
Relative Unsupervised Discretization for
Association Rule Mining

Marcus-Christopher Ludl1 and Gerhard Widmer1,2

1 Austrian Research Institute for Artificial Intelligence, Vienna,
2 Department of Medical Cybernetics and Artificial Intelligence,

University of Vienna, Austria

Abstract. The paper describes a context-sensitive discretization algo-
rithm that can be used to completely discretize a numeric or mixed
numeric-categorical dataset. The algorithm combines aspects of unsuper-
vised (class-blind) and supervised methods. It was designed with a view
to the problem of finding association rules or functional dependencies in
complex, partly numerical data. The paper describes the algorithm and
presents systematic experiments with a synthetic data set that contains
a number of rather complex associations. Experiments with varying de-
grees of noise and “fuzziness” demonstrate the robustness of the method.
An application to a large real-world dataset produced interesting prelimi-
nary results, which are currently the topic of specialized investigations.

1 Introduction

Association rules have become one of the most popular objects of study in data
mining research. Following the seminal work of e.g. [2], there has been a wealth
of research on improvements and extensions of the original algorithms.

One limitation of classical association rule mining algorithms that has been
addressed only fairly recently is the fact that they require categorical data, i.e.,
they cannot directly deal with numeric attributes. As numeric information is
abundant in real-world databases, this is a problem of practical importance.
There have been some attempts at remedying this situation in recent years;
section 4 summarizes the most important ones. However, there is still room for
improvement, and we hope to show an interesting direction in this paper.

What we present in this paper is a discretization algorithm named RUDE that
can be used to completely discretize a numeric or mixed numeric-categorical da-
taset. The algorithm was designed especially with a view to the association rule
mining task (see section 2.1). It can be used as a pre-processor to “standard”
association rule mining algorithms like Apriori [2]. What distinguishes our algo-
rithm is that it attempts to construct a discretization that as much as possible
reflects all the interdependencies between attributes in the database. Experimen-
tal results with synthetic data show that RUDE is not only effective, but also
quite robust with respect to inaccuracies and noise in the data. We have also
applied the algorithm to a large real-world dataset, with interesting preliminary
results, which are currently the topic of specialized investigations.

D.A. Zighed, J. Komorowski, and J. Żytkow (Eds.): PKDD 2000, LNAI 1910, pp. 148–158, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Relative Unsupervised Discretization for Association Rule Mining 149

2 RUDE – Relative Unsupervised Discretization

2.1 Discretization for Association Rules

Association rules describe systematic dependencies between fields (attributes)
in a relational database. Unlike in classification problems, there is no designated
class attribute; rather, any combination of attributes may be related through as-
sociations, and many different dependencies involving different sets of attributes
may be hidden in the data. The goal is to find all of these. A good discretizer
should thus produce discretizations that enable a rule finder both to express
and to find all dependencies between attribute ranges, where any attribute may
potentially occur in the left-hand or the right-hand side of some rules.

Of course, one could simply use some standard “unsupervised” discretiza-
tion method, like equal-width, equal-frequency, or k-means [4], and apply it to
every numeric attribute. However, these methods simply discretize each attri-
bute in isolation, ignoring any patterns of correlation between attributes; the
intervals they construct are thus likely to be irrelevant and unsuitable for descri-
bing the hidden dependencies. In association rule mining, some researchers have
investigated more sophisticated pre-discretization methods (e.g.,[9]), but again,
the attributes are discretized in isolation, the discretization step does not pay
attention to systematic dependencies between attributes.

In the field of classification, there has been some research on “supervised”
discretization, where, given a numeric attribute to be discretized, one looks at
correlations between this attribute and the class attribute in order to create
intervals that maximize the numeric attribute’s predictivity of the class (see [5]
for an overview). While this is not directly applicable for association rule mining,
it has inspired the approach to be presented in this paper.

What we propose is a global discretization strategy that attempts to construct
a discretization of all the numeric attributes which reflects, as much as possible,
all the potential dependency patterns between all the attributes simultaneously.
The algorithm RUDE (Relative Unsupervised DiscrEtization) combines aspects
of both unsupervised and supervised discretization. It is an unsupervised method
in that it does not require a dedicated class attribute; nonetheless, the split points
are not constructed independently of the “other” attributes (hence “relative”).

2.2 RUDE – The Top-Level

The basic idea when discretizing a particular attribute (the target) is to use
information about the value distribution of all attributes other than the target
(the source attributes). Intuitively, a “good” discretization would be one that
creates split points that correlate strongly with changes in the value distributions
of the source attributes. The process that tries to accomplish this (the central
component of RUDE) is called structure projection.



150 M.-C. Ludl and G. Widmer

Here is the top level of the algorithm:

1. Preprocessing: Discretize (via some unsupervised method – see below) all
source attributes that are continuous;

2. Structure Projection: Project the structure of each source attribute ai

onto the target attribute t:
a) Filter the dataset by the different values of attribute ai.
b) For each such filtering perform a clustering procedure on values of the

target attribute (see section 2.4) and gather the split points created.
3. Postprocessing: Merge the split points found.

Note that source attributes that are themselves numeric are first subjected
to a simple pre-discretization step to turn them into nominal attributes for the
purpose of structure projection.

The above algorithm is repeated for every numeric attribute in the database,
that is, every numeric attribute in turn gets to act as target and is discretized
based on the other attributes. The time required for discretizing one continuous
attribute is O(nm log m), with n the number of attributes and m the number
of tuples. A complete discretization of all continuous attributes can therefore be
performed in time O(n2m log m).

2.3 The Main Step: Structure Projection

The intuition behind structure projection is best illustrated with an example
(see Figure 1). Suppose we are to discretize a target attribute t with a range of,
say, [0..1], which happens to be uniformly distributed in our case. The values of
t in the tuples of our database have been drawn along the lowest line in Figure
1. The two lines above indicate the same tuples when filtered for the values
1 and 2, respectively, of some particular binary source attribute a. (“Filtering
a database for a value v of an attribute a” means retaining only those tuples
that have value v for attribute a.) Given the distribution of t, any unsupervised
discretizer would return a rather arbitrary segmentation of t that would not
reflect the (to us) obvious distribution changes in the source attribute a. The
idea of structure projection is to find points where the distribution of the values
of a changes drastically, and then to map these “edges” onto the target t. We

��� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� ���

�

�

Fig. 1. Structure Projection: An Example.



Relative Unsupervised Discretization for Association Rule Mining 151

achieve that by filtering t for each possible value of a separately and clustering
the resulting filtered values; the boundaries between clusters are candidates for
useful discretization points.

Given:
• a database consisting of m tuples;
• a set of (possibly continuous) source attributes a1, . . . , an

• information on what attribute should be discretized (the target t);

The algorithm:
1. Sort the database in ascending order according to attribute t.
2. For each attribute ai with ai 6= t do the following:

a) If continuous, discretize attribute ai by equal-width
b) For each symbolic value (interval) v of ai do the following:

i. Filter the database for value v in attribute ai.
ii. Perform clustering on the corresponding values of t in the filtered database.
iii. Gather the split points thereby created in a split point list for attribute t.

Fig. 2. RUDE – The basic discretization algorithm

The basic discretization algorithm is given in fig. 2. RUDE successively maps
the “structure” of all source attributes onto the sequence of t’s values, creating
split points only at positions where some significant distribution changes occur
in some of the ai. For pre-discretizing continuous source attributes in 2(a) above,
we have decided to use equal-width discretization, because it not only provides a
most efficient (linear) method, but also has some desirable statistical properties.

The critical component in all this is the clustering algorithm that groups
values of the target t into segments that are characterized by more or less com-
mon values of some source attribute ai. Such segments correspond to relatively
densely populated areas in the range of t when filtered for some value of ai (see
Figure 1). Thus, an essential property of this algorithm must be that it tightly
delimits such dense areas in a given sequence of values.

2.4 A Characterizing Clustering Algorithm

The algorithm we devised for this purpose has its roots in the concept of edge
detection in grayscale image processing [7]. The central problem there is to find
boundaries between areas of markedly different degrees of darkness. The analogy
to our clustering problem is fairly obvious and has led us to develop an algorithm
that basically works by opening a “window” of a fixed size around each of the
values in an ordered sequence and determining whether this value lies at an
“edge”, i.e. whether one half of the window is “rather empty” and the other half is
“rather full”. The notions of “rather full” and “rather empty” are operationalized
by two user-defined parameters. For lack of space, we omit the details here.



152 M.-C. Ludl and G. Widmer

Given:
• A split point list s1, s2, . . .
• A merging parameter (minimal difference s)

The algorithm:

1. Sort the sequence of split points in ascending order.
2. Run through the sequence until you find two splits si and si+1 with si+1 − si ≤ s.
3. Starting at i + 1 run through the sequence until you find two split points sj and

sj+1 with sj+1 − sj > s.
4. Calculate the median m of [si, . . . , sj ].

– If sj − si ≤ s merge all split points in [si, . . . , sj ] to m.
– If sj − si > s triple the set of split points in [si, . . . , sj ] to {si, m, sj}.

5. Start at sj+1 and go back to step 2.

Fig. 3. Merging the split points.

One advantage of the clustering algorithm is that it autonomously determi-
nes the appropriate number of clusters/splits, which is in contrast to simpler
clustering methods like, e.g., k-means clustering [4]. In fact, the algorithm may
in some cases refuse to produce any clusters if it cannot find any justification for
splitting. Some numeric attributes may thus be lumped into just one big interval
if they do not seem to be correlated with other attributes.

2.5 Post-processing: Merging the Split Points

Of course, due to the fact that RUDE projects multiple source attributes onto
a single target attribute, usually many “similar” split points will be formed
during the projections. It is therefore necessary to merge the split points in a
post-processing phase. Figure 3 shows an algorithm for doing that. In step 3,
we find a subset of split points with successive differences lower than or equal
to a certain pre-defined value s. If all these split points lie closer than s (very
dense), they are merged down to only one point (the median). If not, the region
is characterized by the median and the two outer borders. (Admittedly, this is
a rather ad hoc procedure that lacks a strong theoretical foundation.)

3 Experiments

We have evaluated our discretization algorithm as a pre-processing step to the
well-known Apriori association rule mining algorithm [2]. In section 3.1, we pre-
sent a systematic study on a synthetic database that contains a number of rather
complex associations. Section 3.2 then briefly hints at some interesting prelimi-
nary results on a large, real-world dataset.



Relative Unsupervised Discretization for Association Rule Mining 153

3.1 Systematic Experiments with Synthetic Data

As a first testbed for systematic experiments, we used the data and dependencies
originally described in [1] and also used in experiments in [10]. In this hypothe-
tical problem, there are six numeric attributes (salary, commission, age, hvalue,
hyears, loan) and 3 categorical attributes (elevel, car, zipcode). All attributes
except commission and hvalue take values randomly from a uniform distribution
over certain numeric or nominal ranges. Commission and hvalue are made to
depend on other attributes: commission is uniformly distributed between 10K
and 75K if salary < 75K, otherwise commission := 0. Hvalue is made to lie in
different numeric ranges depending on the value of zipcode.

In addition to these attribute dependencies, Agrawal et al. [1] defined a set
of 10 binary functions of these attributes, of increasing complexity. We used the
first four of these for our experiments:

f1 = true ⇔ (age < 40) ∨ (60 ≤ age)
f2 = true ⇔ ((age < 40) ∧ ((50K ≤ salary ≤ 100K)) ∨

((40 ≤ age < 60) ∧ (75K ≤ salary ≤ 125K)) ∨
((age ≥ 60) ∧ (25K ≤ salary ≤ 75K))

f3 = true ⇔ ((age < 40) ∧ (elevel ∈ [0..1])) ∨
((40 ≤ age < 60) ∧ (elevel ∈ [1..3])) ∨
((age ≥ 60) ∧ (elevel ∈ [2..4]))

f4 = true ⇔ ((age < 40) ∧ (if elevel ∈ [0..1]
then (25K ≤ salary ≤ 75K) else (50K ≤ salary ≤ 100K))) ∨

((40 ≤ age < 60) ∧ (if elevel ∈ [1..3]
then (50K ≤ salary ≤ 100K) else (75K ≤ salary ≤ 125K))) ∨

((age ≥ 60) ∧ (if elevel ∈ [2..4]
then (50K ≤ salary ≤ 100K) else (25K ≤ salary ≤ 75K)))

In all our experiments, we generated a predefined number of tuples, described
by the 9 attributes. Then the binary functions were computed and the corre-
sponding labels (true or false) added to the dataset as additional columns.

Qualitative Results: In a first run, RUDE+Apriori were applied to a database
of 10.000 tuples; RUDE generated the following 11 split points:

salary: 50.5, 75, 88.5, 101, 113.5, 125.5
commission: 9.5
age: 40, 59.5
hvalue: 518.5
hyears: –
loan: 245.5

It is obvious that RUDE has found all the relevant splits but one. These are
printed in bold. Based on this discretization, Apriori succeeded in finding near
perfect definitions of functions f1 and f3 and good approximations of f2 and
f4 (see also Table 1 below). For instance, here are the rules that relate to f1:



154 M.-C. Ludl and G. Widmer

{age ∈ [19.5...40)} ⇒ f1 = true

{age ∈ [40...59.5)} ⇒ f1 = false

{age ∈ [59.5...81.5)} ⇒ f1 = true

It should be pointed out that RUDE+Apriori also discovered the dependen-
cies between the numeric attributes commission and salary, and, at least partly,
between hvalue and zipcode. Here are the rules for commission:

{salary ∈ [19.5...50.5)} ⇒ commission ∈ [9.5...76.5)
{salary ∈ [50.5...75)} ⇒ commission ∈ [9.5...76.5)
{salary ∈ [75...88.5)} ⇒ commission ∈ [0...9.5)
{salary ∈ [88.5...101)} ⇒ commission ∈ [0...9.5)
{salary ∈ [101...113.5)} ⇒ commission ∈ [0...9.5)
{salary ∈ [113.5...125.5)} ⇒ commission ∈ [0...9.5)
{salary ∈ [125.5...151.5)} ⇒ commission ∈ [0...9.5)

For the more complex dependency between hvalue and zipcode, RUDE+Apriori
found a rather crude approximation that maps a subset of the zipcodes to an
interval representing low hvalues, and another subset to a range of high hvalues.

Quantitative Results of Systematic Study: Now we study how impreci-
sion and noise affect the algorithm’s ability to extract and represent the hidden
dependencies. We vary two factors systematically:

1. “Fuzziness”: To model fuzzy boundaries between numeric ranges, the values
of numeric attributes are perturbed (see also [1]): if the value of attribute
Ai for a tuple t is v and the range of Ai is a, then the value of Ai after
perturbation becomes v + r × α × a, where r is a uniform random variable
between −0.5 and +0.5, and α is our fuzziness parameter.

2. Noise: At a given noise level β, the value of each attribute (numeric or
nominal) is replaced by a random value from its domain with probability β.

To get objective quantitative measures, we run RUDE+Apriori on the data,
extract all the association rules that involve the attributes in the definitions of
the hidden functions (remember our primary interest is in whether the algorithm
can find the dependencies), and regard these rules as a classifier. Let p be the
total number of positive examples (i.e., of class true) in the dataset, n the number
of negative examples, pc the number of positive examples covered by the rules,
and nc the number of negative examples erroneously covered. Then we measure
the classifier’s coverage C = pc/p and the fraction of false positives FP = nc/n.
This gives a more detailed picture than simply the total error of the classifier.

Table 1 shows the results for three different levels of fuzziness (α ∈ {0, 0.05, 0.1})
and noise (β ∈ {0, 0.05, 0.1}), respectively. In each case, we used a database
of size 10.000. To save on experimentation time, APriori was then run on a
random sample of 200 tuples from the discretized version of the database.

We see that RUDE is quite effective in finding a useful discretization. Ge-
nerally, Apriori reaches high levels of coverage and low levels of error in the



Relative Unsupervised Discretization for Association Rule Mining 155

Table 1. Results for different fuzziness and noise levels (size of database = 10.000).

C FP C FP C FP
dependency 0% fuzziness 5% fuzziness 10% fuzziness
[age] → [f1] 100.00% 2.77% 98.60% 3.51% 97.09% 8.06%
[salary, age] → [f2] 92.83% 3.08% 81.06% 3.00% 78.92% 2.42%
[age, elevel] → [f3] 99.08% 0.00% 90.05% 2.24% 90.46% 2.18%
[s, a, e] → [f4] 90.80% 3.20% 69.37% 2.56% 61.05% 0.81%

0% noise 5% noise 10% noise
[age] → [f1] 100.00% 2.77% 96.21% 7.69% 99.30% 8.78%
[salary, age] → [f2] 92.83% 3.08% 80.00% 3.50% 71.25% 1.83%
[age, elevel] → [f3] 99.08% 0.00% 89.62% 4.24% 84.68% 14.60%
[s, a, e] → [f4] 90.80% 3.20% 63.51% 0.79% 51.93% 0.50%

noise-free case, using RUDE’s discretization. The more difficult functions seem
to be f2 and f4, because they depend on the correct identification of more nu-
meric split points than f1 and f3 (7 for f2 and f4 vs. 2 for f1 and f3). As
expected, increasing fuzziness and noise leads to a decrease in the coverage of
the rules that Apriori can find, and to an increase in the errors of commission
(false positives FP ). Noise has a stronger detrimental effect than fuzziness; this
is because in simulating noise, we replaced attribute values by random values, as
opposed to values in the vicinity. The degradation with increasing fuzziness and
noise seems graceful, except for function f4; but f4 is a complex dependency
indeed.

We also performed experiments with datasets of varying sizes, i.e. sets with
1.000, 5.000, 10.000 and 100.000 tuples. There it turned out that the number
of intervals constructed by RUDE does not grow with the size of the dataset.
On the contrary, there is a slight decrease — with more data, RUDE tends to
generate fewer spurious splits.

To summarize, the experiments indicate that our discretization algorithm is
both effective and robust. It does find most of the relevant split points that are
needed to discover the dependencies in the data. Of course, it also generates some
unnecessary splits. What should be acknowledged is that RUDE constructs a
globally good discretization; that is, it defines intervals that allow the association
rule learner to uncover all or most of the hidden dependencies simultaneously.
This is in strong contrast to the results described in [10], where each function
was dealt with separately, and where both a template for the type of association
rule and the correct number of intervals had to be given for the system to be
able to rediscover the function.

3.2 Preliminary Results on Real-World Data

We have also started to apply our algorithm to a large, real-world dataset from a
long-term research project being carried out at our institute (see [11]). The data



156 M.-C. Ludl and G. Widmer

describes expressive performances of pieces of music by a concert pianist. Every
single note is documented and described by various music-theoretic attributes;
in addition, for each note we have exact numeric values that specify the tempo,
loudness, and relative duration (i.e., degree of staccato vs. legato) with which
the note was played. The goal of the project is to discover general principles
of expressive performance; we want to find rules that explain and predict how
a performer will usually shape aspects like tempo, dynamics, and articulation
when playing a piece. Note that these factors are inherently continuous.

When applied to a database representing the performed melodies of 13 com-
plete piano sonatas by W.A. Mozart (more than 44.000 notes), RUDE+Apriori
discovered a number of interesting relations between different expression dimen-
sions and other factors. For instance, there seems to be a roughly inverse re-
lationship (at least in terms of ranges) between performed relative tempo and
loudness (dynamics), as indicated by association rules like the following:

{duration ∈ [0.012...0.34), tempo ∈ [0.26...1.03)} ⇒ dynamics ∈ [0.99...1.41)
(support: 10.63%, confidence: 72.73%)

{tempo ∈ [1.03...5.27), articulation ∈ [0.69...1.01)} ⇒ dynamics ∈ [0.59...0.99)
(support: 7.13%, confidence: 70.40%)

In other words (and simplified), when speeding up and playing notes faster than
average, the pianist tends to play notes more softly, and vice versa (at least in
some cases). Such associations point to very interesting interrelations between
different expression dimensions; these and other discoveries are currently the
topic of further specialized investigations (in cooperation with musicologists).

4 Related Work

Extending association rule mining to numeric data has been the topic of quite
some research recently. Most related to our approach is the method by Srikant &
Agrawal [9]. They first perform a pre-discretization of the numeric attributes into
a fixed number of intervals (determined by a “partial completeness” parameter)
and then combine adjacent intervals as long as their support in the database is
less than a user-specified value. The difference to our approach is that attributes
are discretized in isolation; no information about other attributes is taken into
account. In terms of results, [9] only report on the effect of the parameters on
the number of rules found, and on time complexity.

A second type of methods might be called “template-based” [8,10]. These
require a template of an association rule (with right-hand and part of left-hand
side instantiated and one or more uninstantiated numeric attributes in the left-
hand side) to be given, and then find intervals or hyperrectangles for the numeric
attributes that maximize support, confidence, or some other interest measure.

A very different approach is taken by Aumann & Lindell [3]. They do not
discretize numeric attributes at all. Rather, they use simple measures descri-
bing the distribution of continuous attributes, specifically mean and variance,



Relative Unsupervised Discretization for Association Rule Mining 157

directly in association rules. That is, their algorithm can discover rules like
sex = female ⇒ wage : mean = 7.90/h. One could easily imagine combining
our approach with theirs.

5 Conclusion

This paper has presented RUDE, an algorithm for discretizing numeric or mi-
xed numeric-categorical datasets. The central ideas underlying the algorithm are
mutual structure projection — using information about the value distributions of
other attributes in deciding how many split points to create, and where — and
the use of a novel clustering algorithm for finding points of significant changes.
The algorithm can be viewed as a combination of supervised and unsupervised
discretization. Our experimental results show that RUDE constructs discretiza-
tions that effectively reflect several associations simultaneously present in the
data, and that perturbations in the data do not affect it in an unreasonable way.

The applicability of RUDE is by no means confined to association rule mining.
In [6] we evaluate RUDE in a regression-by-classification setting, and it turns
out that discretization by mutual structure projection can produce substantial
improvements in terms of classifier size (though not in terms of accuracy).

One of the main problems with the current system is that the user-defined
parameters still need to be fine-tuned when dealing with a new dataset. Also,
some of the parameters represent absolute values; the problem of defining relative
threshold measures (like percentages) is also a current research topic.

Acknowledgments

This research is supported by the Austrian Fonds zur Förderung der Wissen-
schaftlichen Forschung under grants P12645-INF and Y99-INF (START).

References

1. Agrawal, R., Imielinski, T., and Swami, A. (1993). Database Mining: A Performance
Perspective. IEEE Transactions on Knowledge and Data Engineering 5(6) (Special
issue on Learning and Discovery in Knowledge-Based Databases), 914-925.

2. Agrawal, R. and Srikant, R. (1994). Fast Algorithms for Mining Association Rules.
In Proc. of the 20th Int.l Conference on Very Large Databases, Santiago, Chile.

3. Aumann, Y. and Lindell, Y. (1999). A Statistical Theory for Quantitative Asso-
ciation Rules. In Proceedings of the Fifth International Conference on Knowledge
Discovery and Data Mining (KDD-99). Menlo Park, CA: AAAI Press.

4. Dillon, W., and Goldstein, M. (1984). Multivariate Analysis. New York: Wiley.
5. Dougherty, J., Kohavi, R., and Sahami, M. (1995). Supervised and Unsupervised

Discretization of Continuous Features. In Proceedings of the 12th International Con-
ference on Machine Learning (ML95). San Francisco, CA: Morgan Kaufmann.

6. Ludl, M.-C. and Widmer, G. (2000). Relative Unsupervised Discretization for Re-
gression Problems. In Proceedings of the 11th European Conference on Machine
Learning (ECML’2000). Berlin: Springer Verlag.



158 M.-C. Ludl and G. Widmer

7. Pavlidis T. (1982). Algorithms for Graphics and Image Processing. Rockville, MD:
Computer Science Press.

8. Rastogi, R. and Shim, K. (1999). Mining Optimized Support Rules for Numeric
Attributes. In Proc. of the International Conference on Data Engineering 1999.

9. Srikant, R. and Agrawal, R. (1996). Mining Quantitative Association Rules in Large
Relational Tables. In Proceedings of the ACM-SIGMOD Conference on Management
of Data, Montreal.

10. Wang, K., Tay, S., and Liu, B. (1998). Interestingness-Based Interval Merger for
Numeric Association Rules. In Proceedings of the 4th International Conference on
Knowledge Discovery and Data Mining (KDD-98). Menlo Park: AAAI Press.

11. Widmer, G. (1998). Applications of Machine Learning to Music Research: Empi-
rical Investigations into the Phenomenon of Musical Expression. In R.S.Michalski,
I.Bratko and M.Kubat (eds.), Machine Learning and Data Mining: Methods and
Applications. Chichester, UK: Wiley.


	Relative Unsupervised Discretization for Association Rule Mining
	Introduction
	RUDE -- Relative Unsupervised Discretization
	Discretization for Association Rules
	RUDE -- The Top-Level
	The Main Step: Structure Projection
	A Characterizing Clustering Algorithm
	Post-processing: Merging the Split Points

	Experiments
	Systematic Experiments with Synthetic Data
	Preliminary Results on Real-World Data

	Related Work
	Conclusion
	Acknowledgments
	References


