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Abstract. This work presents a collection of methods, integrating sym-
metry reduction, under-approximation, and symbolic model checking in
order to reduce space and time for model checking. The main goal of
this work is falsification. However, under certain conditions our methods
provide verification as well.
We first present algorithms that perform on-the-fly model checking for
temporal safety properties, using symmetry reduction. We then extend
these algorithms for checking liveness properties as well.
Our methods are fully automatic. The user should supply some basic
information about the symmetry in the verified system. However, the
methods are robust and work correctly even if the information supplied
by the user is incorrect. Moreover, the methods return correct results
even in case the computation of the symmetry reduction has not been
completed due to memory or time explosion.
We implemented our methods within IBM’s model checker RuleBase,
and compared the performance of our methods with that of RuleBase.
In most cases, our algorithms outperformed RuleBase with respect to
both time and space.

1 Introduction

This work presents a collection of methods, integrating symmetry reduction,
under-approximation, and symbolic model checking in order to reduce space and
time for model checking. The main goal of this work is falsification, that is,
proving that a given system does not satisfy its specification. However, under
certain conditions our methods provide also verification, i.e., they prove that the
system satisfies its specification.

Our methods are fully automatic. The user should supply some basic in-
formation about the symmetry in the verified system. However, the methods
are robust and work correctly even if the information supplied by the user is
incorrect. Moreover, the methods return correct results even in case the com-
putation of the symmetry reduction has not been completed due to memory or
time explosion.
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Temporal logic model checking [6] is a technique that accepts a finite state
model of a system and a temporal logic specification and determines whether
the system satisfies the specification. The main problem of model checking is its
high memory requirements. Symbolic model checking [15], based on BDDs [4],
can handle larger systems, but is still limited in its capacity. Thus, additional
work is needed in order to make model checking feasible for larger systems.

This work exploits symmetry reduction in order to reduce memory and time
used in symbolic model checking. Symmetry reduction is based on the observa-
tion that many systems consist of several similar components. Exchanging the
role of such components in the system does not change the system’s behavior.
Thus, system states can be partitioned into equivalence classes called orbits, and
the system can be verified by examining only representatives from each orbit.

Two main problems arise, however, when combining symbolic model check-
ing with symmetry reduction. One is building the orbit relation and the other is
choosing a representative for each orbit. [13] proves that the BDD for the orbit
relation is exponential in the number of the BDD variables, and suggests choos-
ing more than one representative for each orbit in order to obtain a smaller BDD
for the orbit relation. Yet, this method does not solve the problem of choosing
the representatives. The choice of representatives is significant since it strongly
influences the size of the BDDs representing the symmetry-reduced model. [11]
suggests to choose generic representatives. This approach involves compiling the
symmetric program to a reduced model over the generic states. Such a compi-
lation can only be applied to programs written with a special syntax in which
symmetry is defined inside the program. [12] introduces an algorithm for explicit
model checking which chooses as a representative for an orbit the first state from
this orbit, discovered by the DFS. This method avoids choosing the representa-
tives in advance. Unfortunately, it is not applicable to symbolic model checking
since performing DFS is very inefficient with BDDs.

We suggest a new approach that avoids building the orbit relation and chooses
representatives on-the-fly while computing the reachable states. Unlike [12] the
choice of the representatives is guided by BDD criteria. Reachability is performed
using an under-approximation that, at each step, explores only a subset of the
reachable states. Some of the unexplored states are symmetric to the explored
ones. By exploiting symmetry information, those states will never be explored.
Thus, easier symbolic forward steps are obtained.

We first apply this approach for verifying properties of the form AG(p)1,
where p is a boolean formula. If we find a “bad” state that does not satisfy p we
conclude that the checked system does not satisfy AG(p). On the other hand,
if no “bad” state is found we cannot conclude that the system satisfies AG(p)
since reachability with under-approximation does not necessarily explore every
reachable state. We next present a special version of the previous algorithm in
which the under-approximation is guided by hints [3]. Under certain conditions
this algorithm can also verify the system.
1 AG(p) means that p holds along every path, in every state on the path.
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The algorithms described above are based on reachability, and are often re-
ferred to as on-the-fly model checking. It is well known how to extend on-the-fly
model checking for AG(p) to verifying general safety temporal properties. This is
done by building an automaton describing the property and running it together
with the system. We specify conditions on the automaton that guarantee the
correctness of the on-the-fly algorithm also when the automaton runs together
with the symmetry-reduced model. The suggested conditions hold for the tableau
construction used for symbolic LTL model checking [5], when restricted to LTL
safety properties. They also hold for the satellite used in symbolic model check-
ing of RCTL formulas [2]. By running the automaton together with the reduced
model we save both space and time while verifying these types of formulas.

On-the-fly symbolic model checking cannot handle liveness properties. In or-
der to handle such properties we developed two extensions combining symmetry
reduction with classical (not on-the-fly) symbolic model checking. One is easy
to perform and is mainly suitable for falsification. The other is more expensive
but can handle verification as well.

Previous works expect the user to provide a symmetry group that is also an
invariance group [13]. In many cases two formulas checked on the same model
require different invariance groups since each formula breaks differently the sym-
metry of the model. Thus, the user needs to supply different invariance groups
for different formulas. In other works [17,8] the program is written in a special
syntax, which enables finding the invariance group according to this syntax. In
these cases only formulas which do not break the symmetry of the model are
allowed. In contrast, we build the invariance group automatically, once the sym-
metry group is given. Supplying the symmetry group usually requires only a
high level understanding of the system and therefore is easier than supplying
the invariance group.

We implemented our methods within the enhanced model checking tool Rule-
Base [1], developed by the IBM Haifa Research Laboratories, and compared the
performance of our methods with that of RuleBase. Our experiments show that
our methods performed significantly better, with respect to both time and space,
in checking liveness properties. For temporal safety properties they achieved bet-
ter time requirements. However, their space requirements were worse for small
examples and identical for larger ones.

The rest of the paper is organized as follows. Section 2 gives some basic
definitions. Section 3 shows how to build the invariance group. Section 4 presents
an algorithm for on-the-fly symbolic model checking with symmetry reduction
and then introduces hints into this algorithm. Section 5 and 6 handle temporal
safety properties and liveness properties, respectively and Section 7 presents our
experimental results.

2 Preliminaries

Let AP be a set of atomic propositions. We model a system by a Kripke struc-
ture M over AP , M = (S, S0, R, L) where S is a finite set of states, S0 is a set
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of initial states, R ⊆ S × S is a total transition relation, and L : S → 2AP is
a labeling function which labels each state with the set of atomic propositions
true in that state.

As the specification language we use the branching time temporal logic CTL,
defined over AP. The semantics of CTL is defined with respect to a Kripke
structure. We write M |= ϕ to denote that the formula ϕ is true in M . For
a formal definition of CTL and its semantics see [7]. ACTL is the sub-logic of
CTL in negation normal form in which all formulas contain only universal path
quantifiers.

The bisimulation equivalence and simulation preorder are relations over
Kripke structures (see [7] for definitions) that have useful logical characteriza-
tions. We write M ≡bis M

′ to denote that M and M ′ are bisimulation equivalent
andM ≤sim M ′ to denote thatM is smaller thanM ′ by the simulation preorder.
The following lemmas relate bisimulation and simulation with logics.

Lemma 1. [7] For every two Kripke structures M, M ′ over AP,

– if M ≡bis M
′ then ∀ϕ ∈ CTL over AP , M ′ |= ϕ⇔M |= ϕ.

– if M ≤sim M ′ then ∀ϕ ∈ ACTL over AP , M ′ |= ϕ⇒M |= ϕ.

BDDs: A Binary Decision Diagram (BDD) [4] is a data structure for represent-
ing boolean functions. BDDs are defined over boolean variables, they are often
(but not always) concise in their memory requirement, and most boolean oper-
ations can be performed efficiently on BDD representations. In [15] it has been
shown that BDDs can be very useful for representing Kripke structures and per-
forming model checking symbolically. One of the most useful operations in model
checking, and in particular on-the-fly model checking, is the image computation.
Given a set of states S and a binary relation T , represented by the BDDs S(v̄)
and T (v̄, v̄′) respectively, the image computation finds the set of all states related
by T to some state in S. More precisely, ImT (S(v̄)) = ∃v̄(S(v̄) ∧ T (v̄, v̄′)).

Partial Search: While symbolic model checking can be very efficient, it might
still suffer from explosion in the BDD size. One of the solutions is to perform
partial search of the reachable state space while avoiding large BDDs [16]. Other
methods perform partial search which is guided by the user [3] or by the checked
specification [18]. In all these methods the set of reachable states discovered in
each step is an under approximation of the set of reachable states which would
have been discovered by a BFS. This property enables combining partial search
with on-the-fly model checking.

Symmetry: A permutation on a set A, σ : A → A is a one-to-one and onto
function. For a set A′ ⊆ A, σ(A′) = {a|∃a′ ∈ A′ σ(a′) = a}. In this paper we use
permutations over the set of states of a Kripke structure. Given a CTL formula β
and a structure M, σ(β) refers to applying σ to the set of states in M that satisfy
β.
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A permutation group G is a set of permutations together with the composition
operation such that the identity permutation e is in G and G is closed under the
inverse and the composition operations. If there exists σ ∈ G such that σ(s) = s′

we say that the two states s,s′ are symmetric.

Definition 1. σ1, σ2, . . . , σk are generators of a permutation group G (denoted
G = 〈σ1, σ2, . . . , σk〉) if G is the closure of the set {σ1, σ2, . . . , σk} under com-
position operation.

Definition 2. A permutation group G is a symmetry group of a Kripke struc-
ture M if every permutation σ ∈ G preserves the transition relation. That is,
∀s, s′ ∈ S [(s, s′) ∈ R ⇔ (σ(s), σ(s′)) ∈ R].

Definition 3. A symmetry group G of a Kripke structure M is an invariance
group for formula ϕ if for every atomic proposition β of ϕ, every σ ∈ G and
s ∈ S [M, s |= β ⇔M,σ(s) |= β].

Given an invariance group G and a Kripke structure M we can partition S
into equivalence classes. The equivalence class of s is [s] = {s′|∃σ ∈ G, σ(s) =
s′}. Each [s] is called an orbit and the relation OR = {(s, s′)|s, s′ ∈ S and [s] =
[s′]} is called the orbit relation

For a Kripke structure M = (S, S0, R, L) and an invariance group G for ϕ
the quotient structure is MG = (SG, S

0
G, RG, LG) where SG = { [s] | s ∈ S },

S0
G = { [s] | s ∈ S0 }, RG = { ([s], [s′]) | (s, s′) ∈ R } and LG([s]) = L(s).

In [10,13] it has been proved that MG ≡bis M . By Lemma 1 we therefore have
that for every CTL formula ψ over the same AP as ϕ, MG |= ψ ⇔M |= ψ.

In order to build the quotient structure a representative should be chosen
from each orbit In many cases, however, it is easier to choose more than one
representative for each orbit. We then define a representative relation ξ ⊆ Rep×S
which satisfies (s, s′) ∈ ξ ⇔ s ∈ Rep ∧ [s] = [s′]. In this case we define the
structure Mm = (Sm, S

0
m, Rm, Lm) (m for multiple representatives) where Sm =

Rep, S0
m = { s | ∃s′ ∈ S0 (s, s′) ∈ ξ}, Rm = ξ−1Rξ and Lm = L. [13] shows

that Mm ≡bis MG ≡bis M .

3 Building the Invariance Group

In this section we show how to automatically compute the generators of an
invariance group given the generators of a symmetry group.

Our method works as follows. Given a set of generators for a symmetry
group G, an invariance group Ginv is defined by restricting the generators of G
to those σi that satisfy σi(β) = β for every β ∈ AP . The following lemma states
the correctness of our approach.

Lemma 2. Let σ1, σ2, . . . , σk be generators of a symmetry group G of a Kripke
structure M and let ϕ be a formula over AP. Then IG = {σi|∀β ∈ AP, σi(β) =
β} generates an invariance group Ginv of M for ϕ.
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4 Symmetry with On-the-Fly Representatives

The symbolic algorithm Symmetry MC presented in this section is aimed at
avoiding the two main problems of symmetry reduction, namely building the
orbit relation and choosing a representative for each orbit.

Let M = (S, S0, R, L) be a Kripke structure and σ1, . . . , σk be a set of gen-
erators of a symmetry group G of M. Also let ϕ = AG(p) where p is a boolean
formula. The algorithm Symmetry MC, presented in Figure 1, applies on-
the-fly model checking for M and ϕ, using under-approximation and symmetry
reduction.

The algorithm works in iterations. Starting with the set of initial states, at
each iteration a subset under of the current set of states is chosen. The successors
of under are computed. However, every state which is symmetric to (i.e., in the
same orbit with) a previously reached state is removed. The states that are first
found for each orbit are taken to be the orbit representatives. Note that an orbit
may have more than one representative if several of its states are reached when
the orbit is encountered for the first time. At any step, the set of representatives
are checked to see if they include a state that violates p. If such a state is found
(line 9) then the computation stops and a counterexample is produced. We then
conclude that M �|= AG(p). A useful optimization can be performed by deleting
from memory the BDD for the set full reach immediately after it is used (after
line 7). This may avoid memory explosion when computing forward steps.

The set of symmetric states that should be removed are computed using
the procedure σ Step (Figure 2) instead of using the orbit relation. For a set
of states A and a set of generators IG = { σ1, . . . , σk }, σ Step returns the
set of all states belonging to the orbits of states in A according to G = 〈IG〉.
By using σ Step we exploit symmetry information without building the orbit

Symmetry MC(M, ϕ, σ1, . . . σk)
1 Calculate the generators of the invariance group of M

IG = {σi| for each atomic sub-formula β of ϕ: σi(β) = β}
2 reach rep = S0, i=0
3 while Si �= ∅
4 choose under ⊆ Si (under is an under-approximation of Si)
5 Si+1 = ImR(under)
6 full reach = σ Step(reach rep, σ1, . . . σk)
7 Si+1 = Si+1 / full reach

8 reach rep = reach rep ∪Si+1

9 if Si+1∧¬p �= ∅
10 generate a counter example and break.
11 i = i+1.

Fig. 1. The algorithm Symmetry MC performs on-the-fly model checking of ϕ
on M , using symmetry reduction
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σ Step(A, σ1, σ2, . . . , σk)
1 sym states = A;
2 old sym states = ∅
3 while old sym states �= sym states

4 old sym states = sym states

5 for i = 1 . . . k
6 new sym states = Imσi(sym states)
7 sym states = sym states ∪ new sym states

8 return sym states

Fig. 2. σ Step calculates the states belonging to the orbits of states in A. In
order to calculate Imσi(sym states), σi can be viewed as the binary relation
v̄ = σ(v̄′)

relation. σ Step is expected to be smaller since it represents a set of states
and not a relation. Furthermore it is applied only to reachable states which
are usually represented by smaller BDDs. Indeed, our experiments successfully
applied σ Step to designs for which building the orbit relation was infeasible.

Computationally, σ Step is quite heavy. To avoid this problem, in most
of our experiments we stopped the computation of σ Step before it got to a
fixed point. In general there is a tradeoff between the amount of computation in
σ Step and the symmetry reduction obtained by Symmetry MC.

4.1 Robustness of Symmetry MC

We now discuss the robustness of the algorithm Symmetry MC for falsification
in the presence of an incomplete σ Step and an incorrect set of generators.
Consider first the case in which the computation of procedure σ Step is stopped
before a fixed point is reached. σ Step then returns only a subset of the states in
the orbits of states in A. In this case, less states are removed from Si+1 and as a
result reach rep contains more states. Thus, we might have more representatives
for each orbit.

Consider now the case in which the algorithm is given an incorrect set of
generators. If a “bad” generator (a permutation which associates states that are
not symmetric) is given, then σ Step returns states which are not symmetric to
any state in reach rep. These states are removed from Si+1 and we might not
add any representatives of their orbits to reach rep. Thus, reach rep represents
an under-approximation of the reachable orbits. Consequently, if there is a state
s ∈ reach rep which does not satisfy p, this state is reachable in the original
model and the counterexample generated by Symmetry MC actually exists
in the original model. If a “good” generator is missing, then σ Step returns
less states and as a result there is more than one representative for each orbit.
However, like in the previous case, reach rep contains only reachable states and
therefore Symmetry MC generates only real counterexamples. To summarize,
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Lemma 3. Given any set of generators, the algorithm Symmetry MC is
sound for falsification.

At termination of Symmetry MC, if reach rep contains at least one state
from each reachable orbit then Mm, defined according to reach rep (Sm =
reach rep) is bisimilar to M (see Section 2). Thus, if Mm |= AG(p) then
M |= AG(p) as well. Note that Mm |= AG(p) can be checked on-the-fly by
Symmetry MC.

4.2 Symmetry Reduction Combined with Hints

In this section we present a special case of the algorithm Symmetry MC in
which the under-approximation is guided by a sequence of hints given by the
user [3]. The algorithm Hints Sym, presented in Figure 3, gets as parameters
also a sequence h1, . . . , hl of hints such that hl = TRUE.

If σ1, . . . , σk contain no “bad” generator2 then our hints guarantee that
when Si = ∅, reach rep contains at least one state from each reachable or-
bit. In this case, the algorithm Hints Sym is suitable for verification as well as
falsification.

Hints Sym(M, ϕ, σ1, . . . , σk, h1, . . . , hl)
1 Calculate IG = {σi| for each atomic sub-formula β of ϕ: σi(β) = β}
2 reach rep = S0, i = 0, hint = h1, j = 2
3 while Si �= ∅
4 under = Si∩ hint

5 Si+1 = ImR(under)
6 full reach = σ Step(reach rep, σ1, . . . σk)
7 Si+1 = Si+1/full reach

8 reach rep = reach rep ∪Si+1

9 if Si+1∧¬p �= ∅
10 generate counter example and break
11 if Si+1= ∅ ∧ j ≤ l
12 hint = hintj

13 j = j+1
14 Si+1 = reach rep

15 i = i+1
16 ϕ is TRUE

Fig. 3. The algorithm Hints Sym applies on-the-fly model checking of ϕ on M ,
using hints and symmetry reduction

2 In many cases, the nonexistence of bad generators can be easily determined by the
program syntax [17,8]. In other cases it is expensive but possible to check whether
all generators are good.
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5 Extension for Temporal Safety Properties

There are several known algorithms which use a construction Aϕ for the evalu-
ated formula ϕ and the product model M×Aϕ in order to apply model checking
more efficiently. We now show that it is possible to combine symmetry reduction
with these algorithms. We first specify the requirements on the construction Aϕ

so that it can be used with symmetry reduction.

Definition 4. Given a logic L and a construction that associates with each ϕ ∈
L a structure Aϕ, the construction Aϕ is safe for symmetry reduction w.r.t. L
if it satisfies the following conditions:

1. ∃ψ∀ϕ ∈ L (M |= ϕ⇔M ×Aϕ |= ψ).
2. For every invariance group Ginv of M for ϕ, every σ ∈ Ginv and every

(s, t) ∈ SM×Aϕ , σ((s, t)) = (σ(s), t) 3.
3. For every atomic proposition β of ψ and every

(s, t), (s′, t) ∈ SM×Aϕ , (s, t) |= β ⇔ (s′, t) |= β.

The second condition requires that σ is defined only on s and leaves t unchanged.
The third condition requires that the truth of all β in ψ depend only on t.

Lemma 4. For every construction Aϕ which is safe for symmetry reduction
w.r.t. L, if G is an invariance group of structure M for formula ϕ ∈ L then G
is an invariance group of structure M ×Aϕ for formula ψ.

Corollary 1. For every construction Aϕ which is safe for symmetry reduction
w.r.t. L and for every ϕ ∈ L and ψ ∈ CTL, the quotient structure (M ×Aϕ)G,
built for M ×Aϕ and an invariance group G of M, satisfies (M ×Aϕ)G |= ψ ⇔
M |= ϕ.

Note that using safe construction enables us to find the generators of the invari-
ance group of M according to ϕ and then to evaluate formula ψ on M ×Aϕ with
symmetry reduction that use the same generators. There are several Aϕ con-
structions which are safe for symmetry reduction w.r.t. logic L. One example is
the tableau construction in [5] when restricted to LTL safety properties. In this
case the tableau includes no fairness constraints and it fulfills the requirements
of Definition 4. Another safe construction is the satellite for RCTL formulas de-
fined in [2]. By combining safe construction with symmetry reduction we make
symmetry reduction applicable together with a new set of algorithms, like sym-
bolic on-the fly model checking for RCTL and symbolic LTL model checking,
for which it was not applicable until now. We implemented our algorithms using
the construction introduced in [2], which enabled us to check RCTL formulas
on-the-fly while using a symmetry reduction.

3 since s and σ(s) agree on AP, [(s, t) ∈ SM×Aϕ ⇔ (σ(s), t) ∈ SM×Aϕ ].
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6 Extensions for Liveness Formulas

We now describe two possible extensions that combine classical (not on-the-fly)
symbolic model checking with symmetry reduction. These extensions are useful
for checking liveness properties, and other properties which cannot be checked
on-the-fly.

6.1 Liveness Restricted to Representatives

The purpose of this extension is to falsify ACTL formulas with respect to a
structure M , while avoiding the construction of its quotient model MG. The
idea is to get a set of representatives Rep and to construct the restricted model
M |Rep. The restricted model M |A = (S|A, S0|A, R|A, L|A) is a Kripke structure
where S|A = A, S0|A = S0 ∩ A, ∀s, s′ ∈ S|A [(s, s′) ∈ R|A ⇔ (s, s′) ∈ R] and
∀s ∈ S|A [L|A(s) = L(s)]. Since M |Rep ≤sim M , we have that for every ACTL
formula ϕ, if M |Rep �|= ϕ then M �|= ϕ. Thus, ϕ can be checked on the smaller
model M |Rep.

Note that in principle this idea works correctly with any set of represen-
tatives, even such that does not include a representative for each orbit. There
are however advantages to choosing as Rep the set reach rep which results
from the algorithm Symmetry MC. First, reach rep includes only reachable
states. Second, by construction, the states in reach rep are connected by tran-
sitions while an arbitrary set of representatives Rep might not be connected,
thus, M |reach rep often includes more behaviors than M |Rep. Third, the states
in reach rep represent many other states in the system, thus if the system
includes a bad behavior, it is more likely that reach rep will reflect it.

Following the discussion above we suggest the Algorithm Live Rep that
works as follows: it first runs Symmetry MC to obtain reach rep and then
performs classical symbolic model checking on M |reach rep.

6.2 Liveness with the Representative Relation

We now present another possibility for handling liveness properties. It is ap-
plicable only if no bad generators exist. This method is more expensive com-
putationally, but is suitable for verification of liveness properties. Similarly to
the previous section we first compute reach rep using the algorithm Symme-
try MC. However, now we apply the procedure Create ξ, presented below, in
order to compute the representative relation ξ ⊆ reach rep ×S (see definition
in Section 2). Next we construct a new structure M ′ = (S′, S′

0, R
′, L′) where S′

= reach rep, S′
0 = { s | ∃s′ ∈ S0 (s, s′) ∈ ξ, R′ = ξ−1Rξ and L′ = L. Finally,

we run classical symbolic model checking on ϕ and M ′.

Lemma 5. If S′ contains at least one representative for each reachable orbit
then M ≡bis M

′. Otherwise, M ′ ≤sim M .
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Create ξ(σ1, σ2 . . . σk, Rep)
1 ξ(v̄, v̄′) = Rep(v̄) ∧ (v̄ = v̄′)
2 old ξ(v̄, v̄′) = φ
3 while old ξ(v̄, v̄′) �= ξ(v̄, v̄′)
4 old ξ(v̄, v̄′) = ξ(v̄, v̄′)
5 for i = 1 . . . k
6 new(v̄, v̄′′) = ∃v̄′(ξ(v̄, v̄′) ∧ σi(v̄

′′, v̄′))
7 ξ(v̄, v̄′) = ξ(v̄, v̄′) ∪ new(v̄, v̄′)
8 return ξ(v̄, v̄′)

Fig. 4. The algorithm Create ξ for computing ξ ⊆ Rep × S. Line 6 is im-
plemented with the operator compose odd [14] which computes ∃v̄′(ξ(v̄, v̄′) ∧
σi(v̄′′, v̄′)) using only two sets of BDD variables instead of three

If reach rep is the result of the algorithm Hints Sym, then reach rep indeed
contains at least one representative for each orbit, and M ′ is bisimilar to M .
Thus, M ′ can be used for verifying full CTL.

Figure 4 presents the BDD-based procedure Create ξ for building the repre-
sentative relation ξ for a given set of representatives Rep and a set of generators
σ1, . . . , σk of an invariance group G of M for ϕ.

7 Experimental Results

We implemented the algorithms Hints Sym, Live Rep, and Create ξ in the
IBM’s model checker RuleBase [1]. We ran it on a number of examples which
contain symmetry. For each example we tuned our algorithms according to the
evaluated formula, the difficulty level of computing the reachable states and the
difficulty level of building the transition relation. In most cases, our algorithms
outperformed RuleBase with respect to both time and space. In the tables below
time is measured by seconds, memory (mem) in bytes, and the transition relation
size (TR size) in number of BDD nodes.

The Futurebus Example: We ran the algorithm Live Rep in order to check
liveness properties on the Futurebus cache-coherence protocol with a single bus
and a single cache line for each processor. The table in Figure 5 presents the
results of evaluating the property for a different number of processors. For com-
parison we ran also the RuleBase classical symbolic model checking algorithm.
Both algorithms applied dynamic BDD reordering. The BDD order is very im-
portant since the best BDD order for the classical algorithm is different from the
best BDD order of our algorithm. In order to obtain a fair comparison between
these algorithms we ran each algorithm twice. In the first run each algorithm
reordered a BDD without time limit in order to find a BDD order which is good
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# # classic algorithm Live Rep
of processors vars time mem TR size time mem TR size

5 45 132 43M 144069 101 41M 122769
6 54 607 118M 260625 265 56M 219572
7 63 2852 277M 418701 704 76M 379428
8 72 8470 589M 839055 3313 101M 457781
9 81 81,171 709M 1935394 4571 106M 819871
10 90 - > 1G - 4909 120M 642083

Fig. 5. Live Rep on Future bus example

for this algorithm. The initial order of the second run was the BDD order which
was found by the first run.

The most difficult step in the Futurebus example is building the transition
relation. By restricting the transition relation to the representatives which were
chosen on-the-fly, the transition relation became smaller and as a result the eval-
uation became easier. Figure 5 shows that both time and space were reduced
dramatically using Live Rep. We can also observe that as the number of pro-
cesses increases, the results improved. This is to be expected, as the increase in
the number of the reachable representatives is smaller than the increase in the
number of reachable states.

The Arbiter Example: We ran algorithm Hints Sym on an arbiter exam-
ple with n processes. We checked the arbiter w.r.t. RCTL formulas which were
translated to safe Aϕ and ψ. For comparison we ran RuleBase on-the-fly model
checking and on-the-fly model checking with hints (without symmetry). All al-
gorithms used dynamic BDD reordering and partitioned transition relation [9].
In this case we calculated σ Step only when we changed hints and stopped
σ Step before the fixed point has been reached. The table in Figure 6 presents
the results of the three algorithms on arbiter with 6,8 and 10 processes. For each
case we checked one property that passed and one that failed. We notice that
Hints Sym reduced time but not necessarily space. This can be explained by
the fact that σ Step produced large intermediate BDDs but resulted in a sig-
nificant reduction in Si, thus reduced the computation time of the image steps.

# status # on-the-fly on-the-fly + hints Hints Sym
of processors vars time mem time mem time mem

6 passed 65 53 40M 39 40M 42 40M
6 failed 65 213 52M 64 41M 51 87M
8 passed 84 581 64M 255 49M 179 87M
8 failed 84 745 71M 524 71M 292 83M
10 passed 105 1470 94M 598 67M 358 92M
10 failed 105 1106 93M 740 73M 520 91M

Fig. 6. Hints Sym compared to other on-the-fly algorithms
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num of generators num of vars orbit to ξ Create ξ
time mem time mem

3 16 0.26 26M 0.23 26M
4 20 30.4 33M 1.2 28M
5 24 1017 114M 18 42M
6 28 - >1.5G 735 132M
6 32 - >1.5G 29083 1.2G

Fig. 7. Create ξ compared to Orbit To ξ

Comparing Create ξ and Orbit To ξ: [13] presents an algorithm for com-
puting ξ by building the orbit relation and then choosing the representatives. We
refer to this algorithm by Orbit To ξ. We compare this algorithm with Cre-
ate ξ. Both algorithms find the representative relation ξ ⊆ Rep× S for the set
of representatives Rep chosen according to the lexicographic order. The results
in Figure 7 show that Create ξ gave better results in both time and space, We
believe that this is due to the fact that it saves less information while building ξ.

Acknowledgment

We thank Cindy Eisner for many helpful discussions. Somesh Jha is thanked for
his help with the examples.

References

1. I. Beer, S. Ben-David, C. Eisner, and A. Landver. RuleBase: An industry-oriented
formal verification tool. In Design Automation Conference, pages 655–660, June
1996. 95, 103

2. I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL for-
mulas. In Alan J. Hu and Moshe Y. Vardi, editors, Proceedings of the 10th Inter-
national conference on Computer-Aided Verification, volume 1427 of LNCS, pages
184–194. Springer-Verlag, June 1998. 95, 101

3. R. Bloem, K. Ravi, and F. Somenzi. Symbolic guided search for CTL model
checking. In Design Automation Conference, pages 29–34, June 2000. 94, 96, 100

4. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
transactions on Computers, C-35(8):677–691, 1986. 94, 96

5. E. Clarke, O. Grumberg, and H. Hamaguchi. Another look at LTL model checking.
Formal Methods in System Design, 10(1), 1997. 95, 101

6. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, 1986. 94

7. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT press, De-
cember 1999. 96

8. C. N. Ip and D. L. Dill. Better verification through symmetry. In D. Agnew,
L. Claesen, and R. Camposano, editors, Computer Hardware Description Lan-
guages and their Applications, pages 87–100, Ottawa, Canada, 1993. Elsevier Sci-
ence Publishers B. V., Amsterdam, Netherland. 95, 100



106 Sharon Barner and Orna Grumberg

9. D. Geist and I. Beer. Efficient model checking by automated ordering of transition
relation. In David L. Dill, editor, Proceedings of the sixth International Conference
on Computer-Aided Verification CAV, volume 818, pages 299–310. Springer-Verlag,
June 1994. 104

10. E. A. Emerson and A. P. Sistla. Symmetry and model checking. In C. Courcou-
betis, editor, Proceedings of the 5th International conference on Computer-Aided
Verification, volume 697 of LNCS. Springer-Verlag, June 1993. 97

11. E. Allen Emerson and Richard J. Trefler. From asymmetry to full symmetry: New
techniques for symmetry reduction in model checking. In Conference on Correct
Hardware Design and Verification Methods, pages 142–156, 1999. 94

12. V. Gyuris and A. P. Sistla. On-the-fly model checking under fairness that ex-
ploits symmetry. Formal Methods in System Design: An International Journal,
15(3):217–238, November 1999. 94

13. S. Jha. Symmetry and Induction in Model Checking. PhD thesis, CMU, 1996. 94,
95, 97, 105

14. S. Katz. Coverage of model checking. Master’s thesis, Technion, haifa, Israel, 2001.
103

15. K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer Academic Publishers, 1993. 94, 96

16. K. Ravi and F. Somenzi. High-density reachability analysis. In Proc. Intl. Conf.
on Computer-Aided Design, pages 154–158, November 1995. 96

17. A. P. Sistla, V. Gyuris, and E. A. Emerson. SMC: a symmetry-based model checker
for verification of safety and liveness properties. Software Engineering and Method-
ology, 9(2):133–166, 2000. 95, 100

18. C. Han Yang and David L. Dill. Validation with guided search of the state space.
In Design Automation Conference, pages 599–604, June 1998. 96


	Combining Symmetry Reduction  and Under-Approximation  for Symbolic Model Checking
	Introduction
	Preliminaries
	Building the Invariance Group
	Symmetry with On-the-Fly Representatives
	Robustness of Symmetry_MC
	Symmetry Reduction Combined with Hints

	Extension for Temporal Safety Properties
	Extensions for Liveness Formulas
	Liveness Restricted to Representatives
	Liveness with the Representative Relation

	Experimental Results


