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Abstract. Given the wide variety of available classi�cation algorithms
and the volume of data today's organizations need to analyze, the selec-
tion of the right algorithm to use on a new problem is an important issue.
In this paper we present a combination of techniques to address this prob-
lem. The �rst one, zooming, analyzes a given dataset and selects relevant
(similar) datasets that were processed by the candidate algoritms in the
past. This process is based on the concept of \distance", calculated on
the basis of several dataset characteristics. The information about the
performance of the candidate algorithms on the selected datasets is then
processed by a second technique, a ranking method. Such a method uses
performance information to generate advice in the form of a ranking,
indicating which algorithms should be applied in which order. Here we
propose the adjusted ratio of ratios ranking method. This method takes
into account not only accuracy but also the time performance of the can-
didate algorithms. The generalization power of this ranking method is
analyzed. For this purpose, an appropriate methodology is de�ned. The
experimental results indicate that on average better results are obtained
with zooming than without it.

1 Introduction

The need for methods which would assist the user in selecting classi�cation
algorithms for a new problem has frequently been recognized as an important
issue in the �elds of Machine Learning (ML) [13, 5] and Knowledge Discovery in
Databases (KDD) [3].

Previous meta-learning approaches to algorithm selection consist of suggest-
ing one algorithm or a small group of algorithms that are expected to perform
well on the given problem [4, 21, 10]. We believe that a more informative and

exible solution is to provide rankings of the candidate algorithms [15, 19, 5]. A
ranking can be used to select just one algorithm, i.e. the one for which the best
results are expected. However, if enough resources are available, more than one
algorithms may be applied on the given problem.

The problem of constructing rankings can be seen as an alternative to other
ML methods, such as classi�cation and regression. Therefore, we must develop
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methods to generate rankings and also methodologies to evaluate and compare
such methods [5].

Recently, several methods that generate rankings of algorithms based on their
past performance have been developed with promising results. Some are based
only on accuracy [5], others on accuracy and time [19]. So far, these methods
were used without taking the dataset which the ranking was intended for into
account. That is, given a new dataset, a ranking was generated by processing
all available performance information. However, considering the NFL theorem
we cannot expect that all that information is relevant for the problem at hand.
Therefore, we do not expect that rankings generated this way accurately repre-
sent the relative performance of the algorithms on the new problem.

We, therefore, address the problem of algorithm selection by dividing it into
two distinct phases. In the �rst one we identify a subset of relevant datasets. For
that purpose we present a technique called zooming. It employs the k-Nearest
Neighbor algorithm with a distance function based on a set of statistical, infor-
mation theoretic and other dataset characterizationmeasures to identify datasets
that are similar to the one at hand. More details concerning this are in Section 2.

In the second phase we proceed to construct a ranking on the basis of the
performance information of the candidate algorithms on the selected datasets. In
Section 3 we present the adjusted ratio of ratios ranking method. This method
processes performance information on accuracy and time. In Section 4 we eval-
uate this approach by assessing the gains that can be attributed to zooming. In
this analysis we assess the e�ect of varying the number of neighbors and adopt-
ing di�erent compromises between the importance of accuracy and time. Finally,
we describe some related work (Section 6) and present conclusions (Section 7).

2 Selection of Relevant Datasets

As explained earlier, the ranking of the candidate algorithms is preceded by
selecting, from a set of previously processed datasets, those whose performance
information is expected to be relevant for the dataset at hand. The ranking is
based on that information. We refer to the selection process as zooming, because,
given the space of all previously processed datasets, it enables us to focus on the
\neighborhood" of the new one.

The relevance of a processed dataset to the one at hand is de�ned in terms of
similarity between them, according to a set of measures (meta-attributes). It is
given by function dist(di; dj) =

P
x �(vx;di ; vx;dj ) where di and dj are datasets,

vx;di is the value of meta-attribute x for dataset di, and �(vx;di ; vx;dj ) is the
distance between the values of meta-attribute x for datasets di and dj . In or-
der to give all meta-attributes the same weight, they are normalized in the

following way: �(vx;di ; vx;dj ) =
jvx;di�vx;dj j

maxk 6=i(vx;dk )�mink 6=i(vx;dk )
, where maxk 6=i(vx;dk)

calculates the maximum value of meta-attribute x for all datasets except di and
mink 6=i(vx;dk) calculates the corresponding minimum. Note that, it may be the
case that a meta-attribute is not applicable on a dataset. For instance, if dataset
di has no numerical attributes then it makes no sense to calculate mean skew,
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which is a statistical meta-attribute. It seems reasonable to say that, with re-
spect to this attribute, dataset di is very close to dataset dj if dj does not have
any numerical attributes either. We have, thus, determined that � is 0 in this
case. Furthermore, we can say that dataset di is quite di�erent from dataset dk if
the latter has some numerical attributes. In this case � is assigned the maximum
distance, 1.

The meta-attributes used were obtained with the Data Characterization Tool
(DCT) [11]. They can be grouped into three categories: general, statistical and
information theoretic measures. Examples of general measures used are number
of attributes and number of cases. As for the statistical measures, we included
mean skew and number of attributes with outliers, among others. Finally, some
of the information theoretic measures are class entropy and noise-signal ratio. A
full listing of the measures used is given in the appendix.

The meta-attributes used were chosen simply because they are provided by
DCT and because they were used before for the same purpose [11]. We do not
investigate whether they are appropriate or not, and if di�erent weights should
be assigned to them in the distance function, although these are questions that
we plan to address in the future.

The distance function de�ned is used as part of the k-Nearest Neighbor (kNN)
algorithm to identify the datasets that are most similar to the one at hand. The
kNN algorithm is a simple instance-based learner [13]. Given a case, this algo-
rithm simply selects k cases which are nearest to it according to some distance
function.

Performance information for the given candidate algorithms on the selected
datasets is then used to construct a ranking. Several methods can be used for
that purpose [19, 5]. Details of one of them are given in the next section.

3 Ranking Based on Accuracy and Time

In the previous section we have explained how to select performance information
that is relevant to the problem at hand. Here we explain how that information
can be used to generate a ranking of the corresponding algorithms. Since the
datasets selected are similar to the one at hand, it is expected that algorithms
perform similarly. In other words, the method should provide us with a good
advice for the selection of algorithms to apply on the dataset at hand.

The ranking method presented here is referred to as the adjusted ratio of

ratios (ARR) ranking method [19]. This method uses information about accuracy
and total execution time to rank the given classi�cation algorithms. We start by
de�ning the measure underlying the method and the parameter that determines
the relative importance of time and accuracy. Next we describe how the method
works. Finally we describe the experimental setup and give an example.

Weighing Success Rates and Time: The ARR method is based on the ratio of
success rate ratio and an adjusted time ratio:
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where SRdi
ap

and T di
ap

are the success rate and time of algorithm ap on dataset

di, respectively, and KT
1 is a user-de�ned value that determines the relative

importance of time.

The formula may seem ad-hoc at �rst glance, but its form can be related to
the ones used in other areas of science. We can look at the ratio of success rates,
SRdi

ap
=SRdi

aq
, as a measure of the advantage, and the ratio of times, T di

ap
=T di

aq
, as a

measure of the disadvantage of algorithm ap relative to algorithm aq on dataset
di. The former can be considered a bene�t while the latter a cost. Thus, by
dividing a measure of the bene�t by a measure of the cost, we assess the overall
quality of an algorithm. A similar philosophy underlies the e�ciency measure
of Data Envelopment Analysis (DEA) that has been proposed for multicriteria
evaluation of data mining algorithms [15].

Furthermore, the use of ratios of a measure, namely success rate, has been
shown earlier to lead to competitive rankings overall when compared to other
ways of aggregating performance information [19, 5]. A parallel can be estab-
lished between the ratio of success rates and performance scatterplots that have
been used in some empirical studies involving comparisons of classi�cation algo-
rithms [17].

Relative Importance of Accuracy and Time: The reason behind the adjustment
of the time ratio is concerned with the fact that time ratios have, in general,
a much wider range of possible values than success rate ratios. Therefore, if a
simple time ratio were used, it would dominate the ratio of ratios. By using

log
�
T di
ap
=T di

aq

�
, i.e. the order of magnitude of the di�erence between the times of

algorithms ap and aq, this e�ect is minimized. We, thus, obtain values that vary
around 1, as happens with the success rate ratio. The parameter KT enables us
to determine the relative importance of the two criteria, which is expected to
vary for di�erent applications.

However, the use of theKT parameter is not very intuitive and would present
an obstacle if the method were to be used by non-expert users. We have therefore
devised a way to obtain KT in a way that is more user-friendly. We need an
estimate of how much accuracy we are willing to trade for a 10 times speedup or
slowdown. The de�ned setting is represented as 10x�=X%. The parameter KT is
then approximated by 1=X%. For instance, if the user is willing to trade 10% of
accuracy for 10 times speedup/slowdown (10x�=10%), then KT = 1=10% = 10.

1 Here, to avoid confusion with the number of nearest-neighbors (k), we refer to the
compromise between time and accuracy as KT , rather then K, as in [19].

129Zoomed Ranking



Aggregating ARR Information: The method aggregates the given performance
information as follows. First, we create an adjusted ratio of ratios table for each
dataset. The table for dataset di is �lled with the corresponding values of ad-
justed ratio of ratios, ARRdi

ap;aq
. Next, we calculate a pairwise mean adjusted

ratio of ratios for each pair of algorithms, ARRap;aq =
�P

di
ARRdi

ap;aq

�
=n

where n is the number of datasets. This represents an estimate of the gen-
eral advantage/disadvantage of algorithm ap over algorithm aq. Finally, we de-
rive the overall mean adjusted ratio of ratios for each algorithm, ARRap =�P

aq
ARRap;aq

�
=(m� 1) where m is the number of algorithms. The ranking is

derived directly from this measure. The higher the value an algorithm obtains,
the higher the corresponding rank.

Experimental Setup: Before presenting an example, we describe the experimen-
tal setting. We have used three decision tree classi�ers, C5.0, C5.0 with boosting
[18] and Ltree, which is a decision tree that can introduce oblique decision sur-
faces [8]. We have also used an instance based classi�er, TiMBL [7], a linear
discriminant and a naive bayes classi�er [12]. We will refer to these algorithms
as c5, c5boost, ltree, timbl, discrim and nbayes, respectively. We ran these
algorithms with default parameters on 16 datasets. Seven of those (australian,
diabetes, german, heart, letter, segment and vehicle) are from the StatLog
repository2 and the rest (balance-scale, breast-cancer-wisconsin, glass,
hepatitis, house-votes-84, ionosphere, iris, waveform and wine) are from
the UCI repository3 [2]. The error rate and time were estimated using 10-fold
cross-validation.4

Example: Supposing that we want to obtain a ranking of the given algorithms
to use on the segment dataset (test dataset), without having tested any of them
on that dataset. We must, thus, exclude the dataset in question from consid-
eration and use only the remaining datasets (training datasets) in the process.
In Table 1 we present two rankings. The �rst is generated by ARR based on
all training datasets while the second is based only on the two datasets that
are most similar to segment. Here we refer to zooming with a given k followed
by the application of ARR on the selected datasets as Z k(ARR). We note that
ARR can be considered as a special case of Z k(ARR), where k spans across all
training datasets. In our meta-data, the two datasets that are most similar to
segment are ionosphere (dist = 4:99) and glass (dist = 8:28). The results
presented are obtained with 10x�=1% or KT = 100.

2 See http://www.liacc.up.pt/ML/statlog/.
3 Some preparation was necessary in some cases, so some of the datasets may not be

exactly the same as the ones used in other experimental work.
4 It must be noted that this is not a comparative study of the algorithms involved.

Not all of them were executed on the same machine. However, this does not con
ict

with the purpose of this work because, in a real-world setting, not all algorithms

may be available on the same machine.
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Table 1. Recommended rankings for the segment dataset based on all the other
datasets and on its two nearest neighbors (left). The ideal ranking and part of the
calculation of Spearman's correlation for the latter recommended ranking (right)

Recommended Ranking Ideal

ARR Z 2(ARR) Ranking Spearman

Rank ap ARRap
ap ARRap

ap ARRap
D

2

ap

1 ltree 1.066 c5boost 1.151 c5boost 1.151 0
2 c5boost 1.057 c5 1.075 c5 1.088 0
3 discrim 1.046 ltree 1.049 ltree 1.088 0
4 c5 1.009 discrim 0.991 discrim 1.031 0
5 nbayes 0.974 timbl 0.902 nbayes 1.008 1
6 timbl 0.919 nbayes 0.900 timbl 0.769 1

We observe that the rankings generated are quite di�erent. The obvious ques-
tion is which one is the best, i.e. the one that most accurately re
ects the actual
performance of the algorithms on the test dataset? We try to answer it in the
next section.

4 Assessment of Generalization Power

A ranking should naturally be evaluated by comparing it to the actual per-
formance of the algorithms on the dataset the ranking is generated for. Our
approach consists of using that performance information to generate an ideal
ranking [5]. The quality of the ranking being evaluated (recommended ranking)
is assessed by measuring the distance to the ideal ranking.

The ideal ranking represents the correct ordering of the algorithms on a test
dataset. Here, it is based on the assumption that the ARR measure (Eq. 1)
appropriately represents the criteria to be used to evaluate the results and that
the measured accuracies and times are good estimates of the corresponding true
accuracies and times.

The distance between two rankings is best calculated using correlation. Here
we use Spearman's rank correlation coe�cient [16]. To illustrate this measure, we
show how we evaluate the ranking recommended by Z 2(ARR) for the segment

dataset with 10x�=1% (Table 1). First we calculate the squared di�erences, D2

ap
,

between the recommended and the ideal ranks for algorithm ap. Then we cal-
culate D2 =

P
ap
D

2
ap
. The score of the recommended ranking is the correlation

coe�cient, rs = 1� 6D2

n3�n
, where n is the number of algorithms. In the example

used D
2 = 2 and rs = 0:943, while the correlation for the ranking recommended

by ARR is 0.714.
It is not possible to draw any conclusion based on one dataset only. We

have, therefore, carried a leave-one-out procedure. As the name suggests, in each
iteration one dataset is selected as the test dataset. The rankings generated based
on the corresponding training datasets are then evaluated in the way described
in the previous paragraphs. The methods compared were Z 2(ARR), Z 4(ARR)
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Table 2.Mean correlations obtained by Z2(ARR), Z4(ARR) and ARR for di�erent val-
ues of KT . The +/- column indicates the number of datasets where the corresponding
method has higher/lower correlation than ARR

Z 2(ARR) Z 4(ARR) ARR

10x�= mean rS +/- mean rS +/- mean rS

10% 0.64 9/6 0.68 9/2 0.64
1% 0.63 10/6 0.56 9/6 0.54

0.1% 0.64 10/6 0.57 8/6 0.54

and also ARR without zooming. The later method serves as a baseline to assess
whether zooming is really advantageous and if it is, quantify that advantage.
The values for k were determined in order for the rankings to be built based on
10% and 25%, respectively, of the datasets available. These seem to be sensible
values. As for KT , values were chosen for the time to have large, medium and
small importance, respectively 10x�=10%, 1% and 0.1% (KT = 10; 100 and 1000).

If we analyze the mean correlations in Table 2, we observe that when time is
predominant (10x�=10%), Z 4(ARR) performs better than ARR while the mean
correlations of Z 2(ARR) and ARR are equal. The situation changes when time is
given less importance. The advantage of Z 4(ARR) over ARR remains, although
in a smaller scale. On the other hand, Z 2(ARR) is now considerably better than
ARR, exceeding also the performance of Z 4(ARR). Note that the performance
of Z 2(ARR) seems to be quite robust with respect to the variation of KT .

5 Discussion

According to the previous section, it appears that zooming improves the quality
of the rankings generated. However, we would like to obtain statistical support
for this claim. For that purpose, we have applied Friedman's test to the results
obtained [16]. The values obtained forM , after correction due to the occurrence
of ties, are 3.37, 1.34 and 1.24, for 10x�=10%, 1% and 0.1%, respectively. The
critical value is 6.5 for k = 35 and n = 16 at a 5% signi�cance level, so we do not
reject the null hypothesis that their performance is not signi�cantly di�erent.
We, thus, have no statistical evidence of the di�erence in mean correlation of
the methods compared. We must note, however, that, although Friedman's test
was used before for the same purpose [19, 5] with a conclusive result, it is a
distribution-free test, which implies that it is not expected to be very powerful.
Also we have restricted our experiments to 6 algorithms and 16 datasets. We
expect that by increasing the number of datasets and algorithms used, we are
able to obtain statistical evidence of the improvement brought by zooming. The
extended study is currently being carried out.

One drawback of the ideal ranking used is that it is built with average accu-
racies and times. Given that these are only estimates, the ranking generated may

5 This k is a parameter of Friedman's test representing the number of methods being
compared.
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not be reliable. To minimize this problem, the ideal ranking can be generated as
a set of n orderings, one for the results in each fold of the cross-validation pro-
cedure used to estimate the performance of the algorithms. A similar procedure
as been used before with satisfactory results [20, 5].

As for the measure of distance between rankings used here, it has been shown
that correlation is appropriate for that purpose [20]. One drawback is, though,
the lack of distinction between rank importance. For instance, it is obvious that
the switch made between the 5th and 6th algorithm by the Z 2(ARR) on the
segment dataset (Table 1) is less important than if it would involve the 1st and
the 2nd (c5boost and c5). We have previously developed a measure to solve
this problem, weighted correlation [20]. However, it has not yet been thoroughly
analyzed, and, thus was not used here. An alternative to Spearman's correlation
coe�cient that could be tried is Kendall's tau [16].

6 Related Work

Meta-knowledge as been used before for the purpose of algorithm selection. This
knowledge can be either of theoretical or of experimental origin, or a mixture of
both. The rules described by Brodley [6] for instance, captured the knowledge
of experts concerning the applicability of certain classi�cation algorithms. The
meta-knowledge of [1], [4] and [9] was of experimental origin and was obtained by
meta-learning on past performance information of the algorithms. Its objective
is to capture certain relationships between the measured dataset characteristics
and the relative performance of the algorithms. As was demonstrated, meta-
knowledge can be used to predict the errors of individual algorithms or construct
a ranking with a certain degree of success.

Not much work exists in the areas of Machine Learning or KDD concerning
multicriteria ranking and evaluation. A noteworthy exception is the work of
Nakhaeizadeh et al. [15, 14], who have applied a technique that originated in the
area of Operations Research, Data Envelopment Analysis (DEA). It remains to
be seen how this approach compares with the method described here.

7 Conclusions

We have presented a combination of techniques that uses past performance in-
formation to assist the user in the selection of a classi�cation algorithm for a
given problem. The �rst technique, zooming, works by selecting datasets and
associated performance information that is relevant to the problem at hand.
This process is based on the distance between datasets, according to a set of
statistical, information theoretic and other measures. Here, it is performed us-
ing the k-Nearest Neighbor algorithm. We have selected dataset measures that
were previously used for the same purpose. Work is under way to select the most
predictive subset of those measures.

The ranking method used here is the Adjusted Ratio of Ratios (ARR) method.
This is a multicriteria method that takes into account both accuracy and total
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execution time information. It has a parameter that enables us to determine the
relative importance of each criteria. One of the main advantages is its intuitive-
ness, which is essential to enable its use by non-experts.

We have reported experiments varying the number of neighbors and the
relative importance of accuracy and time. The results obtained are compared to
results obtained by ARR without zooming. It appears that zooming improves
the quality of the generated rankings, although the results obtained are not
signi�cantly di�erent according to the Friedman's test.

In summary, our contributions are (1) exploiting rankings rather then classi�-
cation or regression, (2) providing a general evaluation methodology for ranking,
(3) providing a way of combining success rate and time and (4) exploiting dataset
characteristics to select relevant performance information prior to ranking.
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Appendix The dataset characterization measures used in this study were ob-
tained with the DCT program. They consist of simple (number of attributes,
number of symbolic and numerical attributes, number of cases and classes, de-
fault accuracy, standard-deviation of classes, number of missing values and cases
with missing values), statistical (mean skew and kurtosis, number of attributes
with outliers, M statistic, degrees of freedom of the M statistic, chi-square M
statistic, SD ratio, relative importance of the most important eigenvalue, canon-
ical correlation for the most discriminant function, Wilks Lambda and Bartlett's
V statistics, chi square V statistic and number of discriminant functions) and
information theoretic measures (minimum, maximum and average symbolic at-
tributes, class entropy, attributes entropy, average mutual information, joint en-
tropy, equivalent number of attributes and noise signal ratio). More details can
be found in [11, 12].
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