Deciding Separation Formulas with SAT*

Ofer Strichman, Sanjit A. Seshia, and Randal E. Bryant

Computer Science, Carnegie Mellon University, Pittsburgh, PA
{ofers,sanjit,bryant}@cs.cmu.edu

Abstract. We show a reduction to propositional logic from a Boolean
combination of inequalities of the form v; > v; + ¢ and v; > v; + ¢,
where ¢ is a constant and v;,v; are variables of type real or integer.
Equalities and uninterpreted functions can be expressed in this logic as
well. We discuss the advantages of using this reduction as compared to
competing methods, and present experimental results that support our
claims.

1 Introduction

Recent advances in SAT solving make it worthwhile to try and reduce hard deci-
sion problems, that were so far solved by designated algorithms, to the problem
of deciding a propositional formula. Modern SAT solvers can frequently decide
formulas with hundreds of thousands of variables in a short amount of time.
They are used for solving a variety of problems such as Al planning, Automatic
Test Pattern Generation (ATPG), Bounded Model Checking, and more. In this
paper we show such a reduction to SAT from a theory of separation predicates',
i.e., formulas that contain the standard Boolean connectives, as well as predi-
cates of the form v; > v; + ¢ where > € {>,>}, ¢ is a constant, and v;, v; are
variables of type real or integer. The other inequality signs as well as equal-
ities can be expressed in this logic. Uninterpreted functions can be handled as
well since they can be reduced to Boolean combinations of equalities[1].
Separation predicates are used in verification of timed systems, scheduling
problems, and more. Hardware models with ordered data structures have in-
equalities as well. For example, if the model contains a queue of unbounded
length, the test for head < tail introduces inequalities. In fact, most inequali-
ties in verification conditions, Pratt observed [9], are of this form. Furthermore,
since theorem provers can decide mixed theories (by invoking an appropriate

* This research was supported in part by the Office of Naval Research (ONR) and the
Naval Research Laboratory (NRL) under contract no. N00014-01-1-0796, and the Gi-
gascale Research Center under contract 98-DT-660. The second author is supported
in part by a National Defense Science and Engineering Graduate Fellowship.

! The term separation predicates is adopted from Pratt[9], who considered ‘separation
theory’, a more restricted case in which all the constraints are of the form v; < v+,
and conjunction is the only Boolean operator allowed. This logic is also known as
‘difference logic’.

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 209222, 2002.
© Springer-Verlag Berlin Heidelberg 2002

210 Ofer Strichman et. al.

decision procedure for each logic fragment[11]), restricting our attention to sep-
aration predicates does not mean that it is helpful only for pure combinations of
these predicates. Rather it means that the new decision procedure can shorten
the verification time of any formula that contains a significant number of these
predicates.

The reduction to SAT we suggest is based on two steps. First, we encode the
separation predicates as new Boolean variables. Second, we add constraints on
these variables, based on an analysis of the transitivity of the original predicates.
A similar framework was used by Bryant et al. to reduce equality predicates [4].
The current work can therefore be seen as a natural extension of their work to
the more general segment of logic, namely a logic of separation predicates.

2 SAT vs. Other Decision Procedures

There are many methods for deciding a formula consisting of a conjunction of
separation predicates. For example, a known graph-based decision procedure for
this type of formulas (frequently attributed to Bellman, 1957) works as follows:
given a conjunction of separation predicates ¢, it constructs a constraints graph,
which is a directed graph G(V, E) in which the set of nodes is equal to the set of
variables in ¢, and node v; has a directed edge with ‘weight’ ¢ to node v; iff the
constraint v; < v; 4+ cis in ¢. It is not hard to see that ¢ is satisfiable iff there is
no cycle in G with a negative accumulated weight. Thus, deciding ¢ is reduced to
searching the graph for such cycles. Variations of this procedure were described,
for example in [9], and are implemented in theorem provers such as Coq[2]. The
Bellman-Ford algorithm [6] can find whether there is a negative cycle in such
a graph in polynomial time, and is considered as the standard in solving these
problems. It is used, for example, when computing Difference Decision Diagrams
(DDD) [7]. DDD’s are similar to BDDs, but instead of Boolean variables, their
nodes are labeled with separation predicates. In order to compute whether each
path in the DDD leads to ‘0’ or ‘1’, the Bellman-Ford procedure is invoked
separately for each path.

Most theorem provers can decide the more general problem of linear arith-
metic. Linear arithmetic permits predicates of the form Y7 | a;v; > an41 (the
coefficients aj ...a,41 are constants). They usually apply variable elimination
methods, most notably the Fourier-Motzkin technique [3], which is used in PVS,
ICS , IMPS and others. Other approaches include the graph-theoretic analysis
due to Shostak [10], the Simplex method, the Sup-Inf method, and more. All
of these methods, however, need to be combined with case-splitting in order
to handle disjunctions. Normally this is the bottleneck of the decision process,
since the number of sub-problems that need to be solved is worst case exponen-
tial. One may think of case-splitting as a two steps algorithm: first, the formula
is converted to Disjunctive Normal Form (DNF); second, each clause is solved
separately. Thus, the complexity of this problem is dominated by the size of
the generated DNF. For this reason modern theorem provers try to refrain from
explicit case-splitting. They apply ‘lazy’ case-splitting (splitting only when en-

Deciding Separation Formulas with SAT 211

countering a disjunction) that only in the worst case generates all possible sub-
formulas as described above. One exception to the need for case splitting in the
presence of disjunctions is DDDs. DDDs do not require explicit case-splitting,
in the sense that the DDD data structure allows term sharing. Yet the number
of sub-problems that are solved can still be exponential.

Reducing the problem to deciding a propositional formula (SAT) obviously
does not avoid the potential exponential blow-up. The various branching algo-
rithms used in SAT solvers can also be seen as case-splitting. But there is a
difference between applying case-splitting to formulas and splitting the domain.
While the former requires an invocation of a (theory-specific) procedure for de-
ciding each case considered, the second is an instantiation of the formula with a
finite number of assignments. Thus, the latter amounts to checking whether all
clauses are satisfied under one of these assignments.

This difference, we now argue, is the reason for the major performance gap
between CNF - SAT solvers and alternative decision procedures that have the
same theoretical complexity. We will demonstrate the implications of this differ-
ence by considering three important mechanisms in decision procedures: pruning,
learning and guidance. In the discussion that follows, we refer to the techniques
applied in the Chaff [8] SAT solver. Most modern SAT solvers work according
to similar principles.

— Pruning. Instantiation in SAT solvers is done by following a binary decision
tree, where each decision corresponds to choosing a variable and assigning
it a Boolean value. This method makes it very easy to apply pruning: once
it discovers a contradictory partial assignment a, it backtracks, and conse-
quently all assignments that contain a are pruned. It is not clear whether an
equivalent or other pruning techniques can be applied in case-splitting over
formulas, other than stopping when a clause is evaluated to true (or false, if
we check validity).

— Learning. Every time a conflict (an unsatisfied clause) is encountered by
Chalff, the partial assignment that led to this conflict is recorded, with the
aim of preventing the same partial assignment from being repeated. In other
words, all assignments that contain a ‘bad’ sub-assignment that was encoun-
tered in the past are pruned. Learning is applied in different ways in other
decision procedures as well. For example, PVS records sub-goals it has proven
and adds them as an antecedent to yet unproven sub-goals, with the hope it
will simplify their proofs. In regard to separation theory, we are not aware
of a specific learning mechanism, but it’s not hard to think of one. Our
argument in this case is therefore not that learning is harder or impossible
in other decision procedures - rather that by reducing problems to SAT, one
benefits from the existing learning techniques that were already developed
and implemented over the years.

— Guidance. By ‘guidance’ we mean prioritizing the internal steps of the de-
cision procedure. For example, consider the formula ¢; V @2, where ¢y is
unsatisfiable and hard to solve, and ¢ is satisfiable but easy to solve. If
the clauses are solved from left to right, solving the above formula will take

212 Ofer Strichman et. al.

longer than solving @9 V ¢1. We experimented with several such formulas
in both ICS and PVS, and found that changing the order of expressions
can have a significant impact on performance, which means that guidance is
indeed problematic in the general case.

The success of guidance depends on the ability to efficiently estimate how
hard it is to process each sub formula and/or to what extent it will sim-
plify the rest of the proof. Both of these measures are easy to estimate in
CNF-SAT solving, and hard to estimate when processing more general sub
formulas. Guidance in SAT is done when choosing the next variable and
Boolean value in each level in the decision tree. There are many heuristics
for making this choice. For example: choose the variable and assignment that
satisfies the largest number of clauses. Thus, the hardness of what will re-
main to prove after each decision is estimated by the number of unsatisfied
clauses.

Not only that these mechanisms are harder to integrate in the alternative pro-
cedures, they become almost impossible to implement in the presence of mixed
theories (what can be learned from solving a sub-goal with e.g. bit-vectors that
will speed up another sub-goal with linear arithmetic, even if both refer to the
same variables?). This is why reducing mixed theories to a common theory like
propositional logic makes it easier to enjoy the potential speedup gained by
these techniques. Many decidable theories that are frequently encountered in
verification have known efficient reductions to propositional formulas. Therefore
a similar reduction from separation predicates broadens the logic that can be
decided by solving a single SAT instance.

3 A Graph Theoretic Approach

Let ¢ be a formula consisting of the standard propositional connectives and
predicates of the form v; > v; + ¢ and v; > ¢, where ¢ is a constant, and v;, v;
are variables of type real (we treat integer variables in Section 5). We decide ¢
in three steps, as described below. A summary of the procedure and an example
will be given in Section 3.4.

3.1 Normalizing ¢
As a first step, we normalize .

1. Rewrite v; > ¢ as v; > vg + ¢.”

2. Rewrite equalities as conjunction of inequalities.

3. Transform ¢ to Negation Normal Form (NNF), i.e., negations are allowed
only over atomic predicates, and eliminate negations by reversing inequality
signs®.

2 w0 ¢ ¢ can be thought of as a special variable that always has a coefficient ‘0’ (an
idea adopted from [10]).

3 This step is only required for the integer case, described in Section 5.

Deciding Separation Formulas with SAT 213

4. Rewrite ‘<’ and ‘<’ predicates as ‘>’ and ‘>’, e.g., rewrite v; < v; + ¢
as v; > v; — C.
J K3

The normalized formula has no negations, and all predicates are of the form v; >
vj+coruv; >v;+c

3.2 Boolean Encoding and Basic Graph Construction

After normalizing ¢, our decision procedure abstracts all predicates by replac-
ing them with new Boolean variables. By doing so, the implicit transitivity
constraints of these predicates are lost. We use a graph theoretic approach to
represent this ‘lost transitivity’ and, in the next step, to derive a set of constraints
that compensate for this loss.

Let G,(V, E) be a weighted directed multigraph, where every edge e € E is
a 4-tuple (v;,v;,¢,x) defined as follows: v; is the source node, v; is the target
node, c is the weight, and « € {>,>} is the type of the edge. We will denote
by s(e),t(e),w(e) and z(e) the source, target, weight, and type of an edge e,
respectively. We will also define the dual edge of e, denoted é, as follows:

L ife= (iajaca >)7 then é = (jaia) 2)
2. if e = (4,4, ¢,>), then é = (4,4, —c, >).

Informally, é represents the complement constraint of e. Thus,é =e.
We encode ¢ and construct G, as follows:

1. Boolean encoding and basic graph construction
(a) Add a node for each variable in .
(b) Replace each predicate of the form v;>v,4c with a Boolean variable e
and add (v;,vj,¢,>) to E.
2. Add dual edges.
For each edge e € £, E:= EUeé.

c,>
inj ?

The dual edges are needed only if ¢ was not transformed to NNF in step 3 of
Section 3.1. In the rest of this section we assume that this is the case.

We denote the encoded Boolean formula by ¢'. Since every edge in G, is
associated with a Boolean variable in ¢’ (while its dual is associated with the
negation of this variable), we will refer to edges and their associated variables
interchangeably when the meaning is clear from the context.

3.3 Identifying the Transitivity Constraints

The transitivity constraints imposed by separation predicates can be inferred
from previous work on this logic [9,10]. Before we state these constraints formally,
we demonstrate them on a simple cycle of size 2. Let pl : vy >1 vo + ¢; and
P2 : vy >ov1 + o be two predicates in . It is easy to see that if ¢; +co > 0 then
pl A p2 is unsatisfiable. Additionally, if ¢1 + ¢2 = 0 and at least one of >1, > is
equal to ‘>’, then pl A p2 is unsatisfiable as well. The constraints on the other

214 Ofer Strichman et. al.

z(C) Rules z(T) x(B) Rules
.. > RI, R2 T > > RI, RY
l2: ‘> R3, R4 U ‘>’ R3’, R4’
I3: else R2, R3 o else R2’, R3’
R1 :if w(C) >0, \, _oei=0 R1’ :if w(T) > w(B), /\6qu e — \/EJGB y
R2 :if w(C) <0,\/, _cei=1 R2’ :if w(T) <w(B), A\, cp€i = Ve er €
R3 :if w(C) >0, \, .cei=0 R3 :if w(T) >w(B), \, .rei = V. cpéi
R4 :if w(C) <0, \/eiEC e; =1 R4’ : if w(T) < w(B), /\6qu e; — \/EJET y
(a) Cycles (b) Transitive sub-graphs

Fig. 1. Transitivity requirements of cycles (a) and transitive sub-graphs (b)

direction can be inferred by applying the above constraints to the duals of pl
and p2: if ¢l 4+ ¢2 < 0, or if ¢l + ¢2 = 0 and at least one of >, > is equal to
‘<’, then —pl A —p2 is unsatisfiable.

We continue by formalizing and generalizing these constraints.

Definition 1. A directed path of length m from v; to v; is a list of edges eq...ep,
s.t. s(e1) = v;, tlem) = v; and V" 't(e;) = s(eit1). A directed path is called
simple if no node is repeated in the path.

We will use capital letters to denote directed paths, and extend the notations
s(e), t(e) and w(e) to paths, as follows. Let T' = e;...e,, be a directed path. Then
s(T) = s(e1), t(T) = t(em) and w(T) = ;" w(e;). x(T) is defined as follows:

> if Vit x(e;) = >’
x(T)=< > it VI x(e;) = >’
~ otherwise

We also extend the notation for dual edges to paths: if 7" is a directed path, then
T is the directed path made of the dual edges of T'.

Definition 2. A Transitive Sub-Graph (TsG) A = T U B is a sub-graph com-
prised of two directed paths T and B, T # B, starting and ending in the same
nodes, i.e., s(T) = s(B) and t(T') = t(B). A is called simple if both B and T are
simple and the only nodes shared by T and B are s(T)(= s(B)) and t(T)(= t(B)).

The transitivity requirements of a directed cycle* C and a TSG A are presented
in Fig. 1. These requirements can be inferred from previous work on this logic,
and will not be formally proved here.

Both sets of rules have redundancy due to the dual edges. For example, each cycle
C has a dual cycle C with an opposite direction and w(C) = fw(CA). Applying the

4 By a ‘directed cycle’ we mean a closed directed path in which each sub-cycle is iter-
ated once. It is obvious that iterations over cycles do not add transitivity constraints.

Deciding Separation Formulas with SAT 215

(a)

Fig.2. A cycle (a) and a possible dual transitive sub-graph (b). Solid edges
represent strict inequality (>) while dashed edges represent weak inequalities

(‘>")

four rules to both cycles will yield exactly the same constraints. We can therefore
consider cycles in one direction only. Alternatively, we can ignore R3 and R4,
since the first two rules yield the same result when applied to the dual cycle.
Nevertheless we continue with the set of four rules for ease of presentation.

Definition 3. A cycle C (alternatively, a TSG A) is satisfied by assignment «,
denoted o |= C, if « satisfies its corresponding constraints as defined in Fig. 1.

We will denote by «(e) the Boolean value assigned to e by an assignment «.
We will use the notation « [&; C, 1 < i < 4, to express the fact that rule R is
applied to C and is not satisfied by a.

Proposition 1. Let A=TUB and C =T U B be a TSG and a directed cycle
in G, respectively. Then a = A iff a = C.

(Proofs for all propositions in this article can be found in the full version of this
article [13]).

Ezxample 1. We demonstrate the duality between TSG’s and cycles with a cycle
C where z(C) =>" and w(C) > 0 (Fig. 2(a)). Assume « assigns 1 to all of C
edges, i.e., a(C) = 1. Consequently, « =3 C.

We construct A from C by substituting e.g., es with its dual (Fig. 2(b)). A is
a TSG made of the two directed paths T = e4,e1,e2 and B = €3, that satisfy
x(T) =>", x(B) = ‘> and w(T') > w(B) (because w(B) = —w(es)). According
to Fig. 1(b), we apply R3’ and R4’. But since a(€3) = —a(e3) = 0, R3’ is not
satisfied. Thus, a 3 A. O

Proposition 1 implies that it is sufficient to concentrate on either TSG’s or cycles.
In the rest of this paper we will concentrate on cycles, since their symmetry
makes them easier to handle.

The following proposition will allow us to concentrate only on simple cycles.

Proposition 2. Let C be a non simple cycle in G, and let o« be an assignment
to C edges. If a [~ C then there exists a sub-graph of C that forms a simple cycle
C' s.t.alEC.

Thus, our decision procedure adds constraints to ¢’ for every simple cycle in G,
according to Fig. 1(a).

216 Ofer Strichman et. al.

3.4 A Decision Procedure and Its Complexity
To summarize this section, our decision procedure consists of three stages:

1. Normalizing ¢. After this step the formula contains only the ‘>’and ‘>’signs.

2. Deriving ¢’ from ¢ by encoding ¢’s predicates with new Boolean variables.
Each predicate adds an edge and its dual to the inequality graph G, as
explained in Section 3.2

3. Adding transitivity constraints for every simple cycle in Gy according to

Fig. 1(a).

Ezample 2. Consider the formula ¢ : @ >y —1V =(z >y —2 Az > z). After
step 2 we have ¢ : e, 1>V =(e; 27 A—el?) (for simplicity we only refer to strict
inequality predicates in ¢, while the weak inequality predicates are referred
to by a negation of their duals). Together with the dual edges, G, contains
one cycle with weight 1 consisting of the vertices x,y, z, and the dual of this
cycle. Considering the former, according to R3 we add to ¢’ the constraint
=€y~ V o(me;27) vV —el 7. The constraint on the dual cycle is equivalent and

2,y
is therefore not computed.]

This example demonstrates that the suggested procedure may generate redun-
dant constraints (yet none of them makes the procedure incomplete). There is
no reason to consider cycles that their edges are not conjoined in the DNF of .
In [12] we prove this observation and explain how the above procedure can be
combined with conjunctions matrices in order to avoid redundant constraints.
The conjunction matrix of ¢ is a |E| x |E| matrix, computable in polynomial
time, that state for each pair of predicates in ¢ whether they would appear in
the same clause if the formula was transformed to DNF. This information is suf-
ficient for concluding whether a given cycle ever appears in a DNF clause. Only
if the answer is yes, we add the associated constraint. We refer the reader to the
above reference for more details on this improvement (note that the experiments
in Section 6 did not include this optimization).

Complexity. The complexity of enumerating the constraints for all simple cy-
cles is linear in the number of cycles. There may be an exponential number of such
cycles. Thus, while the number of variables is fixed, the number of constraints
can be exponential (yet bounded by 2|E|). SAT is exponential in the number
of variables and linear in the number of constraints. Therefore the complexity
of the SAT checking stage in our procedure is tightly bounded by O((2/1)?) =
O(22F), which is similar to the complexity of the Bellman-Ford procedure com-
bined with case-splitting. The only argument in favor of our method is that
in practice SAT solvers are less sensitive to the number of variables, and are
more affected by the connectivity between them. The experiments detailed in
Section 6 proves that this observation applies at least to the set of examples we
tried. The SAT phase was never the bottleneck in our experiments; rather it was
the generation of the formula.

Deciding Separation Formulas with SAT 217

Thus, the more interesting question is whether the cycle enumeration phase
is easier than case splitting, as both are exponential in |E|. The answer is that
normally there are significantly more clauses to derive and check than there are
cycles to enumerate. There are two reasons for this: first, the same cycles can
be repeated in many clauses; second, in satisfiable formulas many clauses do not
contain a cycle at all.

4 Compact Representation of Transitivity Constraints

Explicit enumeration of cycles will result in 2™ constraints in the case of Fig. 3(a),
regardless of the weights on the edges. In many cases this worst case can be
avoided by adding more edges to the graph. The general idea is to project the
information that is contained in a directed path (i.e., the accumulated weight
and type of edges in the path) to a single edge. If there are two or more paths
that bear the same information, the representation will be more compact. In
Section 4.2 we will elaborate on the implication of this change on the complexity
of the procedure.

4.1 From Cycles to Triangles

The main tool that we will use for deriving the compact representation is chordal
graphs. Chordal graphs (a.k.a. triangulated graphs) are normally defined in the
context of undirected, unweighted graphs. A chordal graph in that context is a
graph in which all cycles of size 4 or more contain an internal chord (an edge
between non adjacent vertices). Chordal graphs were used in [4] to represent
transitivity constraints (of equality, in their case) in a concise way. We will use
them for the same purpose. Yet, there are several aspects in which G, is different
from the graph considered in the standard definition: G, is a directed multigraph
with two types of edges, the edges are weighted and each one of them has a dual.

Definition 4. Let C be a simple cycle in G,. Let v; and v; be two non adjacent
nodes in C. We denote the path from v; to v; by T; ;. A chord e from v; to v; is
called T; j-accumulating if it satisfies these two requirements:

1. w(e) = w(T; ;)
2. z(e) =2>"ifx(T; ;) = =" orifa(T;;) = ‘~" and x(Tj;;) = >’ Otherwise
x(e) =>"

This definition refers to the case of one path between i and j, and can be easily
extended if there is more than one such path. Note that the definition of z(e)
relies on #(7Tj,;), which is based on the edges of the ‘other side’ of the cycle.
Since there can be more than one path T} ;, and each one can have different
types of edges, making the graph chordal may require the addition of two edges
between i and j, corresponding to the two types of inequality signs. As will be
shown in Section 4.2, our decision procedure refrains from explicitly checking all
the paths 7} ;. Rather it adds these two edges automatically when x(T; ;) =‘~".
Definition 4 gives rise to the following observation:

218 Ofer Strichman et. al.

(a)
Fig. 3. (a) In a closed n-diamonds shape there are 2™ simple cycles. (b) The
edge e accumulates the path T; ; = (e1, e2)

Proposition 3. Let e be a T; j-accumulating chord in a simple cycle C, and let
C'=(CUe)\T;,. The following equivalencies hold: z(C) = x(C") and w(C) =
w(C").

Ezample 3. In Fig. 3(b), each edge is marked with its identifier e; and weight ¢;.
By Definition 4, e is a T; j-accumulating chord. Let C' = (CUe)\T; ; = (e, €3, €4).
Then as observed in Proposition 3, z(C') = z(C) =‘~" and w(C’) = w(C) =
Z‘f:lci. O

Definition 5. G is called chordal if all simple cycles in G, of size greater or
equal to 4 contain an accumulating chord.

We leave the question of how to make G, chordal to the next section. We first
prove the following proposition:

Proposition 4. Let C be a simple cycle in a chordal graph G, and let o be an
assignment to the edges of C. If o [~ C then there exists a simple cycle C' of size
3in Gy s.t. al=C.

4.2 The Enhanced Decision Procedure and Its Complexity

Based on the above results, we change the basic decision procedure of Section 3.
We add a stage for making the graph chordal, and restrict the constraints addi-
tion phase to cycles of size 3 or less:

1. In the graph construction stage of Section 3.2, we add a third step for making
the graph chordal:
3. Make the graph chordal.
While V £ ()
(a) Choose an unmarked vertex ¢ € V' and mark it.
(b) For each pair of edges (j,4,c1,x1), (i,k, co,22) € E, where j and k
are unmarked vertices and j # k:
e Add (4, k,c1 + c2,21) and its dual to E.
o If 21 # 22, add (j, k,c1 + c2,22) and its dual to E.
2. Rather than enumerating constraints for all simple cycles, as explained in
Section 3.3, we only concentrate on cycles of size 2 and 3.

Deciding Separation Formulas with SAT 219

Various heuristics can be used for deciding the order in which vertices are chosen
in step 3(a). Our implementation follows a greedy criterion: it removes the vertex
that results in the minimum number of added edges.

Proposition 5. The graph G, as constructed in step 3, is chordal.

Although Definition 5 requires accumulating chords in cycles larger than 3, the
above procedure adds accumulating chords in triangles as well (i.e., one of the
edges of the triangle accumulates the other two). It can be shown that it is
sufficient to constrain these cycles (rather than all cycles of size 3) and cycles of
size 2. With this improvement, the number of constraints becomes linear in the
number of added edges. We skip the formalization and proof of this improvement
due to space restrictions.

We now have all the necessary components for proving the soundness and
the completeness of this procedure:

Proposition 6. ¢ is satisfiable if and only if @’ is satisfiable.

Complexity. In the worst case the process of making the graph chordal can
add an exponential number of edges. Together with the complexity of SAT, it
makes the procedure double exponential. However, in many cases it can reduce
the complexity: consider, for example, a graph similar to the one in Fig. 3(a),
where all the diamonds are ‘balanced’, i.e., the accumulated weight of the top
and bottom paths of each diamond are equal (for example, in the frequently
encountered case where all weights are equal to ’0’). In this case the number of
added edges is linear in n. Thus, in this case the size of the formula and the
complexity of generating it is smaller than in the explicit enumeration method
of Section 3.

5 Integer Domains

In our discussion so far we assumed that all variables in the formula are of
type real. We now extend our analysis to integer separation predicates, i.e.,
predicates of the form v; > v; 4+ ¢, where v; and v; are declared as integers
(predicates involving both types of variables are assumed to be forbidden). We
add a preprocessing stage right after ¢ is normalized:

1. Replace all integer separation predicates of the form v; > v; + ¢ where c is
not an integer with v; > v; + [c].

2. For each integer predicate of the form v; > v;4-c, add to ¢ the constraint v; >
vj+c—wv; >2v;+c+1

The procedure now continues as before, assuming all variables are of type real.

Ezxample 4. Consider the unsatisfiable formula ¢ : © > y+1.2Ay > v —2 where x
and y are integers. After the preprocessing step p: @ > y+2Ay >z —2A (y >
x—2—y>x—1). O

220 Ofer Strichman et. al.

The following proposition justifies the preprocessing stage:

Proposition 7. Let o be a normalized combination of integer separation pred-
icates, and let T be the result of applying the preprocessing stage to p!. Then
@l is satisfiable iff P is satisfiable.

6 Experimental Results

To test whether checking the encoded propositional formula ¢’ is indeed easier
than checking the original formula ¢, we generated a number of sample formulas
and checked them before and after the encoding. We checked the original for-
mulas with the ICS theorem prover, and checked the encoded formula ¢’ with
the SAT solver Chaff [3].

First, we generated formulas that have the ‘diamond’ structure of Fig. 3(a),
with D conjoined diamonds. Although artificial examples like this one are not
necessarily realistic, they are useful for checking the decision procedure under
controlled conditions. Each diamond had the following properties: the top and
bottom paths have S conjoined edges each; the top and bottom paths are dis-
jointed; the edges in the top path represent strict inequalities, while the edges in
the bottom path represent weak inequalities. Thus, there are 2P simple conjoined
cycles, each of size (D - S+ 1).

Ezxample 5. The formula below represents the diamond structure that we used
in our benchmark for S = 2. For better readability, we use the notation of edges
rather than the one for their associated Boolean variables. We denote by ¢! (b])
the j** node in the top (bottom) path of the i** diamond. Also, for simplicity
we chose a uniform weight ¢, which in practice varied as we explain below.
/\i’;l((via tzlv = >) A (tzla Vit1, 6, >) v ('Uia bzla = Z) A (bzlv Vit1, 6, Z)) A (Ui+1a U1, 6, >)
O

By adjusting the weights of each edge, we were able to control the difficulty of
the problem: first, we guaranteed that there is only one satisfying assignment
to the formula, which makes it more difficult to solve (e.g., in Example 5, if
we assign ¢ = —1 for all top edges, and ¢ = (D — 1) for all bottom edges, and
c=S-D —1 for the last, closing edge, only the path through the top edges is
satisfiable); second, the weights on the bottom and top paths are uniform (yet
the diamonds are not balanced), which, it can be shown, causes a quadratic
growth in the number of added edges and constraints. This, in fact, turned
out to be the bottleneck of our procedure. As illustrated in the table, Chaff
solved all SAT instances in negligible time, while the procedure for generating
the CNF formula (titled ‘CNF’) became less and less efficient. However, in all
cases except the last one, the combined run time of our procedure was faster
than the three theorem provers we experimented with. The table in Fig. 4
includes results for 7 cases. The results clearly demonstrate the easiness of solving
the propositional encoding in comparison with the original formula. As a more
realistic test, we experimented with formulas that are generated in hardware

Deciding Separation Formulas with SAT 221

Topology Separation

D | S |ICS|CNF|Chaff|Total
31 2 |<1lj<l|<1|x1
41 2 |59|<1l|<1|<1
51 2 [951<1l|<1|<1
T4] F|<l|<l|<1
100| 5 ¥ 132 | <1 33

2501 5 ¥ 1754 | 1.6 | 756

500{ 5 * *

Fig. 4. Results in seconds, when applied to a diamond-shaped graphs with D
diamonds, each of size S. “*’ denotes run time exceeding 10* sec

verification problems. To generate these formulas we used the UCLID verification
tool [5]. These hardware models include a load-store unit from an industrial
microprocessor, an out-of-order execution unit, and a cache coherence protocol.
The formulas were generated by symbolically simulating the models for several
steps starting from an initial state, and checking a safety property at the end of
each step. Fig. 5(a) summarizes these results. Finally, we also solved formulas
generated during symbolic model checking of timed systems. These examples
are derived from a railroad crossing gate controller that is commonly used in the
timed systems literature. Fig. 5(b) shows the results for these formulas.

Separation Separation
Model |Steps|ICS|CNF|Chaff| Total Model |ICS|CNF |Chaff| Total
Load- 1 |[<1li<l|<l |1 RailRoad-2 |52 [<1| <1 | <1
Store 2 |87.1<1| <1 <1 RailRoad-12|15.2| < 1| <1 | <1
unit 3 * 190 1 91 RailRoad-13[189| < 1| <1 | <1
Out-of- 2 |<1l|<l|<1l|x1 RailRoad-14|49.6| <1 | <1 | <1
order unit| 3 ¥ 129 <1 3
Cache 1 |<l|<l|<l|<1
protocol | 2 |18|<1l|<1|<1

(a) (b)
Fig. 5. Results in seconds, when applied to formulas generated by symbolically
simulating several hardware designs (a) and symbolic model checking of timed
systems(b)

222 Ofer Strichman et. al.

Acknowledgments

We thank S. German for giving us the cache-protocol example, and S. Lahiri for
helping with the experimens. The first author also wishes to thank D. Kroening
for his guidance through the maze of algorithms that various theorem provers

us

€.

References

10.

11.
12.

13.

. W. Ackermann. Solvable cases of the Decision Problem. Studies in Logic and the
Foundations of Mathematics. North-Holland, Amsterdam, 1954. 209

B. Barras, S. Boutin, C. Cornes, J. Courant, J. C. Filliatre, E. Giménez, H. Herbe-
lin, G. Huet, C. Mu noz, C. Murthy, C. Parent, C. Paulin, A. Saibi, and B. Werner.
The Coq Proof Assistant Reference Manual — Version V6.1. Technical Report RT-
0203, INRIA, August 1997. revised version distributed with Coq. 210

A.J. C.Bik and H. A. G. Wijshoff. Implementation of Fourier-Motzkin elimination.
Technical Report 94-42, Dept. of Computer Science, Leiden University, 1994. 210
R. Bryant, S. German, and M. Velev. Processor verification using efficient reduc-
tions of the logic of uninterpreted functions to propositional logic. ACM Transac-
tions on Computational Logic, 2(1):1-41, 2001. 210, 217

R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems using
a logic of counter arithmetic with lambda expressions and uninterpreted functions.
In Proc. Computer-Aided Verification (CAV’02), July 2002. This volume. 221
T. Cormen, C. Leiserson, and L. Rivest. Introduction to Algorithms. MIT press.
210

J. Mgller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference decision di-
agrams. In Proceedings 13th International Conference on Computer Science Logic,
volume 1683 of LNCS, pages 111-125, 1999. 210

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proc. Design Automation Conference (DAC’01), 2001.
211, 220

V. Pratt. Two easy theories whose combination is hard. Technical report, Mas-
sachusetts Institute os Technology, 1977. Cambridge, Mass. 209, 210, 213

R. Shostak. Deciding linear inequalities by computing loop residues. J. ACM,
28(4):769-779, October 1981. 210, 212, 213

R. Shostak. Deciding combinations of theories. J. ACM, 31(1):1-12, 1984. 210
O. Strichman. Optimizations in decision procedures for propositional linear in-
equalities. Technical Report CMU-CS-02-133, Carnegie Mellon University, 2002.
216

O. Strichman, S. A.Seshia, and R. E.Bryant. Reducing separation formulas to
propositional logic. Technical Report CMU-CS-02-132, Carnegie Mellon University,
2002. 215

	Deciding Separation Formulas with SAT
	Introduction
	SAT vs. Other Decision Procedures
	A Graph Theoretic Approach
	Normalizing \varphi
	Boolean Encoding and Basic Graph Construction
	Identifying the Transitivity Constraints
	A Decision Procedure and Its Complexity

	Compact Representation of Transitivity Constraints
	From Cycles to Triangles
	The Enhanced Decision Procedure and Its Complexity

	Integer Domains
	Experimental Results

