GF((22)2). Note that our multipliers and inverter over sub-
field GF((22)?) are also small [15]. Further gate reduction is possible by sharing
parts of the three GF((2%)?) multipliers in Fig. Bl where common inputs are
used.

common input

to multipliers 2

o]
X G
X 4

» 2
I,

3
)

EYES
PV U™

GF((2*) multiplier

Fig. 6. Our implementation of an inverter over a composite field GF(((2%)?)?).

248 A. Satoh et al.

4.3 Generating Isomorphism Functions

The isomorphism functions § and 6~! are located at the both ends of the S-
Boxes, and one of them is merged with an affine transformation. On the other
hand, Reference [16] proposes locating these isomorphism functions at the cir-
cuit’s primary input and output, and thus it cannot be merged with an affine
transformation. The function is also required between the AddRoundKey and
the key expander in Fig. [[l Therefore our approach is much more suitable for
a reduced hardware implementation. The isomorphism functions § and §~—! in
Stages 1 and 3 were constructed as follows. First, search for a generator element
« in A and a generator 8 in B, where both o and (8 are roots of the same prim-
itive irreducible polynomial. Any primitive polynomial can be applied, and here
we use

plz) =a® 42 + 23 + 2% 4+ 1. (12)

Once such elements are found, the definition table of the isomorphism func-
tion & (or 6~1) is immediately determined, where o* is mapped to 3% (or g*
to a’“) for any 1 < k < 254. The hardware implementation of these functions
can be obtained by mapping only the basis elements of A (or B) into B (or A),
and these mappings are described as multiplications of constant matrixes over
GF(2). The functions § and 6= are as follows:

11000010 10101110
01001010 00001100
01111001 01111001
01100011 1 01111100
0= 01110101 0 = 01101110 (13)
00110101 01000110
01111011 00100010
00000101/, 01000111/,

where the least significant bits are in the upper left corners.

All of these isomorphism functions and the constant multipliers in the S-
Boxes are implemented as XOR arrays, and their Boolean logic is compressed
by applying a factoring technique based on a greedy algorithm [12].

4.4 Implementation Results of the S-Box

Table2lshows the performance of our multiplicative inverter and S-Box described
above in comparison with that using Equation (d). The S-Box implementations
are also compared with the one automatically generated by a synthesis tool from
a look-up table. A 0.11-uym CMOS standard cell library (one gate is equivalent
to a 2-way NAND) is used here, and the delay time is evaluated under the worst-
case conditions. The hardware size of our S-Box using the field GF(((2%)?)?) is
294 gates, which is about 20% smaller and slightly faster than the one using the
field GF((24)%).

A Compact Rijndael Hardware Architecture with S-Box Optimization 249

Table 2. S-Box features of proposed method. (gate = 2-way NAND)

Inverter S-Box S-Box'!
Method Area | Delay | Area | Delay | Area | Delay
(gates) (ns) (gates) (ns) (gates) | (ns)
Ours, Equation (8) 173 2.55 294 3.69 <« merged
Equation (9) 241 2.50 362 3.75 <« merged
Look-up Table - - 696 2.71 700 | 2.29

Our S-Box consists of affine transformations, isomorphism functions, invert-
ers and selectors, and can be applied to both encryption and decryption. On the
other hand, the look-up table method requires two different circuits, an S-Box
for encryption and an S-Box~! for decryption. The S-Box tables appear as ran-
dom numbers to CAD tools, and therefore logic compression is very hard. As a
result, a large amount of hardware, 1,396 (= 696 + 700) gates, is required for
each one-byte S-Box based on the look-up table method, while our method is
less than 1/4 of that size.

By applying our new composite field, merging the isomorphism functions with
affine transformations, using a factoring technique, and combining the encryption
and decryption paths, a very small S-Box was produced.

5 Performance Comparison in ASICs

The architecture described in Section 3 has been implemented by using 0.11-
pm CMOS technology, and the extremely small size of 5.4 Kgates was obtained
with a 7.62-ns cycle time (131.24 MHz) under the worst-case conditions. The
gate size of each component and the critical path delay are detailed in Table
Bl and Fig. [1 respectively. The function SubBytes (S-Box) occupies about 22%
of the circuit area, and accounts for almost half of the delay time. The second
major component is neither MixColumns nor AddRoundKey, but the selectors.
The requirement to use selectors is not obvious from the Rijndael algorithm
specification, where they appear as conditional branches and data selections.
However, they require 1,099 (= 699 + 400) gates (20.36% of the circuit), because
of the wide data width. In order to drive those selectors, drivers with high fan
out are also required. Therefore, we carefully analyzed the critical data path and
optimized the order of data selection, and adjusted the driver size. As a result,
the delay time of the selector and driver section was reduced from 3.46 ns down
to 1.95 ns, without changing the total gate count.

Using our proposed architecture, we designed and synthesized five imple-
mentations as shown in Fig. Bl Higher throughputs with higher parallelism were
achieved by increasing the number of S-Boxes and the bus width. Four S-Boxes
are shared between the data encryption block and the key expander in the 5- and

250 A. Satoh et al.

Register Output and Setup 0.57 AddRoundKey 0.20
InvMix Selector
SubBytes Columns Driver Total

Fig. 7. Critical path delay

Table 3. Factoring effects of MixColumns and InvMixColumns

Components Gates %
Encryption/Decryption Block (3,305) | (61.23)
Data Register 864 16.01
ShiftRows 160 2.96
SubBytes 1,176 21.79
MixColumns/InvMixColumns 350 6.48
AddRoundKey 56 1.04
Selector 699 12.95
Key Expander (1,896) | (35.12)
Key Register 864 16.01
InvMixColumns 294 5.45
RC/RC 100 1.85
XOR 238 4.41
Selector 400 7.41
Controller, Selector, Driver 197 3.65
Total 5,398 | 100.00

3-cycle/round versions. In the other three implementations, the key expanders
have their own S-Boxes. Two circuits were synthesized from each implementation
(a total of ten implementations), one optimized for size and the other for speed.
The sizes and speeds are also shown in Table[d], in comparison with other ASIC
implementations [S/18/10/9] under the worst-case conditions. Data and the key
sizes are both 128 bits in all implementations, except that of [10], where 128-bit
data and a 256-bit key (14 rounds) are used. A gate wireability of 80% is as-
sumed to calculate the silicon area of our implementations. Reference [16] shows
a throughput of 7.5 Gbps with 32 parallel cores, with a circuit size for encryption
of 256 Kgates. However, this number was not evaluated by any synthesis tool,
so we did not include it in the table.

It is obvious that in our implementation that more hardware resources yield
higher throughput. For instance, the number of operation clock cycles can be
reduced by increasing the size of the S-Box, which allows more parallel com-
putation. Increases in fan out can also be used to increase the speed. In order
to clarify the total efficiency of each implementation, we show the throughput
per gate on the right side of Table @l In general, it is not easy to compare the

A Compact Rijndael Hardware Architecture with S-Box Optimization 251

Scycles/round 4cycles/round 3cycles/round

S | Schedule

S
/i

2cycles/round 1cycles/round
-Data -Data
T 1 $-Box (32-bit)
S{S S | Schedule S|S|S]|S S [Schedule
2 128 |E| MixColumns
PP Key P|P|P|P Key

EVES l l @ AddRoundKey
AN

32 32

M
X
M
¥
D
X
D
Y

Fig. 8. Data Path Architectures of each implementation

implementations using different CAD tools and different technology libraries.
However, even considering this difficulty of precise comparison, our hardware
architecture is by far the best. Our smallest implementation is less than 1/6 of
the 33.8 Kgates in the best previous approach [9]. Our 1-cycle/round version
sets a new record for throughput at 2.6Gbps, not only in ECB mode but also in
CBC cipher feedback mode. Reference [8] shows the second best throughput as
1.95 Gbps, but it uses 113.5 times as many gates, because all 11 rounds are un-
rolled. Throughout these comparisons of ASIC implementations, our hardware
architecture has advantages in both size and speed.

6 Conclusion

In this paper, a compact yet high-speed architecture for Rijndael was proposed
and evaluated through ASIC implementations. In order to minimize the hard-
ware size, the order of the arithmetic functions was changed, and encryption and
decryption data paths were efficiently combined. Logic optimization techniques
such as factoring were applied to the arithmetic components, and gate counts
were greatly reduced.

Our architecture provides high flexibility from a compact 32-bit bus imple-
mentation to a high-speed implementation using a 128-bit bus. The S-Box has
been implemented as look-up table logic in the previous work, and has required
extensive hardware resources. We introduced a new composite field GF(((22)?)?)
and proposed an optimization method for the S-Box. Our S-Box requires less

252 A. Satoh et al.

Table 4. Performance comparison in ASIC implementations. (worst case)

Cycles | S-Box i) ng Thrpfi]utgh Thr/?ri};pm Notes
/Round | (b 2 : ’
ound| (bytes) | (gates) |(mm’)| \ppr) | (Mbps) | (Kbps/gate)
Ours 0.11pm
5398 |0.052 | 131.24 | 311.09| 57.63
5 4 Total 54 cycles
10,338 [0.099 | 222.22 | 526.74| 50.95
6,292 | 0.060 | 137.55 | 400.15| 63.60
4 8 Total 44 cycles
10,990 [0.106 | 219.30 | 637.96| 58.05
7,998 | 0.077 | 137.17 | 548.68| 68.60
3 8 Total 32 cycles
14,777 |0.142 | 218.82 | 87528 59.23
8,836 |0.085| 137.17 | 798.08 90.32
2 12 Total 22 cycles
17,016 |0.163 | 217.86 | 1,267.55 74.49
12,454 [0.130 | 145.35 | 1,691.35 | 135.81
1 20 Total 11 cycles
21,337 [0.205 | 224.22 | 2,609.11 | 122.28
[10] 0.18um
256-bit data and
435 . o
1 48 [184,000 | 423 | 48 | (256-bit 2.51 ¢y supporte
key) Decryption not
supported
[9] 0.35 um
1 [40 [3380 [- [- [50970 [1506 |
8] 0.35 um
1/11 | 400 | 612,834 [- | 1523 | 1,950.03 | 3.18 [11 round unrolled
8] 0.5 pum
1 40 68,872 | 20.74 21.18 | 271.13 3.94 4 transistors/gate
1 40 | 160,421 [33.85| 47.36]| 605.77 3.78 is assumed

than 1/4 the size of one using a look-up table, and also showed 20% better
performance in comparison with the one using a GF((24)?) field.

Our smallest implementation using 0.11-pm CMOS technology is 5.4 Kgates,
which is less than 1/6 the size of the best hardware of previous work. Making
the best use of the parallel processing allowed by Rijndael, a high-speed version
obtained the best performance of 2.6 Gbps with 21.3 Kgates. Thus, our Rijndael
hardware can be applied to various targets from mobile equipment to high-end

security servers.

Our continuing research is to develop and evaluate even faster hardware for
10 Gbps class high-speed communication links and beyond.

A Compact Rijndael Hardware Architecture with S-Box Optimization 253

Acknowledgements. We are grateful to Mr. G. Zang for supporting us gener-
ously with his CAD tool expertise, and also would like to thank Mr. A. Rudra
and Dr. N. Ohba for their helpful comments on this work.

References

1]
2l
3]

ANSI (American National Standards Institute). Triple Data Encryption Algo-
rithm Modes of Operation, 1998.

J. Daemen and V. Rijmen. AES Proposal: Rijndael. NIST AES Proposal, June
1998. Available at http://csrc.nist.gov/encryption/aes /rijndael/Rijndael.pdf.
A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar. An FPGA Implementation and
Performance Evaluation of the AES Block Cipher Candidate Algorithm Finalists.
In The Third Advanced Encryption Standard Candidate Conference, pages 13-27.
NIST, April 2000. Available at
http://csre.nist.gov/encryption/aes/round2/conf3/papers/08-aelbirt.pdf.

J.L. Fan and C. Paar. On Efficient Inversion in Tower Fields of Characteristic
Two. In International Symposium on Information Theory, page 20. IEEE, June
1997.

V. Fischer and M. Drutarovsky. Two Methods of Rijndael Implementation in
Reconfigurable Hardware. In Workshop on Cryptographic Hardware and Embedded
Systems (CHES2001), pages 81-96, May 2001.

K. Gaj and P. Chodowiec. Comparison of the Hardware Prformance of the AES
Candidates using Reconfigurable Hardware. In The Third Advanced Encryption
Standard Candidate Conference, pages 40-56. NIST, April 2000. Available at
http://csrc.nist.gov/encryption/aes/round2/conf3/papers/22-kgaj.pdf.

J. Guajardo and C. Paar. Efficient Algorithms for Elliptic Curve Cryptosystems.
In Jr. Burton S. Kaliski, editor, Advances in Cryptology— CRYPTO ’97, volume
1294 of Lecture Notes in Computer Science, pages 342-356. Springer-Verlag, Au-
gust 1997.

T. Ichikawa, T. Kasuya, and M. Matsui. Hardware Evaluation of the AES Final-
ists. In The Third Advanced Encryption Standard Candidate Conference, pages
279-285. NIST, April 2000. Available at
http://csrc.nist.gov/encryption/aes/round2/conf3/papers/15-tichikawa.pdf.

T. Ichikawa, T. Tokita, and M. Matsui. On Hardware Implementation of 128-
bit Block Ciphers (III). In 2001 Symposium on Cryptography and Information
Security (SCIS 2001), pages 669-674, January 2001. (Japanese).

H. Kuo and I. Verbauwhede. Architectural Optimization for a 1.82 Gbits/sec VLSI
Implementation of the AES Rijndael Algorithm. In Workshop on Cryptographic
Hardware and Embedded Systems (CHES2001), pages 53-67, May 2001.

M. McLoone and J.V. McCanny. High performance Single-chip FPGA Rijndael
Algorithm Implementations. In Workshop on Cryptographic Hardware and Em-
bedded Systems (CHES2001), pages 68-80, May 2001.

S. Morioka and Y. Katayama. Design Methodology for a One-Shot Reed-Solomon
Encoder and Decoder. In International Conference on Computer Design (ICCD
’99), pages 60-67. IEEE, October 1999.

National Institute of Standards and Technology (U.S.). Advanced Encryption
Standard (AES). Available at
http://csre.nist.gov/publications/drafts/dfips-AES.pdf.

254

[14]

[15]

[16]

A. Satoh et al.

National Institute of Standards and Technology (U.S.). Data Encryption Standard
(DES). FIPS Publication 46-3, NIST, 1999. Available at
http://csre.nist.gov/publications/fips/fips46-3 /fips46-3.pdf.

C. Paar. A New Architecture for a Parallel Finite Field Multiplier with Low Com-
plexity Based on Composite Fields. IEEE Transactions on Computers, 45(7):856—
861, July 1996.

A. Rudra, P.K. Dubey, C.S. Jutla, V. Kumar, J.R. Rao, and P. Rohatgi. Effi-
cient Rijndael Encryption Implementation with Composite Field Arithmetic. In
Workshop on Cryptographic Hardware and Embedded Systems (CHES2001), pages
175-188, May 2001.

N. Weaver and J. Wawrzynek. A Comparison of the AES Candidates Amenability
to FPGA Implementation. In The Third Advanced Encryption Standard Candi-
date Conference, pages 28-39. NIST, April 2000. Available at
http://csre.nist.gov/encryption/aes/round2/conf3/papers/13-nweaver.pdf.

B. Weeks, M. Bean, T. Rozylowicz, and C. Ficke. Hardware Performance Simu-
lation of Round 2 Advanced Encryption Standard Algorithm. Available at
http://csrc.nist.gov /encryption/aes/round2/NSA-AESfinalreport.pdf.

	A Compact Rijndael Hardware Architecture with S-Box Optimization
	Introduction
	Rijndael Algorithm
	Data Path Architecture
	Data Path Sharing between Encryption and Decryption
	S-Box Sharing with Key Expander
	Factoring in MixColumns and InvMixColumns

	S-Box Optimization
	Structure of New S-Box
	Multiplicative Inversion over A New Composite Field
	Generating Isomorphism Functions
	Implementation Results of the S-Box

	Performance Comparison in ASICs
	Conclusion
	Acknowledgements
	References

