
Checking Satisfiability of First-Order Formulas

by Incremental Translation to SAT

Clark W. Barrett, David L. Dill, and Aaron Stump

{barrett,dill,stump}@cs.stanford.edu

Abstract. In the past few years, general-purpose propositional satis-
fiability (SAT) solvers have improved dramatically in performance and
have been used to tackle many new problems. It has also been shown that
certain simple fragments of first-order logic can be decided efficiently by
first translating the problem into an equivalent SAT problem and then
using a fast SAT solver. In this paper, we describe an alternative but
similar approach to using SAT in conjunction with a more expressive
fragment of first-order logic. However, rather than translating the entire
formula up front, the formula is incrementally translated during a search
for the solution. As a result, only that portion of the translation that is
actually relevant to the solution is obtained. We describe a number of ob-
stacles that had to be overcome before developing an approach which was
ultimately very effective, and give results on verification benchmarks us-
ing CVC (Cooperating Validity Checker), which includes the Chaff SAT
solver. The results show a performance gain of several orders of mag-
nitude over CVC without Chaff and indicate that the method is more
robust than the heuristics found in CVC’s predecessor, SVC.

Keywords: Satisfiability, Decision Procedures, Propositional Satisfia-
bility, First-Order Logic.

1 Introduction

Automated tools to check the satisfiability (or dually, the validity) of formulas
are of great interest because of their versatility. Many practical problems can
be reduced to the question of whether some formula is valid in a given logical
theory.

Different approaches have been taken to developing general-purpose deci-
sion procedures. At one extreme, propositional satisfiability (SAT) solvers are
blazingly fast, but only operate on propositional formulas, a very limited input
language. At another extreme, general purpose first- or higher-order theorem
provers are capable of proving some sophisticated results, but since their logics
are undecidable, a result cannot be guaranteed.

A middle road is to develop fast decision procedures for specific decidable
first-order theories. One interesting way to do this which has recently seen a
lot of research activity is to translate the problem to SAT and then use a fast
SAT solver to obtain a solution. By using appropriate tricks to reduce the time

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 236–249, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Checking Satisfiability of First-Order Formulas 237

and space required for the translation, this approach seems to work well for
simple theories such as the theory of equality with uninterpreted functions [3,12].
However, it is not clear how or whether such an approach would work for other
decidable theories.

We propose a method designed to be more generally applicable: given a satis-
fiability procedure SatFO for a conjunction of literals in some first-order theory,
a fast SAT-based satisfiability procedure for arbitrary quantifier-free formulas
of the theory can be constructed by abstracting the formula to a propositional
approximation and then incrementally refining the approximation until a suffi-
ciently precise approximation is obtained to solve the problem. The refinement
is accomplished by using SatFO to diagnose conflicts and then adding the ap-
propriate conflict clauses to the propositional approximation.

In Section 2, we briefly review propositional satisfiability. We then describe
the problem in Section 3. Section 4 describes our approach to solving the problem
using SAT, and Section 5 describes a number of difficulties that had to be over-
come in order to make the approach practical. Section 6 describes some related
work, and in Section 7, we give results obtained using CVC [15], a new decision
procedure for a combination of theories in a quantifier-free fragment of first-
order logic which includes the SAT solver Chaff [10]. We compare with results
using CVC without Chaff and with our best previous results using SVC [1], the
predecessor to CVC. The new method is generally faster, requires significantly
fewer decisions, and is able to solve examples that were previously too difficult.

2 Propositional Satisfiability

The SAT problem is the original classic NP-complete problem of computer sci-
ence. A propositional formula is built as shown in Fig. 1 from propositional
variables (i.e. variables that can either be assigned true or false) and Boolean
operators (∧, ∨, ¬). Given such a formula, the goal of SAT is to find an assign-
ment of true or false to each variable which results in the entire formula being
true.

Instances of the SAT problem are typically given in conjunctive normal form
(CNF). As shown in Fig. 1, CNF requires that the formula be a conjunction of
clauses, each of which is a disjunction of propositional literals. In Section 4.1,
we describe a well-known technique for transforming any propositional formula
into an equisatisfiable propositional formula in conjunctive normal form.

Although the SAT problem is NP-complete, a wide variety of techniques have
been developed that enable many examples to be solved very quickly. A large
number of publicly distributed algorithms and benchmarks are available [14].
Chaff [10] is a SAT solver developed at Princeton University. As with most
other SAT solvers, it requires that its input be in CNF. It is widely regarded as
one of the best performing SAT solvers currently available.

238 Clark W. Barrett et al.

propositional formula ::= true | false |

propositional variable

| propositional formula ∧ propositional

formula

| propositional formula ∨ propositional formula

| ¬propositional formula

CNF formula ::= (clause ∧ . . . ∧
clause)

clause ::= (propositional literal ∨ . . . ∨
propositional literal)

propositional literal ::= propositional variable

| ¬propositional variable

Fig. 1. Propositional logic and CNF

formula ::= true | false | literal

| term = term

| predicate symbol (term, . . ., term)

| formula ∧ formula

| formula ∨ formula

| ¬formula

literal ::= atomic formula | ¬atomic formula

atomic formula ::= atomic term = atomic term

| predicate symbol (atomic term, . . .,
atomic term)

term ::= atomic term

| function symbol (term, . . .,term)
| ite(formula,term,term)

atomic term ::= variable | constant symbol

| function symbol (atomic term,

. . .,atomic term)

Fig. 2. A quantifier-free fragment of first-order logic

Checking Satisfiability of First-Order Formulas 239

3 The Problem

We will show how to use SAT to aid in determining the satisfiability of a formula
φ in a language which is much more expressive than propositional logic: the
basic variant of quantifier-free first-order logic shown in Fig. 2. Note that in the
remainder of the paper, the term “literal” by itself will be used to refer to an
atomic formula or its negation, as defined in Fig. 2. This differs from the term
“propositional literal” which we will use as in the previous section to mean a
propositional variable or its negation. A small difference between this logic and
conventional first-order logic is the inclusion of the ite (if-then-else) operator
which makes it possible to compactly represent a term which may have one of
two values depending on a Boolean condition, a situation which is common in
applications. An ite expression contains a formula and two terms. The semantics
are that if the formula is true, then the value of the expression is the first
term, otherwise the value of the expression is the second term. Note that while
both formulas and terms may contain proper Boolean sub-expressions, atomic
formulas and atomic terms do not.

Formulas in the logic of Fig. 2 are intended to be interpreted with respect
to some first-order theory which gives meaning to the function, predicate, and
constant symbols in the formula. The theory of integer linear arithmetic, for
example, defines function symbols like “+” and “-”, predicate symbols like “<”,
and “>”, and arbitrary integer constant symbols. For a given theory and formula,
the formula is satisfiable if it is possible to assign values to the variables in the
formula from elements of the domain associated with the theory in a way that
makes the formula true.

Significant research has gone into fast algorithms for determining the satisfia-
bility of conjunctions of literals with respect to some logical theory (or combina-
tion of theories) [2,11,13]. CVC, for example, is such a decision procedure which
includes theories for arithmetic, arrays, abstract data types, and uninterpreted
functions. We do not address the issue of constructing such decision procedures
here, but rather assume that we are given a decision procedure SatFO for deter-
mining the satisfiability, with respect to a theory of interest, of a conjunction of
literals in the logic of Fig. 2.

The problem we will address is how to use such a decision procedure to con-
struct an efficient SAT-based decision procedure for the satisfiability of arbitrary
formulas (i.e. not just conjunctions of literals).

4 Checking Satisfiability
of Arbitrary Formulas Using SAT

Suppose we have, as stated, a core decision procedure SatFO for determining
the satisfiability of conjunctions of literals, and we wish to determine whether
an arbitrary formula φ is satisfiable.

An obvious approach would be to use propositional transformations (such as
distributivity and DeMorgan’s laws) to transform φ into a logically equivalent

240 Clark W. Barrett et al.

CheckSat(decisions,φ)
φ := Simplify(decisions,φ);
IF φ ≡ false THEN RETURN ∅;
IF ¬SatFO(decisions) THEN RETURN ∅;
IF φ ≡ true THEN RETURN decisions;
Choose the first atomic formula α appearing in φ.
result := CheckSat(decisions ∪ {α},φ);
IF result = ∅ THEN

result := CheckSat(decisions ∪ {¬α},φ);
RETURN result;

Fig. 3. Simple recursive algorithm for checking satisfiability

disjunction of conjunctions of literals and then test each conjunct for satisfiability
using SatFO . Unfortunately, this transformation can increase the size of the
formula exponentially, and is thus too costly in practice.

The approach taken by CVC’s predecessors is equivalent to the recursive
algorithm shown in Fig. 3. The algorithm takes two parameters: the decisions
made so far, and the formula whose satisfiability is in question. The formula
is first simplified relative to the decisions. Then, a number of base cases are
checked: if the formula is false or the decisions are inconsistent, the algorithm
returns ∅ (indicating that no satisfying assignment was found); if the formula
is true, then the set decisions describes a consistent state in which the formula
is satisfied. If none of the base cases hold, then a case-split is done on the first
atomic formula α in φ. The algorithm is then called recursively: first considering
the case when α is true and then considering the case when α is false . Although
this approach is straightforward and works well in some cases, it is not very
robust: small changes or differences in formulas can cause a dramatic change in
the number of decisions made and the amount of time taken.

Our new approach is designed to be fast and robust. The key idea is to
incrementally form a propositional abstraction of a first-order formula. Consider
an abstraction function Abs which maps first-order formulas to propositional
formulas. It is desirable that the abstraction have the following two properties:

1. For any formula φ, if Abs(φ) is unsatisfiable, then φ is unsatisfiable.
2. If Abs(φ) is satisfiable, then the abstract solution can either be translated

back into a solution for φ or be used to refine the abstraction.

We first describe a process for determining an appropriate initial proposi-
tional abstraction Abs . We then describe how to refine the abstraction if the
proof attempt is inconclusive.

4.1 Computing a Propositional Abstraction
of a First-Order Formula

The basic idea of the process is to replace non-propositional formulas with propo-
sitional variables. Each syntactically distinct atomic formula α is replaced with

Checking Satisfiability of First-Order Formulas 241

a new propositional variable, pα. Syntactically identical atomic formulas are re-
placed with the same propositional variable.

The result would be a purely propositional formula if not for the ite opera-
tor. Handling this operator requires a bit more work. We use a transformation
which preserves satisfiability and eliminates the ite expressions. First, each ite
term t is replaced with a new term variable vt . Again, syntactically identical
terms are replaced with the same variable. Then for each syntactically distinct
term t ≡ ite(a, b, c) that is replaced, the following formula is conjoined to the
original formula: (a → vt = b) ∧ (¬a → vt = c). By repeating this process, all
ite operators can be eliminated (in linear time), and in the resulting formula,
all terms are atomic. Atomic formulas can then be replaced by propositional
variables, as described above, and the resulting formula is purely propositional.

To convert the resulting propositional formula to CNF in linear time, we
employ a standard technique [8]: a new propositional variable is introduced for
each syntactically distinct non-variable sub-formula. Then, a set of CNF clauses
is produced for each sub-formula which describes the relationship of the formula
to its children. The translations for each of the standard Boolean operators are
as follows.

a := ¬b −→ (a ∨ b) ∧ (¬a ∨ ¬b)
a := b ∧ c −→ (a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ b) ∧ (¬a ∨ c)
a := b ∨ c −→ (¬a ∨ b ∨ c) ∧ (a ∨ ¬b) ∧ (a ∨ ¬c)

Now, suppose that Abs(φ) is satisfiable and that the solution is given as
a conjunction ψ of propositional literals. This solution can be converted into
an equivalent first-order solution by inverting the abstraction mapping on the
solution (replacing each propositional variable pα in ψ with α). Call the result
Abs−1 (ψ). Since Abs−1 (ψ) is a conjunction of literals, its satisfiability can be
determined using SatFO . If Abs−1 (ψ) is satisfiable, then in the interpretation
which satisfies it, the original formula φ must reduce to true, and thus φ is
satisfiable. Otherwise, the result of the experiment is inconclusive, meaning that
the abstraction must be refined. We describe how to do this next.

4.2 Refining the Abstraction

An obvious approach to refining the abstraction is to add a clause to the propo-
sitional formula that rules out the solution determined to be invalid by SatFO .
Since ψ is a conjunction of propositional literals, applying de Morgan’s law to
¬ψ yields a standard propositional clause. Thus, Abs(φ) ∧ ¬ψ is a refinement
of the original abstraction which rules out the invalid solution ψ. Furthermore,
the refinement is still in CNF as required. We call the clause ¬ψ a a conflict
clause because it captures a set of propositional literals which conflict, causing
an inconsistency. This is in accordance with standard SAT terminology. How-
ever, in standard SAT algorithms, conflict clauses are obtained by analyzing a
clause which has become false to see which decisions made by the SAT solver are
responsible. In our approach, the conflict clause is obtained by an agent outside

242 Clark W. Barrett et al.

of the SAT solver. After refining the abstraction by adding a conflict clause,
the SAT algorithm can be restarted. By repeating this process, the abstraction
will hopefully be refined enough so that it can either be proved unsatisfiable by
the SAT solver or the solution ψ provided by SAT can be shown to map to a
satisfying assignment for the original formula.

5 The Difficult Path to Success

There are a surprising number of roadblocks on the way from the previous idea to
a practical algorithm. In this section we describe some of these and our solutions.

5.1 Redundant Clauses

The most severe problem with the naive approach outlined above is that it tends
to produce an enormous number of redundant clauses. To see why, suppose that
SAT computes a solution consisting of n+ 2 propositional literals, but that only
the last two propositional literals contribute to the inconsistency of the equiva-
lent first-order set of literals. Then, for each assignment of values to the other n
propositional variables which leads to a satisfying solution, the refinement loop
will have to add another clause. In the worst case, the refinement loop will have
to add 2n clauses. This is particularly troubling because a single clause, one
containing just the two contributing propositional literals would suffice.

In order to avoid the problem just described, the refinement must be more
precise. In particular, when SatFO is given a set of literals to check for consis-
tency, an effort must be made to find the smallest possible subset of the given
set which is still inconsistent. Then, a clause derived from only these literals can
be added to the propositional formula.

One possible way to implement this is to minimize the solution by trial and
error: starting with n literals, pick one of the literals and remove it from the
set. If the set is still inconsistent, leave that literal out; otherwise, return it to
the set. Continue with each of the other literals. At the end, the set will contain
a minimal set of literals. Unfortunately, this approach requires having SatFO

process O(n) literals n times for each iteration of the refinement loop (where n
is the number of variables in the abstract formula). A few experiments with this
approach quickly reveal that it is far too costly to give a practical algorithm.

A more practical solution, though one which is not trivial to implement, is
to have the decision procedure SatFO maintain enough information to be able
to report directly which subset of a set of inconsistent literals is responsible for
the inconsistency.

Fortunately, through a discussion with Cormac Flanagan [6], we realized
that this is not difficult to do in CVC. This is because CVC is a proof-producing
decision procedure, meaning that it is possible to have CVC generate an actual
proof of any fact that it can prove. Using the infrastructure for proof production
in CVC, we implemented a mechanism for generating abstract proofs. In abstract
proof mode, CVC just tracks the external assumptions that are required for

Checking Satisfiability of First-Order Formulas 243

each proof. The result is that when a set of literals is reported by CVC to be
inconsistent, the abstract proof of inconsistency contains exactly the subset of
those literals that would be used to generate a proof of the inconsistency. The
abstract proof thus provides a subset which is known to be inconsistent. This
subset is not guaranteed to be minimal, but we found that in most cases it is very
close to minimal. Since the overhead required to keep track of abstract proofs is
small (typically around 20%), abstract proofs provide an efficient and practical
solution for eliminating the problem of redundant clauses.

5.2 Lazy vs. Eager Notification

The approach described in the previous section is lazy (see the note in Section 6
below) in the sense that the SAT solver is used as a black box and the first-order
procedure SatFO is not invoked until a solution is obtained from the SAT solver.
Unfortunately, as shown in Table 3, the lazy approach becomes impractical for
problems which require many refinements. In contrast, an eager approach is
to notify the first-order procedure SatFO of every decision that is made (or
unmade) by the SAT solver. Then, if an inconsistency is detected by SatFO ,
it is immediately diagnosed, providing a new conflict clause for SAT. The SAT
algorithm then continues, never having to be restarted.

The performance advantages of the eager approach are significant. The dis-
advantages are that it requires more functionality of both the SAT solver and
the decision procedure SatFO . The SAT solver is required to give notification
every time it makes (or revokes) a decision. Furthermore, it must be able to
accept new clauses in the middle of solving a problem (CVC includes a modified
version of Chaff which has this functionality). The eager approach also requires
SatFO to be online: able quickly to determine the consistency of incrementally
more or fewer literals. Fortunately, CVC has this property.

5.3 Decision Heuristics

The decision heuristics used by Chaff and other SAT solvers consider every vari-
able a possible target when choosing a new variable to do a case split on. How-
ever, in the abstracted first-order formula, not all variables are created equally.
For example, consider an ite expression: ite(α, t1, t2), and suppose that t1 and t2
are both large non-atomic terms. If the propositional variable associated with
α is set to true, then all of the clauses generated by the translation of t2 can
be ignored since they can no longer affect the value of the original formula.
Unfortunately, the SAT solver doesn’t have this information, and as a result
it can waste a lot of time choosing irrelevant variables. This problem has been
addressed by others [5], and our solution is similar. We annotate the propo-
sitional variables with information about the structure of the original formula
(i.e. parent/child relationships). Then, rather than invoking the built-in heuris-
tic for variable selection, a depth-first search (DFS) is performed on the portion
of the original formula which is relevant. The first variable corresponding to an
atomic formula which is not already assigned a value is chosen. Although this

244 Clark W. Barrett et al.

can result in sub-optimal variable orders in some cases, it avoids the problem
of splitting on irrelevant variables. Table 4 compares results obtained using the
built-in Chaff decision heuristic with those obtained using the DFS heuristic.
These are discussed in Section 7.

5.4 SAT Heuristics and Completeness

A somewhat surprising observation is that some heuristics used by SAT solvers
must be disabled or the method will be incomplete. An example of this is the
“pure literal” rule. This rule looks for propositional variables which have the
property that only one of their two possible propositional literals appears in the
formula being checked for satisfiability. When this happens, all instances of the
propositional literal in question can immediately be replaced with true, since if
a solution exists, a solution will exist in which that propositional literal is true.

However, if the formula is an abstraction of a first-order formula, it may be
the case that a solution exists when the propositional literal is false even if a
solution does not exist when the propositional literal is true. This is because
the propositional literal is actually a place-holder for a first-order literal whose
truth may affect the truth of other literals. Propositional literals are guaranteed
to be independent of each other, while first-order literals are not. Because of
this, there is no obvious way to take advantage of pure literals and the rule must
be disabled. Fortunately, this was the only such rule that had to be disabled in
Chaff.

5.5 Theory-Specific Challenges

Finally, a particularly perplexing difficulty is dealing with first-order theories
that need to do case splits in order to determine whether a set of literals is
satisfiable. For example, consider a theory of arrays with two function symbols,
read and write . In this theory, read(a, i) is a term which denotes the value of
array a at index i. Similarly, the term write(a, i , v) refers to an array which is
identical to a everywhere except possibly at index i, where its value is v. Now,
consider the following set of literals in this theory: {read(write(a, i , v), j) =
x , x 	= v , x 	= a[i]}. In order for the array decision procedure to determine
that such a set of literals is inconsistent, it must first do a case split on i =
j. However, such additional case splits by the theories can cost a lot of time.
Furthermore, they may not even be necessary to solve the problem. We found
it difficult to find a strategy for integrating such case splits without adversely
affecting performance. Our solution was to preprocess the formulas to try to
eliminate such case splits. In particular, for the array theory, every instance
of read(write(a, i , v), j) is rewritten to ite(i = j, v, read(a, i)). Furthermore, in
order to increase the likelihood of being able to apply this rewrite, every instance
of read(ite(a, b, c), v) is rewritten to ite(a, read(b, v), read(c, v)). These rewrites
were sufficient to obtain reasonable performance for our examples. However, we
suspect that for more complicated examples, something more sophisticated may
be required.

Checking Satisfiability of First-Order Formulas 245

6 Related Work

Flanagan, Joshi, and Saxe at Compaq SRC have independently developed a
very similar approach to combining first-order decision procedures with SAT [7].
Their translation process is identical to ours. Furthermore, their approach to
generating conflict clauses is somewhat more sophisticated than ours. However,
their prototype implementation is lazy (the nomenclature of “lazy” versus “ea-
ger” is theirs). Also it only includes a very limited language and its performance
is largely unknown. Unfortunately, we have not been able to compare directly
with their implementation.

De Moura, Ruess, and Sorea at SRI have also developed a similar approach
using their ICS decision procedure [4]. However, ICS is unable to produce min-
imal conflict clauses, so they use an optimized variation of the trial and error
method described in Section 5.1 to minimize conflict clauses. Also, as with the
Compaq approach, their implementation is lazy and its performance unknown.
Though they do not report execution times, they do provide their benchmarks,
and our implementation using CVC with Chaff was able to solve all of them
easily.

It would also be interesting to compare with the approach for solving prob-
lems in the logic of equality with uninterpreted functions by translating them
(up front) to SAT problems. We made an attempt to perform direct comparisons
with [12], but their benchmarks are not provided in the language of equality with
uninterpreted functions, and unfortunately, it is not clear how to translate them.
As a result, we were unable to run their benchmarks. We suspect that our ap-
proach would be competitive with theirs. However, since the logic is so simple,
it is not clear that a more general approach like ours would be better.

7 Results

We implemented the approach described above in the CVC decision procedure
using the Chaff SAT solver, and tested it using a suite of processor verifica-
tion benchmarks. The first three benchmarks are purely propositional formu-
las from Miroslav Velev’s superscalar suite (http://www.ece.cmu.edu/∼mvelev).
The next three are also from Velev’s DLX verification efforts, but they include
array and uninterpreted function operations. The rest are from our own efforts
in processor verification and also include array and uninterpreted function op-
erations.

These were run using gcc under linux on an 800MHz Pentium III with 2GB
of memory. The best overall results were obtained by using an eager notification
strategy and the DFS decision heuristic. Table 1 compares these results to results
obtained by using CVC without Chaff (using the recursive algorithm of Fig. 3).
As can be seen, the results are better, often by several orders of magnitude, in
every case but one (the easiest example which is solved by both methods very
quickly). These results show that CVC with Chaff is a significant improvement
over CVC alone.

246 Clark W. Barrett et al.

Table 1. Results comparing CVC without Chaff to CVC combined with Chaff

Example CVC without Chaff CVC+Chaff

Decisions Time (s) Decisions Time (s)

bool-dlx1-c ? > 10000 2522 1.14

bool-dlx2-aa ? > 10000 792 0.81

bool-dlx2-cc-bug01 ? > 10000 573387 833

v-dlx-pc 8642456 5082 6137 6.10

v-dlx-dmem 2888268 2820 2184 3.48

v-dlx-regfile 29435 37.6 3833 6.64

dlx-pc 515 0.68 529 1.04

dlx-dmem 6031 4.50 1276 1.90

dlx-regfile 6386 5.27 2739 4.12

pp-bloaddata-a 93714 79.1 1193 1.80

pp-bloaddata 345569 338 4451 4.51

pp-dmem2 367877 338 2070 1.52

Our goal in integrating Chaff into CVC was not only to test the feasibility of
the approach, but also to produce a tool that could compete with and improve
upon the best results obtained by our previous tool, SVC. SVC uses a set of
clever but somewhat ad hoc heuristics to improve on the performance obtained
by the algorithm of Fig. 3 by learning which atomic formulas are best to split
on [9]. Table 2 compares the results obtained by SVC with the results obtained
by CVC with Chaff.

SVC performs particularly well on the last 6 examples, a fact which is not
too surprising since these are old benchmarks that were used to tune SVC’s
heuristics. However, SVC’s performance on the first six examples shows that it’s
heuristics are simply not flexible enough to handle a large variety of formulas.
CVC, on the other hand produces good results fairly consistently. Even in the
four cases where CVC is slower than SVC, the number of decisions is comparable,
and in all other cases the number of decisions required by CVC is much less.
This is encouraging because it means that CVC is finding shorter proofs, and
additional performance gains can probably be obtained by tuning the code. Thus,
overall, CVC seems to perform better and to be more robust than SVC, which
is the goal we set out to accomplish.

7.1 Comparing Different Strategies

Finally, we show experimental results for some of the different strategies dis-
cussed in the previous section. First, just to drive the point home, we show
a simple comparison of the naive (lazy without minimal conflict clauses), lazy
(with minimal conflict clauses), and eager (with minimal conflict clauses) im-
plementations on some simple examples. As can be seen, the naive and lazy
approaches quickly become impractical.

Next, we compare two versions of the eager approach with minimal conflict
clauses: one using the standard Chaff decision heuristics, and one using the DFS

Checking Satisfiability of First-Order Formulas 247

Table 2. Results comparing SVC to CVC

Example SVC CVC+Chaff

Decisions Time (s) Decisions Time (s)

bool-dlx1-c 11228452 776 2522 1.14

bool-dlx2-aa ? > 10000 792 0.81

bool-dlx2-cc-bug01 ? > 10000 573387 833

v-dlx-pc 4620149 503 6137 6.10

v-dlx-dmem 199540 31.7 2184 3.48

v-dlx-regfile 74600 18.2 3833 6.64

dlx-pc 384 0.15 529 1.04

dlx-dmem 655 0.21 1276 1.90

dlx-regfile 936 0.27 2739 4.12

pp-bloaddata-a 902 0.66 1193 1.80

pp-bloaddata 35491 5.35 4451 4.51

pp-dmem2 47989 7.54 2070 1.52

Table 3. Results comparing naive, lazy, and eager implementations

Example Naive Lazy Eager

Iterations Time (s) Iterations Time (s) Time (s)

read0 77 0.14 17 0.09 0.07

pp-pc-s2i ? > 10000 82 1.36 0.10

pp-invariant ? > 10000 239 5.81 0.22

v-dlx-pc ? > 10000 6158 792 3.22

v-dlx-dmem ? > 10000 ? > 10000 4.12

Table 4. Variable selection by Chaff vs. by depth-first search

Example Chaff DFS

Decisions Time (s) Decisions Time (s)

bool-dlx1-c 1309 0.69 2522 1.14

bool-dlx2-aa 4974 2.36 792 0.81

bool-dlx2-cc-bug01 10903 11.4 573387 833

v-dlx-pc 4387 3.22 6137 6.10

v-dlx-dmem 5221 4.12 2184 3.48

v-dlx-regfile 6802 5.85 3833 6.64

dlx-pc 39833 19.0 529 1.04

dlx-dmem 34320 18.8 1276 1.90

dlx-regfile 47822 35.5 2739 4.12

pp-bloaddata-a 8695 5.47 1193 1.80

pp-bloaddata 9016 5.56 4451 4.51

pp-dmem2 3167 2.24 2070 1.52

248 Clark W. Barrett et al.

heuristic discussed in Section 5.3. The results are shown in Table 4. As can be
seen, DFS outperforms the standard technique on all but four examples. Two
of these are purely Boolean test cases, and so the DFS method wouldn’t be
expected to provide any advantage. For purely propositional formulas, then, (or
first-order formulas that are mostly propositional), the standard Chaff technique
is probably better. It is particularly interesting to note how badly DFS does on
the example “bool-dlx2-cc-bug01”. One area for future work is trying to find a
way to automatically choose between or combine these two methods.

More information about these and other benchmarks (as well as the bench-
marks themselves) is available from http://verify.stanford.edu/barrett/CAV02.
CVC is available from http://verify.stanford.edu/CVC.

Acknowledgments

We’d like to thank the anonymous reviewers for many helpful suggestions. This
work was partially supported by the National Science Foundation Grant CCR-
9806889, and ARPA/AirForce contract number F33615-00-C-1693.

References

1. C. Barrett, D. Dill, and J. Levitt. Validity Checking for Combinations of Theories
with Equality. In Mandayam Srivas and Albert Camilleri, editors, Formal Methods
In Computer-Aided Design, pages 187–201, 1996. 237

2. Clark W. Barrett. Checking Validity of Quantifier-Free Formulas in Combinations
of First-Order Theories. PhD thesis, Stanford University, 2002. 239

3. R. Bryant, S. German, and M. Velev. Exploiting Positive Equality in a Logic
of Equality with Uninterpreted Functions. In 11th International Conference on
Computer-Aided Verification, pages 470–482, 1999. 237

4. Leonardo de Moura, Harald Ruess, and Maria Sorea. Lazy Theorem Proving for
Bounded Model Checking over Infinite Domains. In 18th International Conference
on Automated Deduction, 2002. 245

5. L. e Silva, L. Silveira, and J. Marques-Silva. Algorithms for Solving Boolean Sat-
isfiability in Combinational Circuits. In Proceedings of the IEEE/ACM Design,
Automation and Test in Europe Conference (DATE), March 1999. 243

6. C. Flanagan. Private Communication, 2000. 242
7. Cormac Flanagan, Rajeev Joshi, and James B. Saxe. The Design of An Efficient

Theorem Prover using Explicated Clauses. 2002. In Preparation. 245
8. Tracy Larrabee. Test pattern generation using Boolean satisfiability. IEEE Trans-

actions on Computer-Aided Design, 11(1):4–15, January 1992. 241
9. Jeremy R. Levitt. Formal Verification Techniques for Digital Systems. PhD thesis,

Stanford University, 1999. 246
10. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering

an Efficient SAT Solver. In Proceedings of the 39th Design Automation Conference,
2001. 237

11. G. Nelson and D. Oppen. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1(2):245–57, 1979. 239

Checking Satisfiability of First-Order Formulas 249

12. A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding Equality Formulas
by Small-Domain Instantiations. In 11th International Conference on Computer-
Aided Verification, pages 455–469, 1999. 237, 245

13. H. Ruess and N. Shankar. Deconstructing Shostak. In 16th Annual IEEE Sympo-
sium on Logic in Computer Science, pages 19–28, June 2001. 239

14. Laurent Simon. The Sat-Ex Site. http://www.lri.fr/∼simon/satex/satex.php3.
237

15. A. Stump, C. Barrett, and D. Dill. CVC: a Cooperating Validity Checker. In 14th
International Conference on Computer-Aided Verification, 2002. 237

	Checking Satisfiability of First-Order Formulas by Incremental Translation to SAT
	Introduction
	Propositional Satisfiability
	The Problem
	Checking Satisfiability of Arbitrary Formulas Using SAT
	Computing a Propositional Abstraction of a First-Order Formula
	Refining the Abstraction

	The Difficult Path to Success
	Redundant Clauses
	Lazy vs. Eager Notification
	Decision Heuristics
	SAT Heuristics and Completeness
	Theory-Specific Challenges

	Related Work
	Results
	Comparing Different Strategies

