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Abstract. Synchronisation between an agent and the environment it
resides in, is without a doubt, an important aspect of a more generic
problem of agent interaction with the environment. A systematic compar-
ative analysis of alternative approaches to the synchronisation problem
remains an open challenge, despite numerous successful implementations
of RoboCup teams in the past. The underlying reasons appear to be a
multiplicity of software platforms, implementation changes in the Sim-
ulator itself, and sometimes a methodological bias of designers driven
by a particular agent architecture. In this paper we describe alternative
methods of agent-environment synchronisation, introduce a simple soft-
ware tool for analysing RoboCup games via server log �les, and compare
the proposed synchronisation alternatives with respect to certain quan-
titative metrics. This comparative analysis is conducted without varying
situated, tactical or strategic agent skills, highlighting purely synchroni-
sation features.

1 Introduction

A distinction between a softbot (synthetic agent) and a software program (mod-
ule or subroutine) has been extensively studied in context of multi-agent systems.
Agent characteristics such as self-containment, temporal continuity, reactivity,
pro-activeness, autonomy, etc. are often used to illustrate properties that are
unique to agency, as opposed to software modules. In general, agents are sup-
posed to make their decisions and update their behaviour on the basis of local,
rather than global, information. Multi-agent interactions lead to emergent pat-
terns in overall system behaviour. In general, emergent behaviour cannot be
predicted or even envisioned from knowledge of what each component does in
isolation [1]. We believe that one of the most signi�cant aspects making an agent
something more than just a software module, is its existence in an environment,
its interactions with the environment, and ultimately its adaptation to the en-
vironment.

The Simulation League of the RoboCup provides a standard competition
platform where teams of software agents play against each other [2]. As in the
real game, \players" have only fragmented, localised and imprecise information
of the �eld, and must respond to actions and events in limited time. Recent
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RoboCup literature investigated various aspects of RoboCup simulation, includ-
ing learning of basic and tactical skills [8], genetic evolution of agent behaviors
[3], di�erent levels of agents reasoning abilities [6], cooperation between agents
[9], opponent modelling [10], etc. The Simulator which creates the environment
has also been comprehensively described on both implementation and semantic
levels [2, 5]. A particular problem of agent's synchronisation with the environ-
ment has been addressed as well, for example in [4]. However, we believe that a
systematic comparative analysis of di�erent approaches to the synchronisation
problem remains an open challenge. We feel that such analysis could shed more
light on the nature of agents interactions with the RoboCup environment.

In this paper we describe alternative methods of agent-environment synchro-
nisation, introduce a simple software tool for analysing RoboCup games via
log �les, and compare the proposed synchronisation alternatives with respect
to certain quantitative metrics. It is worth pointing out that this comparative
analysis is conducted without varying situated, tactical or strategic agent skills,
highlighting purely synchronisation features.

2 Synchronisation Alternatives

The RoboCup Simulation League provides essentially a pseudo real-time en-
vironment. This platform exposes the inherently problematic nature of timing
which, as a consequence, results in many engineering problems. Client host plat-
forms typically vary greatly in the available time resolution at both the hardware
and in system library level. In addition there is the issue of network speed and
reliability, and available resources such as CPU time and memory.

One of the implementation challenges posed by this is synchronisation with
the Soccer Server, which we will refer to as the \server". By default the server
simulates time periods of 100ms known as \server cycles", in which a client may
send a command. Contiguous to this, sense body information (kinematic param-
eters, stamina, etc) is sent at 100ms intervals, and visual information at 150ms
intervals. As documented, the server will execute one and only one command
per cycle received from any single client, hence the challenge is to ensure that
at most one command is sent. We call the detrimental situation where a client
sends two or more commands in a server cycle a \clash". Another potentially
harmful situation is where no commands are sent in a server cycle, even though
commands are sent in each adjacent server cycle; we call this a \hole". For ex-
ample we would expect a client chasing the ball to have an unbroken sequence of
dash and turn commands until it reaches the ball. Occurrences of holes generally
slow the agents, and hence disadvantage them in intercepting and running for
the ball.

We consider only the default situation ignoring the complexities introduced
by the alternative visual information delivery periods provided at the cost of
either cone of vision, quality or both. Most obviously we are faced with the
problem that 50 % of all visual information is delivered mid server cycle, and
every third cycle a client may receive no current information at all. Secondly, we
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also �nd that there is some elasticity in the server cycles. That is, the windows
may not always be 100ms, they are generally never less 100ms, but according
to the resources available and calculations required they may grow, by multi-
ples of 10ms. From an implementation perspective, inaccuracies in the system
timing routines are due to timer resolution, limited resources, and the process-
scheduling algorithm employed. There is some latency (though it may be negligi-
ble), in the distributed multi-process environment in which the simulation takes
place. Lastly, packets may be irrevocably lost in UDP transmission; fortunately
this is very uncommon. In summary, synchronisation with \elastic" server cycles
in the presence of asynchronous visual information becomes a challenging task.
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Fig. 1. Synchronisation problem.

Our clients are multi-threaded, where a single thread is dedicated to sensing
(watching the UDP port) and reasoning, and another is for acting (dispatching
commands, and subsequently synchronisation). Upon receiving visual informa-
tion the client determines which type of commands and in what sequence they
should be executed. The number of commands inserted typically falls within the
range of 0 to 4. These are then placed in a thread-safe queue. The commands
are extracted one at a time from the queue as determined by the acting thread.
We have found many possible synchronisation variations, and have distilled these
into four categories, which seem to address the dominant aspects of the problem.

These scheduling schemes can be conveniently categorized according to cer-
tain traits. Firstly we say the timing mechanism is either, external or internal.
External timing can be thought of as observation of change in the environment,
which is expressed conveniently as the sense body information in this domain.
Internal timing can be thought of as a biological clock or regulation mechanism,
realized by our use of the operating system timing routines. Separate to the
timing mechanism, we may further classify a synchronisation schema as \On
Demand". \On Demand", may be thought of as \as immediately needed" or \as
immediately required".
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2.1 Internal Basic

The internal basic scheme is the simplest, and appears to provide the least op-
timal performance. The acting thread counts out intervals of 100ms, and then
attempts to send a command to the server if one is available. This works on
the premise that if commands are sent only at 100ms intervals, these adjacent
time points will occur within adjacent server cycles. This methodology does not
directly address the issue of mid cycle information or cycle elasticity. It does
indirectly, in a probabilistic way, address the issue as the time point may occur
anywhere within the window. However, this illuminates an additional problem.
Even given the situation of inelastic cycles, commands dispatched very close to
the end of a server cycle (typically within the last 10ms) may arrive in either the
current cycle or next in stochastic fashion; somewhat like an erratic pendulum
(see, for example, cycle 4 in Figure 2). In short, the internal basic scheme may
work only under certain assumptions, achieving good synchronisation on prob-
abilistic average. However successful expression of some behaviors may demand
more precise synchronisation.
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Fig. 2. Synchronisation with internal basic scheme.

2.2 Internal On-Demand

This scheme varies from the Basic implementation in two ways. Firstly, in ad-
dition to counting the 100ms intervals, the acting thread now receives notice of
the insertion of commands into the queue. Secondly, if no command was sent at
the last interval, and there is no command to be sent at the current interval, the
thread will sleep until a command is inserted in the queue. This may advantage
the agents by providing them with immediate response to sudden events. How-
ever, the internal on-demand scheme also su�ers from an inability to \guess"
a server cycle's start point and duration. Neither of the internal schemes ade-
quately addresses the issue of mid cycle information or cycle elasticity and both
appear to be greatly limited in utility.

2.3 External Basic

In this schema the sense body information is utilized to indicate the commence-
ment of a new server cycle. This information allows us to use the concept of a
\window". This is a time period that indicates the \window of opportunity" in
which the client may reason and subsequently place commands in the queue dur-
ing which time the acting thread will not attempt to dispatch the �rst command
from the queue. This directly addresses the issue of elasticity in server cycles, as
the sense body information is also subject to this condition (i.e., if server cycle
expands, the sense body interval follows). The issue of mid-cycle information
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may also be addressed by selecting a window size of 0.5 of a server cycle plus
the average time needed to generate new commands (as during cycle 5 in Figure
3). Obviously, if the time taken exceeds the average, the mid-cycle information
will not be utilized (see, for example, cycle 2 in Figure 3).
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Fig. 3. Synchronisation with external basic scheme.

2.4 Flexible Windowing

In order to attempt to realize the optimal situation as often as possible, Flexible
Windowing attempts to fuse the concept of \On-Demand" with that of \Win-
dowing". This schema is almost identical to External Basic Windowing with
the exception, that the amount of time before dispatching a command is varied
according to the state of the queue. If the queue was emptied in the previous
window, the action thread may select to sleep for a di�erent (typically shorter)
duration, than it would if the queue still contains commands | see, for instance,
cycle 2 in Figure 4, where the mid-cycle information is utilized and a command is
dispatched at the end of a (possibly) shorter window. A special case is where the
time to wait in both circumstances is equal, and we call this \Fixed Windowing".
In this case the state of the queue is irrelevant.

Fixed Windowing Schema
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Flexible Window Schema
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Fig. 4. Flexible synchronisation.
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3 Analysis of Game Logs

The AGL (Analysis of Game Log) tool was initially developed to provide an
empirical measurement of the success of our alternative synchronisation schemes.
This is made possible by an option in the Soccer Server con�guration �le, which
enables the server to maintain a log of the commands sent by each client. We
will refer to this �le as the \Game Log". The game log layout is simple to parse,
yet contains considerable information. Each line consists of the id of the server
cycle, the player id and the command sent verbatim. The following is an extract
from a game log, selecting commands received from a particular client, in this
case number 3 of the \Fixed Windowing" team:

2080 Recv fixedwin 3 : (turn � 29:76)
2082 Recv fixedwin 3 : (change view normal high)
2082 Recv fixedwin 3 : (turn 17:52)
2083 Recv fixedwin 3 : (dash 35:00)
2085 Recv fixedwin 3 : (dash 35:00)
2086 Recv fixedwin 3 : (dash 35:00)
2089 Recv fixedwin 3 : (dash 100:00)
2089 Recv fixedwin 3 : (dash 100:00)
2091 Recv fixedwin 3 : (dash 100:00)

It is easy to see, for example, a \clash" occurring at server cycle 2089, followed
by a potential \hole" at 2090.

Currently the AGL is implemented as a Perl 5 script, which not only parses
and collates data from the log �le, but also provides a terse analysis. The AGL
tool is suÆciently 
exible to be able to handle partial games. Many (though
not all) measurements may be made with any variable number of players from
1 to a full 11. In addition to the obvious comparison of goals scored, the AGL
calculates a number of measurements, provided both as a count (raw data), and
as a percentage. The meaning of the percentage varies between measurements
and is described separately with each formula.

It is well-documented that some of the client commands can be executed in
parallel during one server cycle (for example, \say" or \change view"). Others,
like \dash", \turn", \kick" and \catch", are executed only once per cycle. We are
mostly interested in synchronising the latter command type, which we shall refer
to as \action" commands, or \actions". Let us introduce the following notation:

�i;j is a function returning the number of all action commands received by
the server from a player i at cycle j;

�i;j is a function returning 1 if the server received one or more action com-
mands from a player i at cycle j, and 0 otherwise;

Æi;j is a boolean function returning true if �i;j = 0, and false otherwise;

i;j is a boolean function returning true if the server received a \dash" action

command from a player i at cycle j, and false otherwise;
�(a) is a function returning 1 if a boolean expression a is true, and 0 otherwise.
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In short, �i;j is 1 if the cycle j was used by the player i (even if more than
once), while Æi;j represents unused cycles.

\Activity" measurement is given by the formula:

Pn

i=1

Pm

j=1 �i;j

n �m

where n is a number of players, and m is a number of server cycles.
An activity level of 100 % indicates that each client in the team sent an

action command in every cycle. Activity provides some interesting information.
In particular, we have observed that a winning side often has a lesser activity,
possibly making a losing side chase the ball while denying them a good passing
game.

\Clashes ratio" measurement is given by the formula:

Pn

i=1

Pm

j=1(�i;j � �i;j)
Pn

i=1

Pm

j=1 �i;j
= 1�

Pn

i=1

Pm

j=1 �i;jPn

i=1

Pm

j=1 �i;j

where n is a number of players, and m is a number of server cycles.
Basically, this ratio represents the frequency of clashes with respect to all

action commands, and is primarily used to determine the quality of synchroni-
sation between the clients and the server.

\Holes ratio" measurement is given by the formula:

Pn

i=1

Pm�1

j=2 �(
i;j�1 ^ Æi;j ^ 
i;j+1)
Pn

i=1

Pm

j=1 �i;j

where n is a number of players, and m is a number of server cycles.
Intuitively, this ratio represents the sum of all unused cycles j occurring

between the adjacent cycles j � 1 and j + 1 in which the client sent \dash"
commands, calculated for the whole team in proportion to the total number of
action commands sent (including clashes) for players on the same team. Holes
(more precisely, dash holes) are used in conjunction with clashes to determine
the quality of synchronisation between the clients and the server.

Here is an example report produced by the AGL for two teams (after a 6000
cycles game):

Team: 
exwin Team: �xedwin
All commands.. 48276 (73:15%) All commands.. 46414 (70:32%)
Activity............ 41443 (62:79%) Activity............ 39988 (60:59%)
Holes................... 164 (0:34%) Holes................... 259 (0:56%)
Clashes.............. 2544 (5:27%) Clashes.............. 1340 (2:89%)
Kicks................... 479 (0:99%) Kicks................... 462 (1:00%)
Dashes............. 22785 (47:20%) Dashes............. 21323 (45:94%)
Turns............... 18079 (37:45%) Turns............... 18181 (39:17%)
Catches............... 100 (0:21%) Catches................. 22 (0:05%)
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The simple format of the game log requires low resource overhead to generate
during runtime, thus minimising impact on the experiment. The time required
by AGL to generate a report such as the one above is quite small, though pro-
portional to the size of the log. This provides information promptly after the
completion of the game, allowing an experimenter to quickly con�rm their im-
pressions. The log also contains an identical depth of information for both teams
participating in the game. This enables an analysis of games involving heteroge-
neous teams, provided they use the same version of the Soccer Server protocol.

4 Preliminary Comparative Analysis

In this section we brie
y describe an experiment which exempli�es how the AGL
tool is used in comparative analysis of alternative synchronisation schemes sum-
marised in section 2. Four schemes were selected for the experiment: internal on
demand, basic external, 
exible windowing and �xed windowing. Consequently,
four di�erent teams were compiled, and played 15 round-robin tournaments (�rst
3 tournaments with an aggressive tactical formation 3-5-2, and the next 12 tour-
naments with a more conservative 5-3-2 formation), resulting in 45 games played
by each team (9 in the �rst experiment and 36 in the second). The overall com-
petition performance is summarised in the following tables (a win earns 3 points,
and a draw 1 point).

Internal Basic External Flex Windowing Fixed Windowing

Wins 0 5 7 4

Losses 8 3 1 4

Draws 1 1 1 1

Goals For 14 36 42 30

Goals Against 34 23 20 25

Total Points 1 16 22 13

Table 1. Results with the 3-5-2 formation.

Internal Basic External Flex Windowing Fixed Windowing

Wins 8 16 16 9

Losses 18 8 8 15

Draws 10 12 12 12

Goals For 22 37 39 26

Goals Against 36 26 30 32

Total Points 34 60 60 39

Table 2. Results with the 5-3-2 formation.

These results clearly rule out the \internal on demand" synchronisation |
the corresponding team managed to get only one draw in 9 games, losing 8
times, with the 3-5-2 formation, and �nished clear last with the 5-3-2 formation.
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Three other teams were quite competitive | no one escaped without losing to
some other team in the �rst short experiment, and the next experiment has
shown some close scores as well. At the end, \
exible windowing" edged ahead
overall, and \�xed windowing" �nished clear third. \Basic external" proved to
be a solid performer. In fact, it shared the �rst place with \
exible windowing"
in the second experiment. It should be pointed out, however, that more games
with alternative formations should be played to get more statistically signi�cant
results, and other placements of these three external-based schemes are possible.

At this stage, we intended just to demonstrate how tournament results can
be complemented by the AGL tool. The following table contains average and
standard deviation measurements for \activity", \clash" and \dash holes" ratios.

Name Clashes Holes Activity
Average Std. Dev Average Std. Dev Average Std. Dev

Internal 3.67 0.70 0.21 0.03 68.05 3.61

Basic External 3.01 2.14 0.57 0.11 58.49 4.45

Flexible Windowing 5.26 0.73 0.46 0.08 61.12 2.59

Fixed Windowing 3.01 1.82 0.59 0.10 58.92 3.47

Table 3. AGL statistics with the 3-5-2 formation.

Name Clashes Holes Activity
Average Std. Dev Average Std. Dev Average Std. Dev

Internal 0.31 0.22 0.16 0.03 61.45 3.67

Basic External 0.03 0.03 0.64 0.09 52.70 3.47

Flexible Windowing 1.19 0.44 0.50 0.09 55.00 4.02

Fixed Windowing 0.08 0.06 0.60 0.10 53.81 3.59

Table 4. AGL statistics with the 5-3-2 formation.

It should be noted that the second experiment was conducted in a better
networking environment. It appears that the tournament winner has, in fact, a
higher percentage in the \clash ratio" | but with a signi�cantly lesser standard
deviation in the �rst experiment, making this scheme more stable and robust
under less \friendly" conditions. In addition, its \holes ratio" is smaller among
three best teams in both experiments. The \internal" scheme exhibited quite
comparable ratios, but the team was too much active | re
ecting the fact that
a large portion of commands arrived at incorrect or non-optimal cycle, and the
players had to chase the ball more than opponents. Again, more games would
de�nitely provide statistically better results.

5 Conclusions

We felt that mechanical analysis of game logs added greatly to comparison of
goals scored, and observations by what are now \expert eyes" amongst the devel-
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opment team. In developing AGL, we have continued to �nd that more involved
analysis of the log may provide us with a multitude of parameters by which we
can compare teams from various stages of development with one another, as well
as other teams.

Our preliminary comparative analysis was carried out without varying sit-
uated, tactical or strategic agent skills and highlighted purely synchronisation
issues. The agents used in the experiments were developed in accordance with
the Deep Behaviour Projection agent architecture, which provided a systematic
support for design and full implementation of the team Cyberoos [7]. In general,
agent-environment synchronisation is only one factor contributing to a teams
overall performance. The precise nature of relationships and dependencies be-
tween synchronisation schemes and the agent architecture is a subject of future
research.
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