Probabilistic Verification
of Discrete Event Systems
Using Acceptance Sampling

Hakan L. S. Younes and Reid G. Simmons

School of Computer Science, Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

Abstract. We propose a model independent procedure for verifying
properties of discrete event systems. The dynamics of such systems can
be very complex, making them hard to analyze, so we resort to meth-
ods based on Monte Carlo simulation and statistical hypothesis testing.
The verification is probabilistic in two senses. First, the properties, ex-
pressed as CSL formulas, can be probabilistic. Second, the result of the
verification is probabilistic, and the probability of error is bounded by
two parameters passed to the verification procedure. The verification of
properties can be carried out in an anytime manner by starting off with
loose error bounds, and gradually tightening these bounds.

1 Introduction

In this paper we consider the problem of verifying properties of discrete event
systems. We present a procedure for verifying probabilistic real-time properties
of such systems based on Monte Carlo simulation and statistical hypothesis
testing. The verification procedure is not tied to any specific model of discrete
event systems—we only require that sample execution paths for the systems can
be generated—but it is mainly intended for verification of systems with complex
dynamics such as generalized semi-Markov processes (GSMPs) [14, 8] for which
no symbolic methods exist, or semi-Markov processes (SMPs) [L1] for which
current symbolic and numeric methods do not yield a practical solution.

Since we are using sampling, we cannot guarantee that our verification pro-
cedure always produces the correct answer. A key result, however, is that we
can bound the probability of error with two parameters o and (3, where « is the
largest acceptable probability of incorrectly verifying a true property, and [is
the largest acceptable probability of incorrectly verifying a false property.

The number of sample execution paths required to verify certain properties
can be large, but our procedure can be used in an anytime manner by first
verifying a property with loose error bounds, and then successively tighten the
error bounds to obtain more accurate results.

We adopt the continuous stochastic logic (CSL) as our formalism for express-
ing probabilistic real-time properties of discrete event systems. CSL has previ-
ously been proposed as a formalism for expressing temporal and probabilistic
properties of continuous-time Markov chains (CTMCs) [3, 4, 5] and SMPs [12].

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 223-235, 2002.
© Springer-Verlag Berlin Heidelberg 2002

224 Hakan L. S. Younes and Reid G. Simmons

The problem of verifying properties of GSMPs has been considered before,
but in a qualitative setting where it is checked whether a property holds with
probability one or greater than zero [2]. With our approach, we are able to verify
whether a property holds with at least (or at most) probability 8, for an arbitrary
probability threshold 6. Kwiatkowska et al. [13] present an algorithm for verifying
probabilistic timed automata against properties expressed in probabilistic timed
CTL, but the complexity of their algorithm makes it seem practically infeasible.
Infante Lopéz et al. [12] propose a method for verifying CSL properties of SMPs.
They conclude, however, that verifying time-bounded CSL formulas using their
algorithm can become numerically very complex, and the negative complexity
results carry over to GSMPs.

2 Discrete Event Systems

The verification procedure we present in this paper is model independent, and
only requires that we can generate sample execution paths for a discrete event
system we want to verify. Because of the model independence, we choose not to
introduce any specific model for discrete event systems, but instead focus only
on relevant properties of such systems. We will typically use discrete event sim-
ulation [15] to generate sample execution paths, but our verification procedure
could conceivably be used to verify probabilistic real-time properties of hybrid
dynamic systems as well given that we have an appropriate simulator.

At any point in time, a discrete event system occupies some state s € S,
where S is a set of states.! Let AP be a fixed, finite set of atomic propositions.
We then define a labeling function L : § — 247 assigning to each state s € S the
set L(s) of atomic propositions that hold in s. The system remains in a state s
until the occurrence of an event, at which point the system instantaneously
transitions to a state s’ (possibly the same state as s). Events can occur at any
point along a continuous time-axis.

Ezecution Paths. An execution path o of a discrete event system is a sequence

02802512522... s
with s; € S and ¢; > 0 being the time spent in state s; before an event triggered a
transition to state s;;1. If the [th state of path o is absorbing, then we set s; = s;
for all ¢ > [, and t; = oo for all ¢ > [.

Let o[i] = sy, for ¢ > 0, be the ith state along the path o, let §(c,7) = ¢; be
the time spent in state s;, let 7(o,4) = Z;;B 0(o,j) be the time elapsed before
entering the ith state, and let o(t) = o[i] with 7 being the smallest index such
that t < 7(0,i+1). We denote the set of all paths starting in state s by Path(s).
For any given model, we need to define a o-algebra on the set Path(s) and a

1 'We do not require S to be finite. In fact, for GSMPs it is convenient to think of
a state s as some discrete state features s’ coupled with a set of real-valued clock
settings ¢ for currently enabled events (see [8, 2]).

Probabilistic Verification of Discrete Event Systems 225

probability measure on the corresponding measurable space, or else we will not
be able to talk about the probability of a set of paths satisfying a property. This
is not a serious restriction, however, because it can be done for the models we
typically use for discrete event systems. It is done in [5] for CTMCs and in [12]
for SMPs, and can be done in a similar way for GSMPs (cf. [13]).

3 Continuous Stochastic Logic

Aziz et al. [3] propose the continuous stochastic logic (CSL) as a formalism for
expressing properties of CTMCs. CSL—inspired by CTL [7] and its extensions
to continuous-time systems [1, 2]—adopts temporal operators and probabilistic
path quantification from PCTL [10].

We adopt the version of CSL used by Baier et al. [5], excluding their steady-
state probability operator and unrestricted temporal operators?, and present a
semantics for CSL formulas interpreted over discrete event systems. The seman-
tics is model dependent only through the definition of execution paths.

CSL Syntax. A CSL formula is either a state formula or a path formula. The
formulas of CSL are inductively defined as follows:

1. tt is a state formula.

a € AP is a state formula.

If ¢ is a state formula, then so is —¢.

If ¢1 and ¢o are state formulas, then ¢; A ¢ is a state formula.

If p is a path formula and 6 € [0, 1], then Pr>g(p) is a state formula.?

If ¢ is a state formula, then X ¢ (next state) is a path formula.

If ¢1 and ¢y are state formulas and 0 < t < oo, then ¢; US! ¢ (until) is a
path formula.

NSOtk W

Other Boolean connectives and path operators are derived in the usual way. For
example, Pr>¢(O=! ¢) can be written as Pr>q(tt USt ¢).

CSL Semantics. The truth value of a state formula is determined in a specific
state. The formula Prs¢(p) holds in a state s iff the probability of the set of
paths starting in s and satisfying p is at least 6.

The truth value of a path formula is determined over a specific execution
path. The semantics of the next and until operators is standard. The formula
X ¢ is true over a path o iff ¢ holds in the state after the first transition. If the
initial state along o is absorbing, there is no next state so the formula is false.
The formula ¢; U=t ¢ is true over a path o iff ¢o holds in some state along o
at time x € [0,], and ¢; holds in all prior states along o.

We inductively define the satisfaction relation = as follows:

2 We need the time-bound on the temporal operators to set a limit on the simulation
time for the generation of sample execution paths.

3 With the sampling based verification procedure we propose, it is not meaningful
to distinguish between Pr>¢(p) and Prss(p). We can therefore write Pr<o(p) as
= Pr>¢(p), which means we only need to consider one comparison operator.

226 Hakan L. S. Younes and Reid G. Simmons

s = tt for all s € S.

sEaiff a € L(s).

s g iff s B~ ¢

sSE¢1 Ao iff s |E @1 and s = ¢o.

s = Pr>g(p) iff Pr{o € Path(s) | o = p} > 0.

o= X¢iff §(0,0) < oo and o[1] |= ¢.

o | o1 USt ¢ iff o(x) = @2 for some z € [0,t] and o(y) = ¢1 for all
y €[0,x).

N otE e

The probability measure Pr{...} must be well defined, as described in the pre-
vious section.

4 Probabilistic Verification

Given a discrete event system M and a state s of M, we want to verify that a
property—expressed as a state formula ¢ in CSL—holds in s. In other words,
we desire to test if s = ¢.

The complexity of general discrete event systems makes them hard to ana-
lyze, and we resort to methods based on Monte Carlo simulation and statistical
hypothesis testing. This means that in general we will not be able to answer
with certainty whether a given property holds, but we will at least be able to
bound the likelihood of error.

More specifically, given s and ¢, let Hy be the hypothesis that ¢ holds in s,
and let Hy be the alternative hypothesis (i.e. that ¢ does not hold in s). The
probability of accepting H; given that Hy holds is required to be at most «, and
the probability of accepting Hy if H1 holds should be no more than 3. The error
bounds « and 3 are supplied as parameters to the verification procedure, which
is devised so that less effort (on average) is required to verify a property with
more relaxed error bounds.

4.1 Verifying Probabilistic Properties

The possibility of error in our verification procedure arises from the way we verify
probabilistic properties ¢ = Pr>g(p) given a state s. Let p be the (unknown)
probability that p holds over paths starting in s. If p > 6, then ¢ holds in s.

We use simulation (typically discrete event simulation) to generate sample
paths starting in s. Let Y be a binary random variable with parameter p such
that Pr[Y" = 1] = p. Sample paths over which p holds represent samples y; = 1
of Y, and remaining sample paths represent samples y; = 0 of Y. Using these
samples, we would like to test the hypothesis p > 6 against the alternative
hypothesis p < 8, but we are forced to relax the hypotheses in order to freely be
able to choose error bounds « and (.

For this purpose we introduce an indifference region of width 2-9. Let p > 649
be Hy and let p < 8—¢§ be H;. We use acceptance sampling to test Hy against Hj.
The outcome of the acceptance sampling test is that we accept either Hy or Hy,

Probabilistic Verification of Discrete Event Systems 227

so the two events “accept Hp” and “accept H;” are mutually exclusive and ex-
haustive. Note, however, that for a non-zero J the two hypotheses Hy and H;
are not exhaustive although they are mutually exclusive. Let Hy be the hypoth-
esis that neither Hy nor H; holds. Hs represents indifference, and holds if the
probability of p being true over paths starting in s is within § of 6.

We are given the following guarantees by an acceptance sampling test:

Pr[H holds | accept Hi] <

Pr[H; holds VV Hs holds | accept Hy] > 1 — «
Pr[H; holds | accept Hy| < 3

Pr[Hp holds V Hy holds | accept Ho] > 1—

The formula ¢ is definitely true if Hy holds, and definitely false if H; holds, but
if Hy holds we have no information about the truth value of ¢. Recall, however,
that Hs represents indifference—i.e. the true probability of p holding over paths
starting in s is sufficiently close to 6 that we are indifferent to whether it actually
is below or above . In case Hs holds we interpret this to mean that ¢ is true if
we accepted Hy, and false if we accepted H;. With this interpretation, we obtain
the desired error bounds Pr[¢ | accept Hi] < « and Pr[—¢ | accept Hy] < .

Nested Probabilistic Operators. The above results for formulas ¢ = Pr>g(p)
hold if we can determine the truth value of p over sample paths without error. In
case p contains probabilistic operators, there is some probability at most o/ of p
being true over a sample path o if it is verified to be false, and some probability
at most 3’ of p being false over o if it is verified to be true. We need to take the
possibility of error into account in the acceptance sampling test, and we here
present a modification of Wald’s sequential probability ratio test [16] that deals
with this situation. We choose the sequential probability ratio test because of
its strong average performance measured in the number of samples required to
reach a decision.

We can model the situation of imprecise samples in general terms as fol-
lows. Let Y be a binary random variable with unknown parameter p such that
Pr[Y = 1] = p. Our goal is to test the hypothesis Hy that p > pg (for pg = 6+ 9)
against the hypothesis Hy that p < p; (for p; = 60 —). We want the probability
of accepting H; given that Hy holds to be at most «, and the probability of
accepting Hy given that H; holds to be at most (. If we could generate sam-
ples of Y, then we could accomplish our goal using the unmodified sequential
probability ratio test, but instead we can only generate samples from a binary
random variable Z related to Y in the following way:

!’

PrZ=1|Y=1]>1—a
PriZ=0|Y =1]<d
PZ=1]Y =0]< g
PrZ=0|Y=0>1-8

228 Hakan L. S. Younes and Reid G. Simmons

Given these constraints and the total probability formula, we can obtain bounds
on the unconditional probability Pr[Z = 1]:

pl—a)<PrZ=1]<1-(1-p)1-F) 1)

We now want to use the sequential probability ratio test to test hypothesis Hy
against H; given samples of Z.

The sequential probability ratio test is carried out as follows. At each stage
of the test, calculate the quantity

Pim _ [[;2, Pr[Z = 2 |p = pi]

Pom B Hi=1 Pr(Z =z | p = po] ’

where z; is the sample of Z generated at stage i. Accept Hy if

1
Prm 5 2)
Pom «
Accept Hi if
Pim P (3)

Pom Tl .
Otherwise, generate an additional sample and repeat the termination test. This
test procedure respects the error bounds o and 3.

We cannot compute the fraction pin, /pom because Pr[Z = 1] is unknown to
us, but we can obtain upper and lower bounds for the fraction, which can then
be used to devise a modified test respecting the error bounds a and £.

Let d,,, denote the number of samples, of the first m samples, equal to 1. We
can then write the fraction p1,,/pom as

pim (PrZ=1[p=p))"™ (1 -Pr[Z=1]p=p)" "

Pom (PI‘[Z =1 |p = po])d'ln, (1 - PI‘[Z -1 |p _ po])mfdm

Let I; be the interval [p;(1 — /), 1 — (1 — p;)(1 — 3')]. We know from (1) that
Pr[Z =1|p = pi] € I. A lower bound for p1,,,/pom can be obtained by finding
a p1 € I; that minimizes p1,, and a py € Iy that maximizes pg,,. Conversely,
an upper bound for the fraction can be obtained by finding a p; € I; that
maximizes p1,, and a py € Iy that minimizes pg,,. We then have the bounds
- Ndom _ \m—dpn, N, .~ Nm—d,
0™ (L =p)"™ ™ _pim _ ()™ (A —p)"
(ﬁo)dwt (1 _ ﬁo)m*dm = Dom (ﬁo)d'm. (1 _ ﬁo)m*dm

for the fraction p1,,/pom. Given these bounds, it is safe to accept Hy if
()" (1= py)™ S 1-5
(ﬁo)dm (1 _ﬁo)m*dm - 0%

4 There is a slight approximation involved in the stopping criteria of the test. See [16]
for details.

(4)

Probabilistic Verification of Discrete Event Systems 229

since then surely condition (2) holds. Likewise, it is safe to accept Hj if

~ Ndm N —dm
(p)™ (1 =p)™ < P
(po)dm (1 _ po)m*dm — 11—«
since then surely condition (3) holds. By replacing the original stopping criteria
(2) and (3) with the new stopping criteria (4) and (5) we obtain a sequential

acceptance sampling test that can handle imprecise samples. We now need to
find the appropriate values for p; and p;.

(5)

Proposition 1. Let f(x) = 2% (1 — 2)™~ % For d,, € I;, p; = d,n/m and

. {pz‘(l—a') if fpi(1—a)) < f(1—=(1=p))(1-75))
1—(1=pi)(1—p") otherwise

pi =

Ifdpm/m < pi(1—0a), then p; = pi(1—a) and p; = 1—(1—p;)(1—3). Otherwise
ifdp/m>1—(1—=p)(1=0"), then p; =1—(1—p;)(1=p") and p; = p;(1 —<’).

)
Proof. For d,,, =0, f(z) = (1 —)™ is monotonously decreasing in the interval
[0,1]. For d,,, = m, f(x) = 2™ is monotonously increasing in the interval [0, 1].
Otherwise for 0 < d,,, < m, f(0) = f(1) = 0. The first derivative of f(x) is
() = dpatn =1 (1 —z)m= % — (m —d,,)zl (1 —)™ 9m~1 We can find a local
maximum of f(z) in the open interval (0, 1) by setting f'(x) = 0:

dpadm =11 — 2)m= 4 = (m — dp)2l (1 — z)m "t —
dm

dm(1 —2) = (M —dpn)zr = Z:E

Thus, f(z) has a local maximum at d,,/m. O

The stopping criteria (4) and (5) reduce to the regular stopping criteria for
the test if o/ = 3’ = 0, as expected. With imprecise samples, the average number
of samples required before a decision can be reached will increase, but it is worth
noting that the choice of o/ and ' can be made independent of the values for «
and J.

4.2 Verifying Compound State Formulas

When verifying a compound state formula ¢ such as —¢; or ¢; A ¢2 in a state s,
we first test parts that do not involve any probabilistic operators. The truth
value of those parts can be determined with certainty, and results in a reduced
formula ¢’. If ¢ reduces to either true or false we are done. Otherwise all parts of
¢’ contain probabilistic operators, and we need to propagate appropriate error
bounds to the test of the parts in order to obtain the desired error bounds for
the compound formula.

Negation. For a negation —¢1, assume inductively that we can obtain the error
bounds a; and (1 for ¢1. By setting /1 = a and a; = 3, we obtain the required
error bounds for —¢;.

230 Hakan L. S. Younes and Reid G. Simmons

Conjunction. For a conjunction ¢1 A --- A ¢y, the situation is slightly more
complicated. We want to accept the conjunction as true if all conjuncts are true,
and reject the conjunct as false if some conjunct is false.

First assume that we can verify each conjunct ¢; as true with error bounds
«a; and ;. This means that the probability of ¢; being false is at most (3;, which
implies that the probability of the whole conjunction being false is at most
2?21 B;. We can thus achieve a verification error of at most (3 in this case if we
choose the 3;’s so that > 3; = 3. Without any further information about the
complexity of each ¢;, the natural choice is §; = 3/n.

Now assume that we can verify some conjuncts ¢; as false with error bounds
«a; and ;. This means that the probability of ¢; being true is at most ay,
which implies that the probability of the whole conjunction being true is at
most maxj_; ;. By setting a;; = a, we achieve the desired error bound « on the
verification of the whole conjunction.

We combine these two results into a complete verification procedure for con-
junctions. In order to minimize the expected verification effort, we use a two-step
procedure. The first step is a “fast reject” step, in which we verify each conjunct
¢; with error bounds o and 3, where 3’ can be chosen arbitrarily. If we can ver-
ify any ¢; as false using these bounds, we can conclude with sufficient confidence
that the whole conjunction is false. We will want to choose 3’ high so that the
number of samples required to verify each ¢; in the first step is low, but not too
high because it would lower the chance of verifying any ¢; as false.

If we verify each conjunct as true in the first step, we perform a second step
corresponding to a “rigorous accept”. Again we verify each conjunct ¢; with
a; = «a, but this time with §; = §/n. If we verify any conjunct ¢; as false
using these bounds, we can conclude with sufficient confidence that the whole
conjunction is false, but we can also conclude with sufficient confidence that the
conjunction is true if we verify each conjunct as true.

4.3 Verifying Path Formulas

When verifying Pr>¢(p) in a state s, we need to determine the truth value of the
path formula p over sample execution paths starting in the given state. A sample
path o is generated by simulation. We only generate as much of a path that is
needed to determine the truth value of p with sufficient confidence.

The Next Operator. To verify a path formula p = X ¢ with error bounds «
and 3 over a path starting in the state s, we sample a next state s’. We then
verify ¢ in s’ with o and 8 as error bounds. If s is a terminal state, we can
conclude without error that p is false.

The Until Operator. A path formula p = ¢; U=t ¢ holds over a path o if ¢y
holds in ¢[0], or if ¢ holds in o[i] and ¢; holds in all states o[j] for j < i. Let

d)gj) represent the proposition that ¢; holds in the state o[j], and let n be the

Probabilistic Verification of Discrete Event Systems 231

smallest index such that 7(o,n) > t. Then the path formula p holds over o iff

n—1 7—1
Ve A N\ |, (6)
i=0 =0

which can be verified in the same way as a compound state formula.

Equation (6) is a disjunction of size n, with the ith disjunct being a conjunc-
tion of size i + 1. In the worst case, we will have to verify each disjunct with
error bounds «/n and 3 in order to verify the whole formula with error bounds
« and (. In that case we may have to verify each component of the ith disjunct
with error bounds a/n and 3/(i + 1), which can require quite a few samples if n
is large. This will happen if both ¢; and ¢2 contain probabilistic operators and
we verify the path formula p as true.

The problem of verifying an until formula simplifies significantly if either
¢1 or ¢2, or both, can be verified without error. In the simples case, without
any nested probabilistic operators, we only need to expand the path ¢ until
either ¢o becomes true, or ¢ becomes false or the time limit is exceeded. In the
former case the until formula holds with certainty, while in the latter case we
can conclude with certainty that the until formula is false.

5 Performance Evaluation

The performance of our procedure for verifying a formula on the form ¢ =
Pr>g(p) in a state s depends primarily on the number of samples n needed by
the acceptance sampling test used. If we are using a sequential test, such as
Wald’s sequential probability ratio test [16], then n is a random variable. Let
E,[n] denote the expected number of samples required by the test given that p
is the true probability of p holding over paths starting in s. We can expect to
need more samples the closer p is to the probability threshold 6.

The expected number of samples depends not only on p and €, but also on the
parameters J, «, and (. In addition, if there are nested probabilistic operators
so that we need to use the modified test as described earlier in this paper,
then the average number of samples also depends on the parameters o and 3’
corresponding to the maximum error in the verification of a nested formula.

Figure 1 shows the average number of samples as a function of p for three
different values of 6, and with the remaining parameters fixed. The data is based
on 5,000 tests for each of 201 equidistant values of p. Similar data is shown in
Fig. 2 but with 6 fixed and ¢ varying, and in Fig. 3 the error bounds «a and 3
are varying. Finally, Fig. 4 shows how the average number of samples increases
with an increase in o/ and . The dotted curve is the same in all four figures.

As can be seen, the number of samples is typically very low, suggesting that
the proposed verification procedure can be quite efficient. Note however that
if we are verifying a formula with nested probabilistic operators, then for each
sample generated for the outer probabilistic operator, we need to generate several
samples to verify the inner probabilistic operator. Given one level of nesting, if

232 Hakan L. S. Younes and Reid G. Simmons

log E[n]
10000

1000

100

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1p
Fig. 1. Expected number of samples for different values of 6, with 6 = 0.01,
a=03=001,and o/ =3 =

log E[n]
10000

1000

100

10

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1p

Fig. 2. Expected number of samples for different values of ¢, with 8 = 0.9,
a=03=001,anda’ =3 =0

log E[n]
10000

1000

100

10

0 01 02 03 04 05 06 07 08 09 17

Fig. 3. Expected number of samples for different values of a and 3, with 6 = 0.9,
0=0.0l,and &/’ =3 =0

Probabilistic Verification of Discrete Event Systems 233

log E[n]
10000 £

1000

100

al:\ﬁ/zo\ | | | | | | | |
o ol 02 03 04 05 06 07 08 09 1P

10

Fig. 4. Expected number of samples for different values of o and ', with § =
0.9, 6 =0.01, and a = 5 = 0.01

the expected number of samples for the outer probabilistic operator is n,, and
we need n; samples on average for the inner operator, then n, - n; is the expected
number of samples needed to verify the whole formula. The total number of
required samples grows rapidly with the level of nesting, but this does not seem
to be a problem in practice since CSL formulas typically have at most one level
of nesting—if any at all.

There is no definite upper bound on the number of samples required by the
sequential probability ratio test. If this is a problem, as it can be when verifying
nested probabilistic formulas, then a truncated test can be used. Wald [16] sug-
gests a method for choosing an upper bound on the number of samples so that
the given error bounds, for all practical purposes, are still respected.

6 Discussion

We have presented a model independent procedure for verifying properties of
discrete event systems. The properties are expressed as CSL formulas, and we
have shown how to interpret these formulas given a definition of sample execution
paths of a discrete event system. The definition of sample execution paths, as
well as the probability measure on sets of paths, is the only model dependent
component of the framework we have discussed.

Because of the complex nature of many discrete event systems, we depend on
Monte Carlo simulation and statistical hypothesis testing in order to verify CSL
formulas. Our verification procedure takes two parameters, o and 3, where « is
the highest acceptable probability of incorrectly verifying a true formula, and 3
is the highest acceptable probability of incorrectly verifying a false formula.

Using sequential acceptance sampling the number of samples required for
verifying a CSL formula is typically low, but can be high for verifying certain
formulas—in particular formulas of the form Prsg(¢1 U=t ¢2), where both ¢y
and ¢, contain probabilistic operators. Our verification procedure can, however,

234 Hakan L. S. Younes and Reid G. Simmons

be applied in an anytime manner. To do this, we would start by verifying a
formula ¢ with loose error bounds « and 3, which should produce a result
quickly. We could then successively tighten the error bounds, and obtain more
accurate results the more resources we give the verifier.

A direction for future research would be to obtain a better understanding of
the number of samples required for verifying properties of varying complexity,
and how to best choose parameter values when there is a free choice (e.g. ' and
B’ in case of nested probabilistic formulas). It may also be possible to increase
performance when verifying conjunctions (and therefore also until formulas with
nested probabilistic operators) by considering heuristics for ordering conjuncts
(cf. variable ordering heuristics for constraint satisfaction problems [(]).

Another problem to consider is that of verifying CSL formulas with unre-
stricted temporal operators and the steady-state operator, which requires devel-
oping techniques for evaluating the long-run behavior of a discrete event system.
Work on output analysis for simulation of transient and steady-state quantities
in operations research (see, e.g., [9]) may be applicable. Also, the algorithm pro-
posed by Infante Lopéz et al. [12] is reported to scale well to SMPs in the case
of unrestricted temporal operators and the steady-state operator, and a similar
approach may be fruitful even for more general models of discrete event systems.

References

[1] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for real-time
systems. In Proceedings of the Fifth Annual IEEE Symposium on Logic in Com-
puter Science, pages 414-425, Philadelphia, PA, June 1990. IEEE Computer So-
ciety Press. 225

[2] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for prob-
abilistic real-time systems. In J. Leach Albert, B. Monien, and M. Rodriguez
Artalejo, editors, Proceedings of the 18th International Colloguium on Automata,
Languages and Programming, volume 510 of Lecture Notes in Computer Science,
pages 115-126, Madrid, Spain, July 1991. Springer. 224, 225

[3] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Verifying
continuous time Markov chains. In Rajeev Alur and Thomas A. Henzinger, edi-
tors, Proceedings of the 8th International Conference on Computer Aided Verifi-
cation, volume 1102 of Lecture Notes in Computer Science, pages 269276, New
Brunswick, NJ, July/August 1996. Springer. 223, 225

[4] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Model-
checking continuous-time Markov chains. ACM Transactions on Computational
Logic, 1(1):162-170, July 2000. 223

[5] Christel Baier, Joost-Pieter Katoen, and Holger Hermanns. Approximate sym-
bolic model checking of continuous-time Markov chains. In Jos C. M. Baeten
and Sjouke Mauw, editors, Proceedings of the 10th International Conference on
Concurrency Theory, volume 1664 of Lecture Notes in Computer Science, pages
146-161, Eindhoven, the Netherlands, August 1999. Springer. 223, 225

[6] James R. Bitner and Edward M. Reingold. Backtrack programming techniques.
Communications of the ACM, 18(11):651-656, November 1975. 234

(7]

8]
[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

Probabilistic Verification of Discrete Event Systems 235

E. M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM Trans-
actions on Programming Languages and Systems, 8(2):244-263, April 1986. 225
Peter W. Glynn. A GSMP formalism for discrete event systems. Proceedings of
the IEEE, 77(1):14-23, January 1989. 223, 224

Peter W. Glynn and Donald L. Iglehart. Simulation methods for queues: An
overview. Queueing Systems, 3:221-255, 1988. 234

Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(5):512-535, 1994. 225

Ronald A. Howard. Dynamic Probabilistic Systems, volume II. John Wiley &
Sons, New York, NY, 1971. 223

Gabriel G. Infante Lépez, Holger Hermanns, and Joost-Pieter Katoen. Beyond
memoryless distributions: Model checking semi-Markov chains. In Luca de Alfaro
and Stephen Gilmore, editors, Proceedings of the 1st Joint International PAPM-
PROBMIV Workshop, volume 2165 of Lecture Notes in Computer Science, pages
57-70, Aachen, Germany, September 2001. Springer. 223, 224, 225, 234

Marta Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston. Ver-
ifying quantitative properties of continuous probabilistic timed automata. In
Catuscia Palamidessi, editor, Proceedings of the 11th International Conference on
Concurrency Theory, volume 1877 of Lecture Notes in Computer Science, pages
123-137, State College, PA, August 2000. Springer. 224, 225

Klaus Matthes. Zur Theorie der Bedienungsprozesse. In Jaroslav Kozesnik, editor,
Transactions of the Third Prague Conference on Information Theory, Statistical
Decision Functions, Random Processes, pages 513-528, Liblice, Czechoslovakia,
June 1962. Publishing House of the Czechoslovak Academy of Sciences. 223
Gerald S. Shedler. Regenerative Stochastic Simulation. Academic Press, Boston,
MA, 1993. 224

Abraham Wald. Sequential tests of statistical hypotheses. Annals of Mathematical
Statistics, 16(2):117-186, June 1945. 227, 228, 231, 233

	Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling
	Introduction
	Discrete Event Systems
	Continuous Stochastic Logic
	Probabilistic Verification
	Verifying Probabilistic Properties
	Nested Probabilistic Operators

	Verifying Compound State Formulas
	Negation
	Conjunction

	Verifying Path Formulas
	The Next Operator
	The Until Operator

	Performance Evaluation
	Discussion

