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Abstract. The concept of partially blind signatures was first introduced
by Abe and Fujisaki. Subsequently, in work by Abe and Okamoto, a prov-
ably secure construction was proposed along with a formalised definition
for partially blind schemes. The construction was based on a witness in-
distinguishable protocol described by Cramer et al. and utilises a blind
Schnorr signature scheme.

This paper investigates incorporating the restrictive property proposed
by Brands into a partially blind signature scheme. The proposed scheme
follows the construction proposed by Abe and Okamoto and makes use
of Brands’ restrictive blind signature scheme.

1 Introduction

Blind signature schemes were first introduced by Chaum [9] and allow a recipient
to acquire a signature on a message m without revealing anything about the
message to the signer. One of the first applications for blind signatures was
in the area of electronic cash. However, the complete lack of control over the
message being signed makes tasks such as including expiry information in the
blind signature difficult. The signer cannot rely on the recipient to include any
specific information in the blindly signed message. The typical solution to this
difficulty has been to associate different signing keys with different classes of
messages. This is undesirable as it leads to a proliferation of signing keys and a
potential verifier must have access to all possible active certified keys.

In the context of electronic cash schemes based around the use of blind sig-
natures, the specific problems arise because of the need to expire coins as well
as the need to clearly nominate the denominational value of each coin. Practical
schemes must allow exact payments and therefore usually accommodate coins
of varying denominations. In addition, blindly issued coins require the bank to
maintain a database of previously spent coins in order to detect double-spending.
Without any extra measures, the size of the database would increase indefinitely
over time and this would reduce the cost-effective and efficient operation of the
database. In order to contain the size of the database, ‘old’ spent coins need
to be removed after an appropriate amount of time. Thus, a coin must have an
expiry date after which it is no longer acceptable in a payment transaction.
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A partially blind signature scheme allows a signer to produce a blind signa-
ture on a message for a recipient and the signature explicitly includes common
agreed information which remains clearly visible despite the blinding process.
Abe and Fujisaki [2] first introduced the concept in response to the need for the
signer to regain some control over the signatures produced by a blind signature
scheme. When used in electronic cash scheme design, the common agreed in-
formation allows expiry date and denominational information to be included in
the blind signature while requiring that the verifier has access to only a single
certified public key.

Early papers on the construction of partially blind signatures [1/T3] based
around Schnorr, DSS and Nyberg-Rueppel schemes concentrated on withstand-
ing parallel algebraic attacks [?]. More recently, Abe and Okamoto [3] described
a provably secure partially blind signature based on a witness indistinguishable
protocol using blinded Schnorr signatures [15] as a building block.

However, the previously published partially blind signatures lack the restric-
tive property. Restrictive blind signature schemes were proposed by Brands [5]
and allow a recipient to receive a blind signature on a message not known to the
signer but the choice of message is restricted and must conform to certain rules.
In practical applications such as Brands’ cash [5l6], the signer is assured that the
recipient’s identity is embedded in some sense in the resulting blind signature.

While Brands’ cash has received wide attention for its ability to detect and re-
veal the identity of double-spenders, it also possesses another property — transfer-
resistance. That is, the spender of a coin must have access to the private key of
the customer who withdrew the coin in order to spend it. This discourages the
transfer of coins from one user to another as the withdrawing user must reveal
private key information if another user is to spend the coin. Transfer-resistance
is a useful tool in discouraging illegal activities such as money laundering and
blackmail.

Main Contribution: Since Brands’ cash remains an important building block
in several cash schemes [7J4[14], it is relevant to consider ways of incorporating
the property of partial blindness into Brands’ restrictive blind signature scheme.
Pointcheval [16] and Abe-Okamoto [3] have constructed security arguments for
blind signatures based on witness indistinguishable protocols. Using the tech-
niques proposed by Abe and Okamoto [3], we utilise a witness indistinguishable
protocol to create a restrictive partially blind signature scheme with provable se-
curity. In the process, we introduce a multiplicative variant of the blind Schnorr
signature, which to the authors’ knowledge has not previously been published.
We also utilise multiplicative (rather than additive) secret sharing in the con-
struction of the witness indistinguishable protocol.

Organisation of the Paper: Section 2] describes the basic definitions associ-
ated with partially blind signatures while section Breviews both Schnorr [I7] and
Chaum-Pedersen [8] protocols in connection with the Cramer et al. construction
for witness indistinguishable protocols. Section Ml discusses blinding operations
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for both the Schnorr and Chaum-Pedersen protocols. A restrictive partially blind
signature is presented in section Bl and its security is discussed in section

2 Definitions

We follow the definitions provided by Abe and Okamoto [3] which have been
adapted for partially blind signatures from the security definitions of Juels, Luby,
and Ostrovsky [12].

In the context of partially blind signatures, the signer and the user are as-
sumed to agree on a piece of common information, denoted by info. It may
happen that info is decided by the signer; in other situations, info may just
be sent from the user to the signer. This negotiation is considered to be done
outside of the signature scheme. Abe and Okamoto [3] formalize this notion by
introducing a function Ag which is defined outside of the scheme. Function Ag is
a polynomial-time deterministic algorithm that takes two arbitrary strings info,
and info,, that belong to the signer and the user, respectively, and outputs info.
To compute Ag, the signer and the user will exchange infos and info,, with each
other. If the signer is allowed to control the selection of info, then Ag is defined
such that it depends only on infos. In this case, the user does not need to send
info,,.

Definition 1 (Partially Blind Signature Scheme). A partially blind signa-
ture scheme is a four-tuple (G,S,U, V).

— G is a probabilistic polynomial-time algorithm, that takes security parameter
k and outputs a public and secret key pair (pk, sk).

— S and U are a pair of probabilistic interactive Turing machines each of which
has a public input tape, a private input tape, a private random tape, a private
work tape, a private output tape, a public output tape, and input and output
communication tapes. The random tape and the input tapes are read-only,
and the output tapes are write-only. The private work tape is read-write. The
public input tape of U contains pk generated by G(1%), the description of Ag,
and info,. The public input tape of S contains the description of Ag and
infog. The private input tape of S contains sk, and that for U contains a
message msg. The lengths of infog, info,, and msg are polynomial in k. S
and U engage in the signature issuing protocol and stop in polynomial-time.
When they stop, the public output tape of S contains either completed or not-
completed. If it is completed, then its private output tape contains common
information info. Similarly, the private output tape of U contains either L
or (info, msg, sig).

— V is a (probabilistic) polynomial-time algorithm. V takes (pk, info, msg, sig)
and outputs either accept or reject.

Definition 2 (Completeness). If S and U follow the signature issuing proto-
col, the signature scheme is complete if, for every constant ¢ > 0, there exists a
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bound ko such that S outputs completed and info = Ag(infos,info,) on its proper
tapes, and U outputs (info,msg, sig) that satisfies

V(pk,info, msg, sig) = accept

with probability at least 1 — 1/k¢ for k > ko. The probability is taken over the
coin flips of G, S and U.

A message-signature tuple (info, msg, sig) is considered valid with regard to
pk if it leads V to accept. We define the partial blindness property as follows.

Definition 3 (Partial Blindness). Let Uy and Uy be two honest users that fol-
low the signature issuing protocol. Let S* play the following game in the presence
of an independent umpire.

1. (pk,sk) « G(1%).

2. (msgo, msgy, info,,, info,,, Ag) «— S*(1*, pk, sk).

3. The umpire sets up the input tapes of Uy, Uy as follows:

— The umpire selects b €r {0,1} and places msg, and msgi_py on the
private input tapes of Uy and Uy, respectively. b is not disclosed to S*.

— Place info,, and info,, on the public input tapes of Uy and U, respectively.
Also place pk and Ag on their public input tapes.

— Randomly select the contents of the private random tapes.

4. 8* engages in the signature issuing protocol with Uy and Uy in a parallel
and arbitrarily interleaved fashion. If either signature issuing protocol fails
to complete, the game is aborted.

5. Let Uy and Uy output (infog, msgy, sigy) and (info1, msg1—p, Sig1—p), TESPEC-
tively, on their private tapes. If infog # info; holds, then the umpire pro-
vides 8* with the no additional information. That is, the umpire gives L
to §*. If infog = info; holds, then the umpire provides &* with the addi-
tional inputs {sigy, sigi—p} ordered according to the corresponding messages
{msgo, msg1 }.

6. S* outputs Y € {0,1}. The signer S* wins the game if b/ = b.

A signature scheme is partially blind if, for every constant ¢ > 0, there exists a
bound ko such that for all probabilistic polynomial-time algorithm S*, 8* outputs
b = b with probability at most 1/2 + 1/k¢ for k > ko. The probability is taken
over the coin flips of G, Uy, Uy, and S*.

Definition 4 (Unforgeability). Let S be an honest signer that follow the sig-
nature issuing protocol. Let U* play the following game in the presence of an
independent umpire.

1. (pk,sk) — G(1™).

2. Ag — U*(pk).

3. The umpire places sk, Ag and a randomly taken infos on the proper input
tapes of S.
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4. U* engages in the signature issuing protocol with S in a concurrent and
interleaving way. For each info, let linf, be the number of executions of the
signature isswing protocol where S outputs completed and info is on its output
tapes. (For info that has never appeared on the private output tape of S,
define linfo = 0.)

5. U* outputs a single piece of common information, info, and linso+1 signatures
(mSglv Sigl)a SRRE) (m‘nginfo—Hv Sigfinfo-‘rl)'

A partially blind signature scheme is unforgeable if, for any probabilistic
polynomial-time algorithm U* that plays the above game, the probability that
the output of U* satisfies

V(pk,info, msg;, sig;) = accept

forall j =1,... blingo + 1 is at most 1/k® where k > ko for some bound ko and

some constant ¢ > 0. The probability is taken over the coin flips of G, S, and
u*.

The following definition of a restrictive blind signature is due to Brands [6].

Definition 5 (Restrictiveness). Let msg be message such that the receiver-
knows a representation (ay,...,a;) of msg with respect to a generator-tuple
(g91,---,9k) at the start of a blind signature protocol. Let (by,...,by) be the repre-
sentation the receiver knows of the blinded number msg’ of msg after the protocol
has finished. If there exist two functions Iy and Iy such that

Il(CL’ ...,ak) = Ig(bl,...,bk),

regardless of msg and the blinding transformations applied by the receiver, then
the protocol is called a restrictive blind signature protocol. The functions I, and Iy
are called blinding-invariant functions of the protocol with respect to (g1, ..., gk)-

3 Witness Indistinguishable Protocols

The Okamoto-Schnorr identification protocol is a well known example of a wit-
ness indistinguishable protocol. Informally, a proof of knowledge is witness in-
distinguishable if the verifier cannot tell which witness the prover is using even
if the verifier knows all possible witnesses [I1]. Pointcheval [I6] has presented se-
curity arguments for the blind Okamoto-Schnorr signature scheme. The witness
indistinguishable property is necessary in order to prove security. Abe-Okamoto
[B] have constructed security arguments for a partially blind signature scheme
based on a witness indistinguishable protocol. We also seek to use a witness
indistinguishable protocol as the basis for a provably secure scheme.

Cramer, Damgard, and Schoenmakers [I0] presented a method for construct-
ing witness indistinguishable protocols by combining suitable three-move proofs
of knowledge with a compliant secret sharing scheme. In particular, the proofs of
knowledge must possess the special soundness and special honest verifier zero-
knowledge properties. A proof of knowledge has special soundness if, given two
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transcripts of the protocol which share a common commitment, a witness can
be computed in polynomial time. A protocol is honest verifier zero-knowledge
if there is a simulator which produces conversations that are indistinguishable
from real conversations between the honest prover and the honest verifier. Spe-
cial honest verifier zero-knowledge requires that there is a procedure that can
take any challenge as input and produce a conversation indistinguishable from
the space of all conversations between the honest prover and honest verifier that
involve this challenge.

As an example of the construction, Cramer, Damgard, and Schoenmakers
[T0] presented a proof of knowledge of d out of n secrets using Schnorr’s protocol
as the basic proof of knowledge and a ‘matrix’ method for the secret sharing
scheme. It is this scheme (with d = 1 and n = 2) that Abe and Okamoto [3] use
to construct a provably secure partially blind signature scheme. Note that the
secret sharing scheme is reduced to a simple additive scheme where both shares
sum to give the secret.

While Cramer, Damgard, and Schoenmakers [I0] concentrate on a construc-
tion which utilises several instances of the same proof of knowledge, they note
that it is also possible to combine instances of different proofs of knowledge. In
this paper, we will combine a Schnorr proof of knowledge of a discrete log [17]
with a Chaum-Pedersen proof of equivalence of discrete logs [8]. With this in
mind, we now review both the Schnorr and Chaum-Pedersen schemes with par-
ticular focus on the special soundness and special honest verifier zero-knowledge
properties.

3.1 Schnorr’s Proof of Knowledge of a Discrete Log

Let two primes p and g be given such that ¢ divides p — 1 and let g € Z;, be
an element of order g. The group generated by g is denoted by Gy. The private
key is x € Z; and the public key is (p,q,9,y) where y = g*. The underlying
identification protocol is as follows:

The prover chooses r € Z, at random and computes a = g". The commit-
ment value, a, is sent to the verifier.

— The verifier chooses a random challenge ¢ €r Z, and sends it to the prover.
The prover sends back the response s = r 4+ cx mod q.

C

The verifier accepts the proof if and only if a = g°y~°.

Special Soundness: Let (¢, s) and (¢, s’) be two signatures that are derived from
the same commitment a. Then, the witness  can be found by observing that

’
c

a=g°y ‘= gsly_ which implies that
Y= gi:i’ = ¢” and so
/
S— S
z="""" mod q.

c—c
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Special Honest Verifier Zero-knowledge: A simulator can generate transcripts of
the Schnorr protocol as follows:

— Select ¢/, s' €r Z;,
— Calculate o’ = g%y
The transcript (a/, ¢, s') satisfies a’ = g% y~¢ by construction and is statistically

indistinguishable from actual protocol transcripts.

3.2 Chaum-Pedersen Signature

We review the Chaum-Pedersen [8] protocol and properties. Let two primes p
and ¢ be given such that ¢ divides p — 1 and let g € Z; be an element of order
q. The group generated by g is denoted by Gy. The private key is o € Z; and
the public key is (p, q, g, y) where y = g*. The underlying identification protocol
(utilising a message m) is as follows:

The prover chooses r €g Z, at random and computes (z,a,b) = (m®, g",m").
The tuple (z,a,b) is sent to the verifier.

The verifier chooses a random challenge ¢ € Z, and sends it to the prover.
— The prover sends back the response s = r + cx mod gq.

The verifier accepts the proof if and only if a = g°y~¢ and b = m®z~°.

Special Soundness: Let (z,¢,s) and (z,c,s") be two signatures that are derived
from the same commitment a. Then, the witness x can be found by observing
that

a= g% ¢=g"y ¢ which implies that

y=ge< = g” and so

s—s'
x:

p— mod ¢

Special Honest Verifier Zero-knowledge: A simulator can generate transcripts of
the Chaum-Pedersen protocol involving a message m as follows:

— Select 2/, s' €r Z;

’
C

— Calculate ' = g%y~
— Caleulate b’ = (m)* (/)¢

The transcript (2/,a’,V, ¢, s') satisfies a/ = g%y~ and b/ = (m)sl(,z’)fC by con-
struction and is statistically indistinguishable from actual protocol transcripts.
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4 Blinding Techniques

In this section, we review the blinding techniques which may be applied to the
Schnorr [I7] and Chaum-Pedersen [8] protocols. As detailed below, the standard
blinding of the challenge for the Chaum-Pedersen protocol is multiplicative in
nature. The usual blind Schnorr protocol [I5] uses an additive blinding of the
challenge. Since our aim is to combine these two types of proof of knowledge
to form a witness indistinguishable protocol which we can subsequently blind,
we need blinding operations which are consistently either additive or multiplica-
tive. To this end, the blinding of the Schnorr protocol outlined below uses a
multiplicative (rather than the more usual additive) blinding of the challenge.

4.1 Brands’ Restrictive Blind Signature

The restrictive blind signature scheme described in this section is derived from
the Chaum-Pedersen scheme [8] described in section and is Brands’ original
restrictive blind signature scheme [5l6].

Let g be a generator of a cyclic group G of order g. Let y = ¢g” be the public
key of the signer, and m a message from the receiver. The signer is supposed to
sign m by forming z = m® and providing a signed proof that log, y = log,, z. The
Chaum-Pedersen protocol can be diverted to form a restrictive blind signature
in the following fashion.

— The signer generates a random number r €g Z,, and sends z = m* "

and b = m” to the receiver.
— The receiver generates at random numbers a, 3 €r Z, and computes

» @ =g

m' =m®g¢” and
2 = 2P,
The receiver also chooses u,v € Z, and computes a’ and b’ as follows:

a = a"g" and
b/ _ auﬁbua(m/)v

The receiver then computes ¢ = H(m' || 2’ || o’ || b') and sends ¢ = ¢/ /u
mod ¢ to the signer.
— The signer responds with s = r + cx mod gq.
— The receiver accepts if and only if a = ¢g°y~¢ and b = m®z
— If the receiver accepts, compute s’ = us +v mod g.

—C

(#/,c,s") is a valid signature on m’ satisfying
¢ =H (! |21 gy N ) ()7

Thus, the receiver has a signature on a message m’ where m’ = m®g? and («, )
are values chosen by the receiver.
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Correctness

v u v !/

=(g°y ) "¢g" =a"¢g" =a

mt= ) ("))

Blindness: Let (m,r, z,a,b,c,s) be any of the views of the protocol as seen by
the signer. Therefore, a = ¢y~ ¢, b =m®27° and s = r + cx. Let (2/,c/,s') be
a valid signature on a message m’ obtained by the receiver. Choose the unique
blinding factors

u=c/c mod q

v=s5 —us modq

and determine a representation m’ = m®g®. (While finding a representation
is difficult, we only need to exploit the existence of such representations. In
fact, there are ¢ representations of m’.) Note that the fact that z = m?® and
2z’ = m'” has been established by the interactive proof provided by the signer
during blind signature formation and the fact that the blind signature is valid.
Therefore, 2/ = (m')* = (m®gP)" = 22y,

By setting a’ = a*g” and b’ = a®Pb**(m/)?, we find that

gs'yfc' _ ngrsuyfcu _ gv(gsyfc)“ _ gvau _ al
()" ()7 = (m)" )T = ) () ()7
= ()" ((m®g")"(z"y")")

I
s

v s—c\% s, —c\B “
0 (m=)" (g ™)")
= (m')" (b"a”)"
_ (m/)ﬂbuaauﬂ
Hence, there exist blinding factors that could have been used to transform

any view into the particular signature (z/,¢,s’) on m’. Therefore, the signer’s
view is statistically independent of the receiver’s signature (z’, ¢/, s’) on m/.
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Restrictiveness: The restrictive nature of the protocol is captured by the follow-
ing assumption.

Assumption 1 (Restrictiveness). The recipient oblains a signature on a
message that can only be of the form m’ = m®¢® with o and B randomly cho-
sen by the recipient. In addition, in the particular case where 8 = 0, if there
exists a representation (u1,u2) of m with respect to bases g1 and go such that
m = gi*gk* and if there exists a representation (py,uh) of m' with respect to

Wy ph

bases g1 and ga such that m' = g\"g52, then the relation Iy (p1, pio) = p1/pe =
py/ 1y = I2(ph, ) holds.

4.2 Schnorr Blind Signature Scheme — Multiplicative Variant

As discussed previously, we seek a blind variant of the Schnorr [I7] protocol
which uses multiplicative (rather than the standard additive operation) to blind
the challenge. This can be accomplished with the following protocol.

— The signer generates a random number r €r Z,, and sends a = ¢g" to the
receiver.

The receiver chooses blinding factors u,v €g Z, and computes a’ as follows:

q’

a/ — aug'u

The receiver then computes ¢/ = H (m || a’) and sends ¢ = ¢//u mod ¢ to
the signer.

The signer responds with s = r 4+ cx mod q.

— The receiver accepts if and only if a = g°y~°.

If the receiver accepts, compute s’ = us +v mod q.

(¢, s') is a valid signature on m satisfying ¢’ = H (m I gs/y_c/).

Correctness

s, —c us+v —cu_( s, —cC u v /

u v
gy =g"""y g°y~°) 9" =a"g" =a

Blindness: Let (r,a,c,s) be any of the views of the protocol as seen by the
signer. Therefore, a = g°y° and s = r + cz. Let (¢/, s’) be a valid signature on a
message m obtained by the receiver. By choosing blinding factors

u=-c/c
r
v=s5 —su(=s —sc/c= u)
c
a/:augv

we find that

gs/yc/ — gv+suycu — gv(gsyc)u — augv — a/
Hence, there exist blinding factors that could have been used to transform any
view into the particular signature (¢, s’) on m. Therefore, the signer’s view is

statistically independent of the receiver’s signature (¢/,s’) on m.



A Provably Secure Restrictive Partially Blind Signature Scheme 109

5 A Restrictive Partially Blind Signature Scheme

The construction of Cramer et al. [L0] for proving knowledge of d out of n secrets
uses a homogeneous collection of proofs of knowledge. However, Cramer et al.
[10] note that it is possible to combine different proofs of knowledge. We mix
Schnorr [17] and Chaum-Pedersen [8] proofs of knowledge in the particular case
when d = 1 and n = 2. That is, the prover demonstrates knowledge of either the
private key related to a Schnorr public key or knowledge of the private key related
to a Chaum-Pedersen public key. As discussed in section Bl the Schnorr and
Chaum-Pedersen proofs of knowledge met the requirements (special soundness
and special honest verifier zero-knowledge) for the construction of a witness
indistinguishable protocol as described by Cramer et al. [10].

The protocol is converted into a blind signature issuing protocol by applying
the blinding operations previously described for both the Schnorr and Chaum-
Pedersen protocols. In order to achieve partial blindness, we apply the same
adaptation used by Abe and Okamoto [3] and use a specialised hash function
to map the agreed common information, info, into the public key of the Schnorr
proof of knowledge. As a result, no one can know the private key associated with
the Schnorr public key. A signer who knows the private key associated with the
Chaum-Pedersen protocol can complete the blind issuing protocol as it is only
necessary to demonstrate knowledge of one of the two private keys. Since the
blinding operations do not alter the public keys, the association between info
and Schnorr public key remains visible in spite of any blinding operations.

The restrictive property of the resulting scheme follows from the applica-
tion of the same blinding operations used in Brands’ original restrictive blind
signature [56].

The setup for the scheme is as follows. Let two primes p and g be given
such that ¢ divides p — 1 and let g € Z; be an element of order g. The group
generated by ¢ is denoted by G,. Choose a key pair (z1,y1) for the Chaum-
Pedersen proof of knowledge. That is, let x1 €r Z, be a private key associated
with the corresponding public key y; = g**. Let H : {0,1}* — Z, be a public
hash function.

The common information, info, is placed in the Schnorr public key y» by
setting yo = F(info), where F : {0,1}* — G, is a public hash function which
maps arbitrary strings into elements in G,. Abe and Okamoto [B] show two
deterministic constructions for F. The signer then signs with private key x;
which is associated with y;. Since the resulting signature is bound to both public
keys, y1 and yo, the common information info is also bound to the signature. This
adaptation preserves witness indistinguishability which is needed for the proof
of security. It is assumed that the signer S and the recipient R have previously
agreed on the common information info. The full signature issuing protocol is
shown in fig. [l Note that additional group membership tests have been omitted
for the sake of clarity.
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Signer S Recipient R
(knows z1 s.t. y1 = g°') (knows y1)
info is agreed common information.
y2 = F (info) y2 = F (info)

Commitment Phase
for Chaum-Pedersen (C-P)

1 €R Z;
21 = m~t
a1 =gt
b1 = an"1

Simulate Schnorr transcript
2,82 €r Zy
az = g*2y,

Share ¢ between ¢; and c»
c1 =c/ca mod ¢
Calculate response

$1 =11+ c1x1 mod ¢

message m

zl,ahbl,ag
Ikt ek AN

C1,S81,C2, 82
et e N

Brands’ blinding for C-P

a1,B1 €Er Zg
my = malgﬁl
1 o1, 81
1=z
u1,v1 €R Zq
o wy v
a1 =ay'g

b, :aitlﬁl b’flal (mll)vl
Multiplicative Schnorr blinding
U2,V2 €R Zyg
az = ay*g"

Generate the challenge
K=glwylly

/ / / / / !
d=H(K ||mi| 2| ar| bl a2)
Blind the challenge
c¢=c /uiuz mod q

Check Sharing: ¢ 2z Cc1C2
Check C-P and unblind

R
- S1,,—C1
ar =g Y
—e

b1 z m®lz]
¢l = ciux
s] =wu1s1 + v mod ¢
Check Schnorr and unblind
as = g2y,

ch = couz

sh = uz82 +va mod ¢q

Fig. 1. Restrictive Partially Blind Signature on a message m} € G,
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The resulting signature on a message m) derived from the base message m
and with common information info is a tuple

(21, €1, 81, ¢, 85).-
The signature is valid if it satisfies
ey =H (K mf | 2 1 g% ur™ | (mh)™ ()70 || g% F (info) ™) mod g

where K = g || y1 || F (info).

Correctness
¢ = ujusc = ujuzcies = (uicr)(cauz) = i ch
gy = gty = (geyre) " gt = gy gh = d)
! _ . N _ _ U1 .
(5 (24) 7% = ) ()7 = () )7 ) )

_ uy
= (m g™ ) ™) )"
uy

= (m=2r )™ o)) )"
_ ailnlh puren (mll)m — b/1

/
85,, " C2 _ u2s2+v2

Yo =49

—C2Uu?2

Yo

—eg\ U2 /
= (9"%y, @) "g"” = ax"* 9" = ay

Restrictiveness: Aspreviously noted, since the blinding operations for the Chaum-
Pedersen protocol are the same as those used for Brands’ restrictive blind sig-
nature [5J6], the restrictive nature of our protocol follows from the properties
attributed to Brands’ restrictive blind signature [5]6].

6 Security

This section discusses the security of the scheme under the assumption of the
intractability of the discrete logarithm problem and ideal randomness of hash
functions H and F.

Lemma 1. The proposed scheme is partially blind.

Proof. When S* is given L in step [ of the game defined in definition B, S*
determines b with a probability % (the same probability as randomly guessing
b).

Suppose that in in step Bl info; = infog. Let (¢}, s}, ch, s5,m]) be one of the
signatures subsequently given to S*. Let (r1, 21, a1, b1, ¢1, 51, ag, c2, Sa, info, m) be
data appearing in the view of S* during one of the executions of the signature
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issuing protocol at step Hl of definition[3. It is sufficient to show that there exists
a tuple of random blinding factors (aq, 81, u1,v1, U2, v2) that maps

/ / / / /
(le 21,01, b17cl7 S1, a2, C2, 827m) — (Cla 51, Co, S9, ml)'
Choose the unique blinding factors

uy =cj/c; mod q
vy = s8] —uis; mod g
ug = ch/ca mod q

/
Vg = So — U2S2 mod ¢

and determine a representation m} = m®1 g% (which is known to exist).

The fact that z; = m®* and 2] = m}™" has been established by the interactive
proof provided by the signer during blind signature formation and the fact that
the blind signature is valid. Therefore, 2/ = (m})™ = (m®1gf)™" = zo1yf.
Since a1 = ¢g°'y;  and ag = ¢g*2y; , we find that

!’ ’ _ ’ _ ’
b=t (K It I 24 gt ) ) ()™ ) g%00%)
:H (K ” Tn/1 ” le ” gv1+u1s1y1—u1(:1 H (m/l)v1+u1s1 (Zi)fuun ” gv2+u252y2—u2cz)

=H (K[| my || 21 [Fax® g™ || a0, (m')™ | az"2g"?)
=H (K || my || 21 [l ay || ¥ || a5)

where @) = a;"1 g%, by = a;"“P1b;"“ ('), and afy = ax"2g"2.

Thus blinding factors always exist which lead to the same relation defined in
the signature issuing protocol. Therefore, even an infinitely powerful $* succeeds
in determining b with probability % m]

Lemma 2. The proposed scheme is unforgeable if linfo < poly(logn) for all info.

Due to space considerations, a proof of this lemma is omitted. The security
argument given by Abe and Okamoto [3] is acknowledged as being more generic
than the particular application detailed by Abe and Okamoto [3]. The proof of
our lemma follows the same general construction.

7 Conclusions

The blinding of the Schnorr protocol utilised by our scheme uses multiplica-
tive blinding for the challenge rather than the more usual additive method. As
a result, the consequent witness indistinguishable protocol uses a novel multi-
plicative sharing scheme in its construction.

We have shown a particular construction of a restrictive partially blind signa-
ture scheme based on a witness indistinguishable protocol which combines both
the Schnorr and Chaum-Pedersen signature schemes. The provable security of
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the construction has been considered in terms of the formal definitions proposed
by Abe and Okamoto [3]. The scheme uses Brands’ restrictive blind signature
[5l6] as a building block and is suitable for inclusion in cash schemes which cur-
rently utilise Brands’ restrictive blind signature. The partially blind property
aids in the practical deployment of these cash schemes as it allows for the easy
implementation of coin expiration dates and multiple coin denominations.
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