Mixing Forward and Backward Traversals in
Guided-Prioritized BDD-Based Verification

Gianpiero Cabodi, Sergio Nocco, and Stefano Quer

Dip. di Automatica e Informatica, Politecnico di Torino
Turin, Italy
{cabodi,nocco,quer}@polito.it
http://www.polito.it/ " {cabodi,quer}

Abstract. Over the last decade BDD-based symbolic manipulations
have been among the most widely used core technologies in the veri-
fication domain. To improve their efficiency within the framework of Un-
bounded Model Checking, we follow some of the most successful trends
proposed in this field.

We present a very promising approach based on: Mixing forward and
backward traversals, dovetailing approximate and exact methods, adopt-
ing guided and partitioned searches, efficiently using conjunctive decom-
positions and generalized cofactor based BDD simplifications. One of
the main contributions of this paper is a backward verification proce-
dure based on a prioritized traversal. We call the method “inbound-
path-search”. Initially, an approximate forward traversal produces over-
approximate onion-ring frontier sets. After that, these rings are used as
distance estimators and guides to partition state sets in terms of the
estimated distance from the “target” set of states. Finally, while the
subsequent search is performed, the higher priority is given to the subset
with the smallest estimated distance.

We experimentally compare our methodology with a state-of-the-art
technique (approzimate-reachability don’t cares model checking) imple-
mented in the freely available VIS tool. Results show interesting im-
provements in terms of both efficiency and power.

1 Introduction

Binary Decision Diagrams (BDDs!) are one of the most widely used core tech-
niques in the field of Formal Verification. They provide a compact implicit rep-
resentation and manipulation formats for functions with a support varying from
a few tens to a few hundreds of Boolean variables. Albeit many optimized pro-
cedures and variants of the original BDD representation format have been in-
troduced over the years, most of the existing techniques are limited by the well-
known memory explosion problem.

Recently, BDD-based tools have been challenged by approaches based on
propositional satisfiability (SAT) such as Bounded Model Checking (BMC).

! Reduced Ordered BDDs (ROBDDs), or simply BDDs whenever no ambiguity arises.

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 471-484, 2002.
© Springer-Verlag Berlin Heidelberg 2002



472 Gianpiero Cabodi et al.

While traditional BDD-based model checking searches for counter-examples of
unbounded length, SAT-based model checking drops the requirement for a fix-
point computation, and only targets bounded execution runs. As a consequence
SAT methods search for counter-examples of bounded length, by working on a
combinational unrolling of given length of the sequential system under check.
For that reason BMC targets falsification and partial verification rather than
full verification.

Some recent papers, e.g., [1,2], have compared BDD and SAT based model
checking. SAT methods have often been considered more efficient even though
part of the gain is a direct consequence of comparing SAT based bounded against
traditional BDD based unbounded model checking. As a consequence, in [2] the
authors adapt a BDD-based model checker to bounded model checking in order
to make a fair comparison between the BDD and SAT engines. Some works
also address unbounded model checking using SAT solvers [3], but so far their
practical impact has been much less relevant than BMC tools. In other cases
mixed strategies have been proposed to cope with advantages and disadvantages
of both the techniques [4].

Albeit representing a good compromise for bug hunting in large models,
BMUC is unfortunately a partial verification method in practice, since a complete
verification would require computing the “diameter”? of the system, which is
often impossible. Another major problem of semi-exhaustive verification is that
it shows a severe degradation in usability for corner-case bugs, where the tuning
effort becomes higher and recovery more difficult.

Our main goal is to find bugs, since we address the verification of large de-
signs under development, but we are also interested in complete algorithms, able
to efficiently handle both verification and falsification cases. In order to achieve
the above goals, we explore possible enhancements of BDD based symbolic veri-
fication, following some of the trends proposed in the past years to face the BDD
explosion problem.

We exploit approzimate traversals [5] to simplify exact verification; we follow
the guided search [6,7] paradigm when combining forward and backward [8,9]
traversals to mutually focus and narrow their search area; we finally exploit con-
junctive partitioning and cofactor based simplifications to keep BDD sizes under
control. More specifically, we present what we call “inbound-path-search”; i.e.,
a backward search approach based on partitioning and prioritized traversal. We
first derive from an over-approximated breadth-first traversal an onion-ring par-
titioning of the state space. Each ring (or frontier) is a set of states at a given
distance from the initial state. Distances are based on approximate computa-
tions, so we just use them as estimates of correct measures, in order to drive a
backward search to its “target”, i.e., the initial state. To do so, state sets in back-
ward traversal are partitioned by the onion-ring frontiers, and higher priorities
are given to partitions with smallest distance from the target set of states.

2 We call “diameter” of a system its sequential depth, or the maximum shortest path
connecting an initial state to any reachable state.



Mixing Forward and Backward Traversals 473

1.1 Related Works and Contributions

Our approach shares goals and underlying ideas with recent works in two main
research paths.

On the first path, partitioning and guided searches, as “divide-and-conquer”
methodologies, are used to attack large problems [10,11,12,13]. In the present
work we do partition set of states, in order to operate smaller traversals from
individual partitions, and we do adopt a priority based selection strategy. How-
ever, our partitioning strategy is driven by a traversal related heuristic, instead
of mere BDD based measures (e.g., BDD size [11,12,13] or density [10]). We par-
titions state sets and we assign them priorities based on their estimated distance
from the target set of states. We call our prioritized traversal “inbound-path-
search”, as we first explore space regions with smaller estimated distance from
the target set.

On the second path, approximate, exact, forward, and backward traver-
sals [8,9,14] are mixed and adopted together. Our work shares with this set
of papers the general idea of focusing and guiding more accurate traversals with
previous approximate ones. We follow [8] in its idea of combining approximate
forward and exact backward traversals, using frontier sets computed in the for-
ward direction to guide and simplify backward traversals. Our sequence of traver-
sals always ends up with an exact traversal, i.e., we do not have false negatives.
We share with [14] the idea of using an over-approximation of the reachable state
set to simplify exact verification. This is the term of comparison we choose in the
experimental section, as a complete and exact model checking approach using
approximate traversals. Our main contribution is to propose more sophisticated
and efficient simplification strategy for BDD representation of state sets. We use
individual frontier sets, i.e., the onion-rings, instead of fix-point reached states
as tighter constraints for symbolic search.

The overall verification method we present is able to check invariant prop-
erties® on large problems made up of some hundreds of memory elements. We
compare our methodology with the approximate reachability don’t care model
checking [14] as implemented in the VIS tool [15]. Our experimental results show
that we are able to check properties on circuits outside the scope of state-of-the-
art BDD based verification tools.

To sum up, some of the major contributions of our approach are the following;:

— A new BDD based property verification strategy for Unbounded Model
Checking.

— A technique for exact verification (without false negatives), exploiting ap-
proximate traversals as a way to drive and drastically simplify bug hunting
efforts in exact symbolic traversals.

— A set of optimizations within image and pre-image procedures, sharing the
common goal of keeping BDDs as much partitioned and simplified as possi-
ble, in order to avoid memory blow-ups.

3 The extension to more general temporal logic (e.g., CTL) formulas is possible, and
it has been partially implemented, but it is just mentioned in the sequel.



474 Gianpiero Cabodi et al.

As a final remark it is worth pointing out that the present work extends the
one presented in [16]. In that work we show that BDD-based verification can
deal with large circuit and problem sizes in the bounded verification domain
and we compare our approach with SAT-based BMC. Here we work in the un-
bounded verification domain, i.e., we propose a complete verification procedure,
and we compare our results with a state-of-the-art BDD-based unbounded model
checker.

2 Preliminaries

Our verification framework handles Finite State Machines described by their
transition relation TR with initial state set S. We check an invariant property
P by attempting to prove (or disprove) the reachability of the target state set
T, i.e., the complement of P (T = —P), from S. Extending our approach to
temporal logic formulas (e.g., CTL model check) is possible, provided that the
simplification and partitioning are properly embedded within backward CTL
evaluation procedures. We limit our description to invariant properties both for
their practical relevance and for sake of simplicity in the explanation: support
for the outermost AG or EX operators in CTL formulas is trivial, whereas nested
operators would require ad-hoc simplifications.

The procedure is based on the iterated appli-
cation of the IMG function, to compute sym-
bolic tmages of the set of state Ri—1. The
state sets gemerated at each traversal itera-

FwDVER (TR, S, T) tion, i.e., R;, are often called frontier sets.
=0 Notice that the pseudo-code shows a par-
Ro=S ticular case, the one we adopt for approzi-
repeat mate forward traversals: The whole reached

if (TAR;) #0) state set is given as input to the image pro-
return (COUNTEREX (TR, R)) | cedure, whereas any state set in the inter-
=1+ 1 val between the newly reached states and the
R; = SV ImG (TR,R;—1) reached states could be used. On the fly tests
until (R; # Ri—1) for intersection with target are done at each
return (PASS) iteration, thus avoiding full computation of

reachable states whenever T is reached before
the fiz-point. A counter-example is possibly
computed starting from the array R of fron-
tier sets R;.

Fig. 1. Breadth-first exact forward verification

A standard BDD-based ezact forward verification (Figure 1) is a breadth-
first least fix-point visit of the state space that starts from S and tries to find a
path to T. CTL model checking procedures are often implemented (as well as our
exact search) as backward traversal procedures, so let us also mention here that



Mixing Forward and Backward Traversals 475

an invariant (or an AG CTL property) can be verified by proving/disproving
the mutual reachability of S and T in the backward direction. This is easily
expressed by swapping the S and T sets, and changing the IMG function with
the PREIMG computation in Figure 1.

Let us finally put a remark on the generalized cofactor operator. The general-
ized cofactor of f with respect to g is expressed as f|g. Whereas the “constrain”
cofactor may introduce new variables and BDD nodes in the result, the “restrict”
cofactor does not. After some experimental comparison between constrain and
restrict, we selected the latter one for our implementation because of its BDD
simplification properties.

3 Prioritized Forward-Backward Verification

Our approach follows [14] in its main purpose of exploiting over-approximations
of reachable states as care set for backward model checking procedures. How-
ever, we address more aggressive simplification strategies: We exploit cofactoring
based simplifications and decomposed representations for state sets, whereas [14]
simply conjoins (Boolean AND operator) state sets with the pre-computed over-
approximation. Some of our optimizations work at the level of traversal itera-
tions, and they are shown in this section. The other ones are related to inner
steps of image/pre-image computations and are discussed in the next section.
Our starting idea is to combine approximate forward and exact backward
search, as done in [8] for equivalence check and in [16] for bounded model check.
An initial approximate traversal is used to guide and simplify an exact backward
verification task. In order to represent (and differentiate) the various state sets
involved in different traversal strategies, we adopt the following notations:

— F; (B;): Frontier set in exact forward (backward) traversal starting from
initial state set Fg =S (Bg = T). We do not compute F (B) in our approach,
but we use it as a term of comparison while proving the correctness of the
combined forward-backward traversals.

— Fj‘ Frontier set in the over-approximate forward traversal, starting from the
initial state set S (Fo = S).

— R (R™1): Set of exact (over-approximate) forward reachable states, repre-
senting the least fix point value of F (F ).

— FB;: Frontier set in exact backward traversal over-approximate forward
states (R*) and/or frontiers (F;). Computation of FB sets is guided and
simplified using previously computed RTand F7 sets.

— RB: Reached state set in exact backward traversal over approximate forward
states (computed as union of FB frontiers).

Let us first introduce a model check procedure (FWDBWDMC, Figure 2)
sharing similarities with [8,14].

The FWpBWDMC procedure is able to check invariants (or AG(=T) CTL
specifications) in the backward direction, using the fix-point over-approximation
R* to simplify backward state sets FB. It is known that all CTL formulas can



476 Gianpiero Cabodi et al.

FwpBwbpMC (TR, S, T) The procedure proceeds in two steps.
Far =S Firstly, it computes the set of over-
i=0 approximate forward frontier sets, i.e.,
/* approzimate forward */ F;. Each entry in the Ft array over-
repeat estimates the frontier set of an exact

i++ traversal:

Ff =SvImct (TR, Fi ) FfOF;
until (Fj_ =F,) Secondly, it performs a backward
RT =F/ traversal. The fix point value (RT =
_RBz FBy = TIR" F;) is taken as care set when com-
1 =

puting backward frontiers FB. More
specifically, each new frontier FB;
while ((FB; A R* A— RB) # 0) is evaluated taking into account only
if (FB: A S # 0) newly reached states in the care space
return (COUNTEREX (TR, FB)) (RT A =RB). The restrict cofactor
it++ is adopted for generalized cofactor

_ Rt
CarE= R"A = RB simplifications. A counter-example 1is
FB; = PrReIMG (TR, FB;_1) |CARE possibly evaluated.

RB= (RBV FB;) |[R*
return (PASS)

/* exact backward */

Fig. 2. Forward backward for invariant model checking

be rewritten (and evaluated) in terms of just three operators: EX, EG, and
EU. Variants of FWDBWDMC can be adapted to cover all of them, by properly
simplifying state sets with the R™ care set.

Cofactor based simplifications are extensively applied though inner steps of
the procedure. The correctness of the result is based on the following observa-
tions. Let us express a standard backward traversal from T by the following
pre-image computation step

FB,; = PREIMG(TR, FBifl)
RB — RBV FB;

A first way of using care set based simplifications (as done in [14]) is

FB, = PREIMG(TR7 FBi_l) ART A-RB
RB =RBVFB;

where frontier sets FB; are conjoined (Boolean AND) with the care set R™ (so
that part of the states unreachable from S are not considered) and with —RB
(only newly reached states are taken into account). A problem with this approach
arises from the fact that conjunction often means producing larger BDDs, so our
solution is using the restrict generalized cofactor:

FB; = PREIMG(TR,FB;_1)|(RT A =RB)
RB = (RBV FB;)|R*



Mixing Forward and Backward Traversals 477

We use both the over-approximation of (forward) reachable states (R™) and the
complement of backward reached states (WRB) as care set for frontier computa-
tion. In other words, frontiers are arbitrarily simplified over (forward) unreach-
able states and already reached (backward) states (included in RB). Cofactor
simplification with previously reached states (—=RB) is common to many BDD
based traversal tools, whereas the simplification with RT is usually performed
only for TR, not for reached states. Making it on frontier sets may add unreach-
able states to FB; sets, but this does not affect the correctness of the overall
process (by introducing false paths to S) since the (exact) pre-image of unreach-
able states (U = —R) is outside the set of reachable states:

UC-R"C-R = PrelMG(TR,U) C -R (1)

The set of backward reachable states is also simplified by R at each new iteration
introducing new values by means of disjunction (Boolean OR with the new FB;
frontier).

A second approach we introduce is more oriented to falsify the property
under check (i.e., finding bugs), and it does not merely use the fix point RT, set,
but individual FT rings in order to simplify and guide the backward search to
the target S set. The outer procedure (FWDBWDPMC) and the recursive step
BwDPMCSTEP are shown in Figure 3.

FwpBwpPMC (TR,S,T) BwpPMCSTEP (TR,From,T,F CARE,i)

Fi =S if (From A TA CARE # 0)
i=0 return (T)
/* approximate forward */ CARE = CARE A— FrOM
repeat /* inbound-path-search */
i+ To = Prelma (TR, From |F) |Ff |

Ff =SvImct (TR, Ff )
until (Ff = Ff )
R =F/

if (To # 0)
FB = BWpDPMCSTEP (
TR, ToAF; |, T,FT ,CARE,i-1)

i=0
/¥ locate innermost intersection
frontier — target */
while (Ff A T= 0)
i++
if (i > size(FT))
return (PASS)
/* exact backward */
FB = BWDPMCSTEP (
TR, T, S, F*, R+, i)
if (FB = NULL)
return (PASS)
else

return (COUNTEREX(TR,FB))

if (FB # NULL)
FB = (From, FB)
return (FB)
/* global-path-search */
To = PREIMG(TR,From) |CARE
if (To # 0)
while (F” A To = 0)
i++
FB = BWpDPMCSTEP (
TR, To,T,F+ CARE,i)
if (FB # NULL)
FB = (From, FB)
return (FB)
return (NULL)

Fig. 3. Forward backward prioritized model check




478 Gianpiero Cabodi et al.

Approximate forward frontier sets F;r are initially computed in FwpDB-
WDPMC as in FWDBWDMC, then backward traversal is achieved recursively
by BWDPMCSTEP receiving, as parameters, the transition relation TR, a lo-
cal starting state From (a frontier set at the generic call, S at the outer one),
the target set T, the forward over-approximated frontiers (FT), a care subspace
(R*at the outer call), and the index of i the innermost F:r frontier intersecting
From. Since the method is particularly oriented to to seek for a backward path
connecting From to S, the generic recursion tries to find it by first looking for a
path through the inner frontier F?__f

To = PREIMG(TR, From| F)| F; |

This step combines cofactor simplifications both on the domain and image sets.
More specifically, the result set To is simplified using the inner F;r_l frontier
as care set, whereas From is simplified with F:r The result is correct since no
states outside Fj can have a pre-image in F;tl. In case the computed pre-
image To is not void, i.e., a step to the inner frontier has been done, a recursive
call is activated to complete the path to S: The procedure receives as initial
set To A F;r_l, where the conjunction is kept indicated (no product BDD is
computed), so that the second term will disappear when recursively computing
the pre-image to the F; , frontier and so on so forth.

As far as pre-images succeed reaching inner frontiers, the approach shows its
best guiding and simplification power, since the search is driven by approximate
frontiers into sub-spaces where the chance to attain the goal is higher. Of course
the chance relies in the goodness of the (forward) approximation process, so the
search might fail, either for errors in the approximations, or simply because no
paths to S exist (property is not falsifiable). This is the case where backward
search is completed by a local wider exploration from the From set to the whole
CARE, which is equal to R™, with the exclusion of all From sets up in the
recursion tree. This attempt is done both to explore the complete search space
when no inbound path is found, so that starting states for new searches are
generated, or the absence of a path to S is finally proved. In order to avoid
an excessive amount of partitioning, with consequent exponential degradation
of time performance, we have two heuristic controls on the activation of the
inbound path search: the BDD size threshold on From (no inbound search is
done if From is under the threshold) and a maximum amount of partitionings
up in the recursion tree. The above controls are common to several techniques
adopting partitioning with BDDs, and they are not shown in Figure 3 for sake
of simplicity.

Recursions stop whenever the target set T is intersected by From, or a dead
end is attained because no success was locally found by both inbound and global
attempts.

The correctness of the procedure is guaranteed by the following theorem.

Theorem 1. Let F+ be an array of k over-approzimated forward frontiers such
that FS‘ =S, V0<i<kF;" O F;, and FZ‘_l =R" D R. Let T be the complement



Mixing Forward and Backward Traversals 479

of an invariant under check. Then the FWDBWDPMC is correct, i.e., it finds a
path from T back to S if and only such a path exists.

Sketch of Proof The proof is achieved in two steps:

— We first prove that no false negatives are generated by the procedure, i.e.,
that any counter-example generated is correct. This is guaranteed by the fact
that partitioning and prioritized visit does not introduce states unreachable
from S. The only unreachable states considered are those generated by co-
factor simplifications, that do not generate backward paths to S (see Equa-
tion (1)).

— We then show that the procedure is complete, i.e., it fully explores a sub-
space able to prove or falsify the property. We do this by showing that the
“global-path-search” section of BWDPMCSTEP is just a recursive version of
FwpBwWDMC (and it explores the same state sets) in case the “inbound-
path-search” fails.

A key issue for performance in the above procedures is keeping BDD sizes
under control by means of generalized cofactor simplifications and threshold
based control over conjunctions.

— Frontier sets in approximate forward traversals (F;) are “clustered” on a
threshold basis. Each set is a conjunction of terms with disjoint* support:
Ff = [jcGroups f{ (see Section 4). As in transition relation clustering, we
partially compute products as far as the generated products is under a chosen
threshold.

— Accuracy of the over-approximate forward traversal is not as important as
in approximate model check [9], where the goodness of a verification task
heavily relies on the ability of an approximate model to represent the exact
behavior. The main purpose of approximate traversal in our solution is to
generate good care sets for effective BDD simplifications throughout an exact
traversal. Since accuracy often implies larger BDDs, even in approximate
traversals, we achieve better results with intermediate solutions (trading off
accuracy for BDD size).

— Frontier sets in exact backward traversal (FB;) are always computed and
manipulated in their cofactored form, i.e., the PREIMG procedure directly
works with the Fj‘ set in order to simplify FB; = BilF;" while computing it
(see next paragraph). Furthermore, FB; sets are generated in conjunctively
decomposed forms, using a technique derived from [18].

4 Performance Issues in Image and Pre-image
Computations

Let us concentrate now on the inner steps of image and pre-image computations,
involving some of the most effective optimizations for the overall performance.

4 Overlapping projections are also possible, as adopted in [3,17], but we presently
limit our implementation to approximate images with non-overlapping components.



480 Gianpiero Cabodi et al.

We will describe approximate image, exact and approximate pre-image, under a
general attempt to control BDD sizes by means of conjunctive partitioning and
clustering”, combined with generalized cofactor simplifications.

Approximate image is computed as

Ff =e™(TRFf ) =[] Ivc(TR,FL,)

j€Groups

where TR = [[;cqroups TRj 18 the clustered transition relation (each group is
in turn a statically generated product of clusters). The partial images of each
group are conjoined under threshold control, so the result Fj is a conjunctively
partitioned BDD.

Exact pre-image exploits two levels of partitioning and cofactor simplifica-
tions. First of all, the cofactoring term (CAREin Figure 2 and Figure 3) is given
as a parameter to the PREIMGWITHCARE function, in order to be used as a
care set for inner operations:

FB; = PREIMG(TR,FB;_1)| CARE
= PREIMGWITHCARE(TR, FB;_1, CARE) | CARE

The latter function is implemented as the classical linear “and-exist” or “rela-
tional product” with early quantification, where the generic step (computing a
new intermediate product P; = 3., (P;_1 A TR;)) is optimized as follows

Pj = El:nj (Pj,1 A tTj)lCARE
Pj =3,P; A (P;13:P;)

Each partial product is first cofactored with the care set CARE, then the basic
decomposition step of [18] is applied, exploiting the sets of early quantification
variables as variable layers driving the decomposition (instead of the variable
ordering). The latter step produces a conjunctively decomposed pre-image, that
is finally clustered under threshold control.

5 Experimental Results

The presented technique is implemented in a program called FBV (Forward-
Backward Verifier), running on top of the Colorado University Decision Diagram
(CUDD) package.

We describe an experimental comparison between this tool and VIS [15] using
the technique described in [14] as implemented with the command “model_check
-D 3". Our experience with VIS shows that within the proposed set of experi-
ments this choice is more efficient than other special purpose techniques, e.g., ap-
proximate model checking (command “approximate_model_check”), and forward

® We denote with clustering a partial computation of a product (AND), controlled by
a BDD size threshold. The technique is derived from partitioned transition relation
manipulation: Whenever the size of an intermediate product is too high, the product
is aborted, a cluster is put aside and product computation resumes.



Mixing Forward and Backward Traversals 481

invariant checking (command “check_invar”) (both unable to complete most of
the experiments). The experiments are performed on a 1.7 GHz Pentium IV
Workstation with a 1 GByte main memory, running RedHat Linux.

We present data on two sets of circuits:

— ISCAS’89 and ISCAS’89-addendum benchmarks (upper part of Table 1). In
this case the verified properties are automatically generated as described
in [16]°.

— Models taken from [6] (lower part of Table 1). In this case the verified prop-
erties are available with the original descriptions.

Each line in Table 1 describes one or more checks on a given model. Models
are sorted by number of state variables (column # SV). Column # reports the
number of checked properties. Whenever # is larger than one, we report overall
results for the verified set of properties. Properties are either proved correct, and
denoted by Pass, or they are falsified and labeled by Fail. Depth indicates the
maximum sequential depth explored (i.e., the length of the counter-example or
the amount of breadth-first backward iterations done to prove correctness) over
the set of checked properties.

Overall, the circuits presented have different sizes, some of them outside
the range of problems manageable by state-of-the-art BDD based verifiers. Cir-
cuit philo is a synchronous version of the Philosopher problem, where the asyn-
chronous behavior is modeled by a scheduler enabling just one philosopher at
the time. We check safety properties in all the cases. The Cone-Of-Influence
reduction is always applied before starting the verification process.

The FWpDBWDPMC procedure is used for the s3330, s3384, and s35932,
FwpBwDMC in all other cases. Data shows how our technique is more efficient
in terms of memory usage (since our optimizations primarily target BDD size
reduction). As far as execution time is concerned, in some cases the two tools
are comparable (usually on experiments where BDDs could be enough easily
deal with the VIS tool), whereas in other cases our optimizations are the key to
complete the verification task. On the one hand, minor differences in “easier”
experiments are related to different settings and partitions used in approximate
reachability. On the other hand, performance in “difficult” experiments is largely
dominated by backward traversals, where cofactor based simplifications provides
much smaller BDDs in FBV than the corresponding AND based simplifications
in VIS.

6 Conclusions and Future Works

BDD-based symbolic manipulation has been one of the most widely used core
technologies in the synthesis and verification domain, over the last decade. Nev-
ertheless, existing algorithms are still limited by memory resources in practice.

6 Notice however that [16] refers to bounded verification whereas we present here only
data on unbounded verification.



482 Gianpiero Cabodi et al.

Table 1. Experimental comparison between FBV and the Approximate Reach-
ability Don’t Cares strategy of VIS. ovf means overflow on time (time limit
= 10800 seconds). In this case Mem. indicates maximum memory usage before
aborting verification

Model # SV Property VIS FBV

# | Pass/Fail| Depth Mem. Time Mem. Time

[MByte] | [sec] [MByte] | [sec]
s3330 132|| 5 Fail 5 45 640 20 17
s3384 183|| 3 Fail 11 203 ovf 65| 2993
s9234 211|| 5 Fail 241 23 198 30 427
s15850.1 534|| 3 Fail 76 143| 1230 118 700
s13207.1 638|| 5 Fail 430 120 1748 60| 1824
$38584.1 1426|| 1 Fail 11 342 ovf 180 456
s35932 1728] 1 Fail 32 315 ovf 60 831
vsaR 66| 2 Fail 20 21 29 17 21
am2901 68| 1 Fail 17 36 116 28 81
FIFOs 142| 1 Pass 16 121| 2618 35 823
philosg 40 1 Pass 35 16 4 20 13
philogo 120 1 Pass 115 251 ovf 29 78
philoioo 200(| 1 Pass 195 383 ovf 159| 6220
Paluig 317 1 Fail 3 37 196 23 110
1 Pass 3 38 271 23 82

Following some of the most promising techniques proposed over the last a few
years, we present in this paper an approach to face very large Unbounded Model
Checking problems. We propose to mix forward and backward approximate and
exact traversals, guided search, conjunctive decompositions and generalized co-
factor based BDD simplifications, to obtain relevant performance enhancements.

We experimentally compare our tool with a state-of-the-art BDD based
model checker. Our experience leads to the conclusion that we are able to deal
with problems outside the present scope of other BDD-based tools.

Among the possible future works we need some effort on heuristics, to make
our approach more self-tuning, and to obtain a common framework for experi-
ments and comparisons with different tools and sets of models.

Acknowledgment

The authors would like to thank Fabio Somenzi for the source descriptions of
some circuits used in the experiments.



Mixing Forward and Backward Traversals 483

References

1.

10.

11.

12.

13.

14.

A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic Model
Checking using SAT procedures instead of BDDs. In Proc. 36th Design Automat.
Conf., pages 317-320, New Orleans, Louisiana, June 1999. 472

F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Y.
Vardi. Benefits of Bounded Model Checking at an Industrial Setting. In Gérard
Berry, Hubert Comon, and Alan Finkel, editors, Proc. Computer Aided Verifica-
tion, volume 2102 of LNCS, pages 435-453, Paris, France, July 2001. Springer-
Verlag. 472

P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining Decision Di-
agrams and SAT Procedures for Efficient Symbolic Model Checking. In E. Allen
Emerson and A. Prasad Sistla, editors, Proc. Computer Aided Verification, volume
2102 of LNCS, pages 124-138, Chicago, Illinois, July 2000. Springer-Verlag. 472
A. Gupta, Z. Yang, P. Ashar, and A. Gupta. SAT-Based Image Computation with
Application in Reachability Analysis. In Proc. Formal Methods in Computer-Aided
Design, volume 1954 of LNCS, Austin, TX, USA, 2000. 472

H. Cho, G. D. Hatchel, E. Macii, B. Plessier, and F. Somenzi. Algorithms for
Approximate FSM Traversal Based on State Space Decomposition. IEEE Trans-
actions on CAD, 15(12):1465-1478, December 1996. 472

K. Ravi and F. Somenzi. Hints to Accelerate Symbolic Traversal. In Correct
Hardware Design and Verification Methods (CHARME’99), pages 250-264, Berlin,
September 1999. Springer-Verlag. LNCS 1703. 472, 481

M. K. Ganai, A. Aziz, and A. Kuehlmann. Enhancing Simulation with BDDs and
ATPG. In Proc. 36th Design Automat. Conf., pages 385-390, New Orleans, LA,
November 1999. 472

G. Cabodi, P. Camurati, and S. Quer. Efficient State Space Pruning in Symbolic
Backward Traversal. In Proc. Int’l Conf. on Computer Design, pages 230235,
Cambridge, Massachussetts, October 1994. 472, 473, 475, 479

S. G. Govindaraju and D. L. Dill. Verification by Approximate Forward and
Backward Reachability. In Proc. Int’l Conf. on Computer-Aided Design, pages
366-370, San Jose, California, November 1998. 472, 473, 479

K. Ravi and F. Somenzi. High-Density Reachability Analysis. In Proc. Int’l Conf.
on Computer-Aided Design, pages 154—158, San Jose, California, November 1995.
473

G. Cabodi, P. Camurati, and S. Quer. Improving the Efficiency of BDD-based
Operators by means of Partitioning. IEEE Transactions on CAD, 18(5):545-556,
May 1999. 473

G. Cabodi, P. Camurati, and S. Quer. Improving Symbolic Reachability Anal-
isys by means of Activity Profiles. IEEE Transactions on CAD, 19(9):1065-1075,
September 2000. 473

R. Fraer, G. Kamhi, B. Ziv, M. Y. Vardi, and L. Fix. Prioritized Traversal: Efficient
Reachability Analysis for Verification and Falsification. In E. Allen Emerson and
A. Prasad Sistla, editors, Proc. Computer Aided Verification, volume 1855 of LNCS,
pages 389-402, Chicago, Illinois, July 2000. Springer-Verlag. 473

I. Moon, J. Jang, G. D. Hachtel, F. Somenzi, J. Yuan, and C. Pixley. Approx-
imate Reachability Don’t Cares for CTL Model Checking. In Proc. Int’l Conf.
on Computer-Aided Design, pages 351-358, San Jose, California, November 1998.
473, 475, 476, 480



484

15.

16.

17.

18.

Gianpiero Cabodi et al.

R. K. Brayton et al. VIS. In Mandayam Srivas and Albert Camilleri, editors, Proc.
Formal Methods in Computer-Aided Design, volume 1166 of LNCS, pages 248-256,
Palo Alto, California, November 1996. Springer-Verlag. 473, 480

G. Cabodi, P. Camurati, and S. Quer. Can BDDs compete with SAT solvers on
Bounded Model Checking? In Proc. 39th Design Automat. Conf., New Orleans,
Louisiana, June 2002. 474, 475, 481

S. G. Govindaraju, D. L. Dill, A. Hu, and M. A. Horowitz. Approximate Reach-
ability Analysis with BDDs using Overlapping Projections. In Proc. 85th Design
Automat. Conf., pages 451-456, San Francisco, California, June 1998. 479

G. Cabodi. Meta-BDDs: A Decomposed Representation for Layered Symbolic
Manipulation of Boolean Functions. In Gérard Berry, Hubert Comon, and Alan
Finkel, editors, Proc. Computer Aided Verification, volume 2102 of LNCS, pages
118-130, Paris, France, July 2001. Springer-Verlag. 479, 480



	Mixing Forward and Backward Traversals in  Guided-Prioritized BDD-Based Verification
	Introduction
	Related Works and Contributions

	Preliminaries
	Prioritized Forward-Backward Verification
	Performance Issues in Image and Pre-image Computations
	Experimental Results
	Conclusions and Future Works


