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Abstract

The approach presented in this paper allows a team of mobile robots to estimate
cooperatively their poses, i.e. positions and orientations, and the poses of other
observed objects from images. The images are obtained by calibrated color cam-
eras mounted on the robots. Model knowledge of the robots' environment, the
geometry of observed objects, and the characteristics of the cameras are repre-
sented in curve functions which describe the relation between model curves in
the image and the sought pose parameters. The pose parameters are estimated
by minimizing the distance between model curves and actual image curves. Ob-
servations from possibly di�erent view points obtained at di�erent times are fused
by a method similar to the extended Kalman �lter. In contrast to the extended
Kalman �lter, which is based on a linear approximation of the measurement
equations, we use an iterative optimization technique which takes non-linearities
into account. The approach has been successfully used in robot soccer, where it
reliably maintained a joint pose estimate for the players and the ball.

1 Introduction

1.1 Motivation and Goal of the Work

To successfully perform their tasks, most autonomous mobile robots must be
able to estimate their own poses, consisting of position and orientation. Further-
more, the interaction with other robots and the manipulation of objects require
them to localize other, possibly moving, objects. A strong restriction is that the
localization problem has to be solved in real-time.

Often the required localization accuracy varies with the distance of the object
to be localized. A robot that wants to grasp an object requires an accurate
position whereas less accurate estimates are suÆcient to approach the object.
Due to the lower price and weight, visual sensors are often preferred against
laser range �nders. In this paper, we propose a novel approach for estimating
the poses of cooperating, mobile robots and the poses of other objects observed
by the robots.

1.2 Previous Work

The problem of pose-estimation from images is frequently addressed by the
robotics, the computer vision, and the photogrammetry communities. Due to
the huge number of publications, a comprehensive review would be beyond the
scope of this paper.

Recently sample-based versions of Markov localization became very popular
[2, 5, 3, 6]. Closely related to sample{based Markov localization is the Conden-
sation algorithm [1] which is often used for object tracking. Both approaches
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represent the posterior distribution of the sought parameters (e.g. the pose) by
samples, which allows to approximate virtually any distribution. However, in
order to achieve high accuracy, usually a high number of samples is necessary.
The conditional probability density of the environment observation has to be
computed for each sample pose. A good match between the observation and a
sample pose leads to new randomly generated sample poses in the vicinity of the
good sample. However, Markov localization does not try to directly improve the
already good pose. Hence, Markov localization leads to limited accuracy and/or
relatively high computational cost.

Usually vision-based pose estimation methods consists of three steps. First,
features are extracted from the image. Second, correspondences are established
between image features and model features. In the third step, the pose is esti-
mated using relations between image features and model features. Image features
are for example points [10, 8, 7], lines [7, 10, 9], or ellipses [12]. Most methods are
only applicable to speci�c feature types (e.g. lines, circles, ellipses), whereas our
method can be applied to all types of smooth curves. We use model knowledge
of the robots' environment in order to restrict the search for features and cor-
respondences. Thus, only local operations on the image are necessary, which
signi�cantly increases processing speed.

2 Self-Localization from a Single View

In this section, we address the problem of estimating the pose of a robot in 3D
world coordinates from a single image grabbed by a calibrated camera mounted
on the robot. In the following, the robot pose is estimated by minimizing the
distances between observed curves in the image and 2D projections of curves
from the 3D world model.

2.1 Speci�cation of Model Curves

The geometric properties of the robots' operating environment are speci�ed by
a prede�ned world model which consists of curve features. A 3D curve feature
is given by a curve function Ci : Di ! R3 de�ning the set G(Ci) of curve points
in 3D world coordinates by

G(Ci) = fCi(s)js 2 Dig (1)

where Di = [si;min; ::; si;max] is the domain for s. In practice, all relevant curves,
e.g. circles or B-splines, can be speci�ed or at least approximated by curve func-
tions. Especially for a man-made environment a polyhedral model is often used.
For such a model the curves are line segments which are given by

Ci(s) = s � Bi1 + (1� s) �Bi2 (2)

where the points Bi1 and Bi2 are the endpoints of the line segments and D is
equivalent to [0; ::; 1]. The observation of a 3D curve G(Ci) in the image is a 2D
image curve

G(ci) = fci(s;�)js 2 Dig (3)

where � is the robot pose and ci is the image curve function given by

ci(s;�) = proj(Ci(s);�) (4)
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The function proj projects a 3D point, given in world coordinates, into the
image and returns the pixel coordinates of the resulting 2D point. First, the
function proj converts the 3D world coordinates into 3D robot coordinates.
This conversion depends on the pose � of the robot. The �rst two elements of
the robot pose � are the x- and the y-coordinate of the robot position in world
coordinates and the third element speci�es the angle of the robot's orientation.
Since we use a calibrated camera mounted on the robot, the 3D robot coordinates
can be transformed into 3D camera coordinates and �nally, the pixel coordinates
of the 2D projection can be computed. The resulting image curve function ci
describes the relation between the sought robot pose � and the position of the
model curve points in the image.

In order to obtain curve functions of occluding edges, e.g. the silhouette of a
sphere or a cylinder, we �rst compute the tangent points in 3D world coordinates
and project them into the image.

We distinguish two types of image curves: 1.) edge curves. An edge curve
separates two image regions which di�er in the distribution of color vectors. An
edge is speci�ed by a single curve function. 2.) line curves. For a line curve two
curve functions are used which not only describe the position of the line but also
its width.

Usually, not only knowledge of the geometric properties of a curve feature is
given but also knowledge of possible color distributions of the adjacent regions.
This knowledge is used in 2.2 in order reduce the search space of possible cor-
respondences between observed image curves and model curves. We assign a set
of possible color vectors to each side of an edge. Similarly, for a line curve two
color sets are used, one for the background color and one for the line itself.

2.2 Iterative Optimization of the Pose

From the context of the application or from previous observations usually un-
certain a-priori knowledge of the robot pose � is given. We model the a-priori
probability density p(�) by a multi-variate Gaussian density with mean vector
�� and covariance matrix C�. In the following the mean vector �� is used in
order to establish correspondences between image curves and model curves.

Search for points on the corresponding image curve For each projected
model curve ci, the set H(ci) of initial points is computed by

H(ci) = fci(si;j ; ��)jsi;j 2 Sig (5)

where the set Si � Di contains the values si;j for which the curve functions are
evaluated. The set Si has to be chosen such that for all si;j 2 Si, the resulting
image points are valid, i.e. the 3D points are in front of the camera and the
projections are within the image area.

For each projected model point Pi;j = ci(sj ; ��) 2 H(ci), the tangent vector
vi;j is computed by

vi;j =
@

@a
ci(a; ��)ja=si;j (6)

Image points ~Pi;j of the corresponding image curve are sought along the perpen-
diculars of vi;j , see Fig. 1. In order to avoid wrong correspondences, an image
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Fig. 1. Search for image points along the perpendiculars: for the two perpendiculars
in the center of the image no image points are found which lie between regions of the
required colors.

point ~Pi;j on an edge is only accepted if both sides of the edge have consistent
colors according to the curve model. In Fig. 1, the region below an image point
has to be 'grey' and the region above has to be 'white'. Analogously, for line
curves the color distributions of the line and the background are used in order
to eliminate wrong image points. Furthermore, the two curve functions de�ning
a line curve are used in order to estimate the line width in the image. A line
point is rejected if the line width in the image is not similar to the line width of
the projected model line. For each image point ~Pi;j , the standard deviation �i;j
is estimated which describes the probable precision of the observation ~Pi;j along
the perpendicular.

MAP-Estimation In the following, we describe how the robot pose is es-
timated by minimizing the distances between observed image points ~Pi;j and
projected model curves G(ci). The approach presented here is a modi�cation
and generalization of [7].

In order to express the displacements between image points ~Pi;j and pro-
jected model curves G(ci) as a function of the robot pose �, the projected
model curves G(ci) are approximated in the vicinities of the projected model
points Pi;j = ci(si;j ;�) by straight lines, see Fig. 2. We denote the normal vec-
tor perpendicular to vi;j(�) by ni;j(�). The displacement di;j(�) between an

observed image point ~Pi;j and the corresponding tangent of the projected model
curve ci is

di;j(�) = (ni;j(�))
T �
h
ci(si;j ;�)� ~Pi;j

i
(7)

where (�)T indicates vector transposition. If the curvature of the projected model

curve is not zero and the observation ~Pi;j is not exactly on the perpendicular

then di;j(�) is just an approximation of the real displacement between ~Pi;j and
the projected model curve G(ci).

The observations ~Pi;j are noise-a�ected. We assume that for all observations
~Pi;j , the components of the noise in the direction perpendicular to the projected
model curves are mutually independent and Gaussian distributed with mean
value zero and standard deviation �i;j . With this assumption, the maximum
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Fig. 2. One iteration step: the new projected model curve is closer to the image curve.

a-posteriori (MAP) estimation b� of the robot pose is given by

b� = argmax
�

p(�) �
Y
(i;j)

1p
2��i;j

exp

 
�d2i;j(�)

2�2i;j

!
(8)

The maximization of this product can be transformed into a more convenient
minimization of a sum by taking the negative logarithm:b� = argmin

�

�21 + �22 with (9)

�21 = C1( ����)TC�
�1( ����) (10)

�22 = C2

X
(i;j)

d2i;j(�)

2�2i;j
(11)

where �� is the mean vector and C� is the covariance matrix of the a-priori
density p(�). The variables C1 and C2 do not depend on the pose �. In order
to minimize �21 + �22, we use Newton iteration [11]. Fig. 2 illustrates the result
of one iteration step. After the iteration step, the projected model curves are
closer to the observed image points. However, the projected points Pi;j on the
model curves are shifted along the model curves. Due to this shift, the correct
displacements between the image points ~Pi;j and the projected model curves may
di�er from the estimations di;j(�) which are obtained by linear approximation.
In order to yield precise measurements between the model curves and the image
curves, new image points are sought along the perpendiculars passing through
the new projected model points. Since the deviation between image curves and
projected model curves is already reduced, the new search can be performed at
low computational cost.

In experiments where the initialization was obtained from previous images
after two or three iterations the changes of the projected model curves were less
than one pixel. Since the pose consists of three variables, three independent dis-
placements di;j corresponding to three image point ~Pi;j are suÆcient to estimate
the pose. However, in order to increase robustness and accuracy, for each visible
feature three image points ~Pi;j are sought.
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For most applications, a rough quanti�cation of the accuracy of b� is needed
which enables the robot to adapt its behavior to the uncertainty of its presumed
pose. In order to estimate the uncertainty of the pose, we apply a method based
on Taylor approximation of the minimized term �21 + �22, see e.g. [11]. This
method can be applied when the measurement errors are normally distributed
and the number of image points is large enough, so that the uncertainties in the
estimated parameters � do not extend outside a region in which the functions
ci could be replaced by suitable linearization.

3 Combined Self-Localization and Object-Localization

3.1 Localization from a Single View

On the one hand, the estimated world coordinates of the observed objects de-
pend on the world coordinates of the observing robot. On the other hand, a-
priori knowledge of the poses of the observed objects can be used for the self-
localization of the observing robot. In order to exploit these interdependencies,
the self-localization and the localization of other objects are performed simulta-
neously in a single optimization.

Analogously to the self-localization we use curve functions ci which describe
the position of curve points in the image. In order to describe the appearance
of an observed object, the object's features are �rst transformed into world
coordinates and thereafter, the observations of these features are computed.

The optimization is done (as for the self-localization) simultaneously over all
curves, no matter whether a curve feature belongs to the static world model or
to a mobile object. For the combined minimization, the sought parameter vector
� contains the pose of the observing robot and the poses of the observed objects.

3.2 Data Fusion Over Time

In this section, we discuss the fusion of observations made by several autonomous
mobile robots into a single dynamic view of the world. This dynamic world model
contains the poses of the robots and the poses of all other observed objects. Since
the variety of the robots should not be restricted, we assume that the cameras
of the robots are not synchronized and the frame rate may vary from camera to
camera. Furthermore, the presented approach allows to use an arbitrary number
of cameras mounted on a single robot. The communication between the robots
takes place via a wireless LAN. Due to the wireless communication some data
packages may be lost.

In order to fuse observations over time, we use a modi�cation of the extended
Kalman �lter, see e.g. [4] for a description of the extended Kalman �lter. For
an image obtained at time t, from previous observations an estimation of the a-
priori distribution of the sought parameter vector � is computed. As described
in section 3.1, the new image is used in order to update the estimate of the
parameter vector.

Our approach di�ers from the extended Kalman �lter [4] as follows: The
Kalman �lter theory assumes a linear relation between the measurements in
the image and the sought parameter vector, in our case the poses �. However,
due to rotation(s), perspective projection, and radial distortions of the lens, the
curve functions ci are non-linear in �. The extended Kalman �lter uses a �rst-
order Taylor approximation in the vicinity of the predicted parameter vector.
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The quality of this approximation depends on the distance between the pre-
dicted parameter vector and the correct vector, and on the curvatures of the
displacements di;j(�). In contrast to the extended Kalman �lter, we use New-
ton iteration which approximates the displacement functions in the solution of
the previous iteration step. This yields a more accurate solution if the relation
between the observations and the parameter vector is not linear. The compu-
tational cost for a single image is about n times larger, where n is the number
of iterations. However, due to the resulting higher accuracy of the predictions,
only few iterations (usually two or three) are necessary.

After a robot R1 has updated its estimate b�, it could broadcast the values ofb� to other robots which could adapt it. However, this communication strategy
might be error-prone. If robot R1 has not received some data packages via the
wireless LAN then it would spread out inaccurate data.

Therefore, a robot broadcasts the time t of its latest observation and a sec-

ond order Taylor approximation ~�22(�) of �
2
2(�) obtained for the vicinity of b�.

The function �22(�), see Eq. (11), summarizes all observations obtained from
the latest image. The receiving robots estimate their own predictions for time
t, substitute in Eq. (9) the term �22(�) by the received Taylor approximation
~�22(�) and minimize �1 + ~�2 according to Eq. (9). Is is noteworthy that for the
minimization of �1 + ~�2 an eÆciently computable closed-form solution exists.

In situations where not enough features are given, pure vision based naviga-
tion is impossible. In order to cope with these temporal cases, we combine the
visual information with odometric data. The odometric data is used in order to
improve the prediction of the robot's pose.

4 Experimental Results

The presented method is applied in our middle-size RoboCup team, the AGILO
RoboCuppers. At present, the RoboCup scenario de�nes a �xed world model
with �eld-boundaries, lines and circles (see Fig. 4). Our approach was success-
fully applied in 1999 during the RoboCup World Soccer Championship and the
German Vision Cup. During a RoboCup match, every robot is able to process
15 to 18 frames per second with its on-board Pentium 200 MHz computer. The
localization runs with a mean processing time of 18 msec for a 16-Bit RGB
(384 � 288) image. Only for 4% of the images the processing time exceeds 25
msec.

In the �rst experiment, the accuracy of the self-localization is investigated.
One robot is set up at six di�erent positions (see Fig. 3) and the self-localization
algorithm is run for about 30 seconds. From about 750 pose estimates, the mean
error of the x-/y-coordinates and the rotation angle are computed and displayed
in Tab. 1. In general, the accuracy of the estimated pose depends on the visible
features and their distance to the camera. The poses 1), 4) and 5) allow for
quite accurate pose estimation. In pose 2) the visible features are far away and
therefore, the resulting estimates are less accurate. The problem of pose 3) is
that an error in the y-coordinate can be compensated by the rotation angle,
and vice versa. From pose 6) only one edge is visible which is not suÆcient in
order to determine all three pose parameters. In this case data-fusion with e.g.
odometric data is a necessity to overcome this problem. In areas where precise
robot movements are required, e.g. near the goals, enough features for robust
vision-based pose estimation are present (see also Experiment 3). An analysis
of the errors shows that the variance of the estimates can be neglected. The
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2.)

6.)

1.)

3.)

5.)

4.)

Fig. 3. Views from 6 di�erent poses on the �eld

Mean pose errors 1) 2) 3) 4) 5) 6)
�x (cm) 0.4 26.0 1.9 0.3 4.3 >99
�y (cm) 1.0 20.3 15.5 8.0 3.2 2.3
�' (degree) 1.1 4.1 8.1 2.4 7.5 2.8

Table 1. Mean error of the self-localization for the x{, y{coordinates, and the rotation
angle '

bias of the estimation is caused by inaccuracies in the camera calibration and
unevenness of the 
oor.

In the second experiment, the robots sensor data fusion is tested. Three
robots are put at prede�ned positions on the �eld. After the robots have es-
timated their pose, a ball is put on the �eld, such that all robots can see the
ball. Fig. 4 outlines the experimental setup. Tab. 2 gives a brief summary of
the results. Three rows are given for every robot. The �rst row exhibits the
robot's exact pose and the exact ball position. In the second row, the robot's
pose estimate and the corresponding uncertainties are displayed. The third row
shows the estimated robot and ball poses after the ball was put on the �eld. All

pose estimate
Grimoald’s

without ball

y

x

Theodo

Grimoald
Ball

Hugibert

Fig. 4. Cooperative localization: Theodo and Hugibert tell Grimoald where they see
the ball. Grimoald used the received ball coordinates to estimate his shift along the
wall.
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Robot x y ' ball x ball y �x �y �' �ballx �bally

Theodo ground truth -3.80 0.45 40 -2.30 1.60 | | | | |
estim. without ball -3.80 0.43 39 | | .0433 .0563 1.439 1 1

estim. with ball -3.77 0.47 40 -2.26 1.63 .0396 .0472 1.106 .0767 .0731

Hugibert ground truth -2.10 -0.80 90 -2.30 1.60 | | | | |
estim. without ball -2.13 -0.94 92 | | .1130 .0924 8.738 1 1

estim. with ball -2.12 -0.78 90 -2.31 1.63 .0941 .0872 5.072 .1057 .0937

Grimoald ground truth -1.15 1.30 140 -2.30 1.60 | | | | |
estim. without ball 1.77 1.25 138 | | 1 .0149 2.753 1 1

estim. with ball -1.14 1.27 140 -2.31 1.58 .1053 .0143 2.544 .0863 .0146
Table 2. Results of the cooperative localization experiment (See Figure 4 for the
experimental setup.)

positions are given in cartesian world coordinates and are measured in meters.
Orientations are measured in degrees. The robots Theodo and Hugibert estimate
their poses with high accuracies. Grimoald can only detect the edge between the
�eld and the top boundary. Thus, he estimates y and ' correctly but sees itself
too far to the right. After the ball was put on the �eld, Grimoald receives from
the other two robots the ball's position estimates and applies them to correct its
own pose. This experiment was also performed several times with moving robots
and equally good results.

In the third experiment, we examine the capability to fuse visual and odo-
metric data over time. A robot starts at the top left corner of the playing �eld
and moves along an 8-shaped trajectory across the �eld, see Fig. 5. Starting-
and ending-point of the trajectory are the same. The four major tuning-points
are at the corners of the penalty-area (x = += � 3 m, y = += � 1:25 m). The
�rst trajectory was derived exclusively from the vision based pose estimates.
The second trajectory was obtained by dead-reckoning. The third trajectory is
the result of the fusion process combining data from both sensors. The weak-
nesses of the pure vision-based localization and dead-reckoning approach are
clearly visible. For the vision-based approach, comparatively fast changes of the
estimated pose may happen if the observed features change. In general this hap-
pens only when too few or too distant features are visible. This can be observed
when the robot crosses the �eld diagonally and does not see the middle-line and
center-circle anymore (see Fig. 4). The dead-reckoning trajectory exhibits error
accumulation over time: starting- and ending-point of the trajectory are about
80 centimeters apart. The approach based on both data types is able to cope
with both weaknesses. Vision based pose inaccuracies are compensated by the
relative movements derived from the odometric data. The accumulation of the
dead-reckoning error is corrected by the vision based pose estimates.

5 Summary and Conclusion

The approach presented in this paper allows mobile robots to estimate coopera-
tively their own poses and the poses of other observed objects from images. The
approach is able to exploit the interdependencies between self-localization and
the localization of other observed objects.

The method runs faster than frame-rate. This high speed is achieved by
an exclusively local search for image points in the vicinity of predicted model
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Fig. 5. Data-fusion of vision and dead-reckoning position estimates

points. The fusion over time is also performed eÆciently with a technique similar
to the extended Kalman �lter. In contrast to the extended Kalman �lter, we
explicitly take the nonlinearity of the measurement equations into account. This
leads to high accuracies and good predictions. We have shown that cooperative
localization leads to a higher localization accuracy. Furthermore, our method
allows for solving certain localization problems that are unsolvable for a single
robot.
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