
Automatic Deductive Veri�cation with Invisible

Invariants
?

Amir Pnueli1, Sitvanit Ruah1, and Lenore Zuck2

1 Dept. of Computer Science, Weizmann Institute of Science, Rehovot, Israel,

famir,sitvanitg@wisdom.weizmann.ac.il
2 Dept. of Computer Science, New York University, New York,

zuck@cs.nyu.edu

Abstract. The paper presents a method for the automatic veri�cation

of a certain class of parameterized systems. These are bounded-data sys-

tems consisting of N processes (N being the parameter), where each pro-

cess is �nite-state. First, we show that if we use the standard deductive

inv rule for proving invariance properties, then all the generated veri�ca-

tion conditions can be automatically resolved by �nite-state (bdd-based)

methods with no need for interactive theorem proving.

Next, we show how to use model-checking techniques over �nite (and

small) instances of the parameterized system in order to derive candi-

dates for invariant assertions. Combining this automatic computation of

invariants with the previously mentioned resolution of the VCs (veri�-

cation conditions) yields a (necessarily) incomplete but fully automatic

sound method for verifying bounded-data parameterized systems. The

generated invariants can be transferred to the VC-validation phase with-

out ever been examined by the user, which explains why we refer to them

as \invisible".

We illustrate the method on a non-trivial example of a cache protocol,

provided by Steve German.

1 Introduction

Automatic veri�cation of in�nite state systems in general, and parameterized

systems in particular, have been the focus of much research recently (see, e.g.,

[ES96,ES97,CFJ96,GS97,ID96,LS97,RKR+00].) Most of this research concen-

trates on model checking techniques for veri�cation of such systems, using sym-

metry reduction and similar methods to make model checking more tractable.

In this paper we present a method for the automatic veri�cation of a certain

class of parameterized systems using a deductive approach. The parameterized

systems we study are bounded-data systems consisting of N processes (N being

the parameter), where each process is �nite-state and the number of its states is

independent of N . We �rst show that for a large and interesting set of assertions,

called R-assertions, there is a number, N0, such that the veri�cation condition

? This research was supported in part by the Minerva Center for Veri�cation of Re-

active Systems, a gift from Intel, a grant from the German - Israel Foundation for

Scienti�c Research and Development, and ONR grant N00014-99-1-0131.

T. Margaria and W. Yi (Eds.): TACAS 2001, LNCS 2031, pp. 82{97, 2001.

c
 Springer-Verlag Berlin Heidelberg 2001

Automatic Deductive Veri�cation with Invisible Invariants 83

claiming that an R-assertion ' is preserved by any step of the system is valid for

every N > 1 i� it is valid for every N � N0. Thus, to check for validity of such

veri�cation conditions, it suÆces to consider only parameterized systems with

up to N0 processes. The number N0 is small. In fact, it is linear in the number of

the local state variables of an individual process (i.e. logarithmic in the number

of local states of a single process).

Using the standard deductive inv rule for proving invariance properties, all

the generated veri�cation conditions for the systems we are considering are R-

assertions. Thus, for these systems, veri�cation of invariance properties using

inv can be automatically resolved by �nite-state (bdd-based) methods, with no

need for interactive theorem proving.

We also show how to use model-checking techniques over �nite (N0-process)

instances of the parameterized system in order to derive candidates for invari-

ant assertions. The combination of this automatic computation of invariants

with the previously mentioned resolution of the veri�cation conditions (VCs)

yields a (necessarily) incomplete but fully automatic sound method for verifying

bounded-data parameterized systems. The generated invariants can be trans-

ferred to the VC-validation phase without ever been examined by the user, which

explains why we refer to them as \invisible".

We illustrate the method on a non-trivial example of a cache protocol, pro-

vided by Steve German. In this example, N client processes may request shared

or exclusive access to a shared cache line. A Home process coordinates the cache

access. Using our approach, we managed to automatically verify the property of

coherence by which, if one process has an exclusive access to the cache line, then

no other process may have any access right to the same line, even a shared one.

We veri�ed this property for any N > 1 using only the instance of N = 4.

Related Work

The problem of uniform veri�cation of parameterized systems is, in general,

undecidable [AK86]. There are two possible remedies to this situation: either

we should look for restricted families of parameterized systems for which the

problem becomes decidable, or devise methods which are sound but, necessar-

ily incomplete, and hope that the system of interest will yield to one of these

methods.

Among the representatives of the �rst approach we can count the work of Ger-

man and Sistla [SG92] which assumes a parameterized system where processes

communicate synchronously, and shows how to verify single-index properties.

Similarly, Emerson and Namjoshi [EN96] proved a PSPACE complete algorithm

for veri�cation of synchronously communicating processes. Many of these meth-

ods fail when we move to asynchronous systems where processes communicate

by shared variables.

Perhaps the most advanced of this approach is the paper [EK00] which con-

siders a general parameterized system allowing several di�erent classes of pro-

cesses. However, this work provides separate algorithms for the cases that the

guards are either all disjunctive or all conjunctive. A protocol such as the cache

84 Amir Pnueli, Sitvanit Ruah, and Lenore Zuck

example we consider in Section 6 which contains some disjunctive and some

conjunctive guards, cannot be handled by the methods of [EK00].

The sound but incomplete methods include methods based on explicit in-

duction ([EN95]) network invariants, which can be viewed as implicit induction

([KM95], [WL89], [HLR92], [LHR97]), methods that can be viewed as abstraction

and approximation of network invariants ([BCG86], [SG89], [CGJ95], [KP00]),

and other methods that can be viewed as based on abstraction ([ID96]). The

papers in [CR99a,CR99b,CR00] use structural induction based on the notion of

a network invariant but signi�cantly enhance its range of applicability by using

a generalization of the data-independence approach which provides a powerful

abstraction capability, allowing it to handle network with parameterized topolo-

gies. Most of these methods require the user to provide auxiliary constructs, such

as a network invariant or an abstraction mapping. Other attempts to verify pa-

rameterized protocols such as Burn's protocol [JL98] and Szymanski's algorithm

[GZ98,MAB+94,MP90] relied on abstraction functions or lemmas provided by

the user. The work in [LS97] deals with the veri�cation of safety properties of pa-

rameterized networks by abstracting the behavior of the system. PVS ([SOR93])

is used to discharge the generated VCs.

Among the automatic incomplete approaches, we should mention the meth-

ods relying on \regular model-checking" [KMM+97,ABJN99,JN00,PS00], where

a class of systems which include our bounded-data systems as a special case is

analyzed representing linear con�gurations of processes as a word in a regular

language. Unfortunately, many of the systems analyzed by this method cause

the analysis procedure to diverge and special acceleration procedures have to be

applied which, again, requires user ingenuity and intervention.

The works in [ES96,ES97,CFJ96,GS97] study symmetry reduction in order to

deal with state explosion. The work in [ID96] detects symmetries by inspection

of the system description. Perhaps the closest in spirit to our work is the work

of McMillan on compositional model-checking (e.g. [McM98]), which combines

automatic abstraction with �nite-instantiation due to symmetry. What started

our research was the observation that, compared to fully deductive veri�ca-

tion, McMillan's method requires signi�cantly fewer auxiliary invariants, usually

down to 2 auxiliary lemmas. Our explanation for this phenomenon was that, by

performing model-checking instead of the usual one-step induction, his model-

checker computes many of the necessary auxiliary invariants automatically. This

led us to the conjecture that we can compute the full invariant characterizing

the reachable states automatically by considering just a few processes, and then

abstract and generalize it automatically to any number of processes, which is

the basis for our method.

2 Bounded-Data Parameterized Systems

We consider systems whose variables can be declared as follows:

V =

8>><
>>:
N : natural where N > 1

x1; : : : ; xa : boolean

y1; : : : ; yb : [1::N]

z1; : : : ; zc : array [1::N] of boolean

Automatic Deductive Veri�cation with Invisible Invariants 85

Variable N is the system's parameter which, with no loss of generality, we as-

sume to be bigger than 1. Note that we do not allow parameterized arrays

whose elements range over [1::N]. Such data types will take us beyond the scope

of bounded-data parameterized systems. We can easily extend the data-type re-

strictions to allow arbitrary �nite types instead of just booleans. Thus, we could

allow an zr to be a parameterized array of any �nite type, and let a xr range

over such a type.

We refer to the set of variables fy1; : : : ; ybg as Y . In addition to the system

variables, we also use a set of auxiliary variables Aux = fi; j; h; t; u : : : : [1::N]g.

We refer to the variables in Y [Aux , that range over the parametric domain

[1::N], as Par-variables. We de�ne a class of assertions, to which we refer as

R-assertions, as follows:

� xs, zr[h], and h = t are R-assertions, for s = 1; : : : ; a; every Par-variables

h and t, and r = 1; : : : ; c. For the extended case that zr is an array over

the �nite domain Dr , we also allow the atomic assertion zr[h] = d for every

constant d 2 Dr .

� If p and q are R-assertions, then so are :p, p _ q, and 9h : p, for every

h 2 Aux .

The other boolean operations and universal quanti�cation can be de�ned using

the existing operators and negation. We write p(h), q(h; t), to denote that the

only auxiliary variables to which p (respectively q) may refer are h (respectively

h; t). An R-assertion p is said to be closed if it contains no free occurrence of an

auxiliary variable.

A bounded-data discrete system (BDS) S = hV;�; �i consists of

� V { A set of system variables, as described above. A state of the system S

provides a type-consistent interpretation of the system variables V . For a

state s and a system variable v 2 V , we denote by s[v] the value assigned to

v by the state s. Let � denote the set of states over V .

� �(V) { The initial condition. An R-assertion characterizing the initial states.

� �(V; V 0) { The transition relation. An R-assertion, relating the values V of

the variables in state s 2 � to the values V 0 in an S-successor state s0 2 �.

We require that � has the special form

� = 9h :
_

`=1;:::;M

p`(h) ^ 8t : q`(h; t);

where h; t 2 Aux , and p`(h), q`(h; t) are quanti�er-free R-assertions which may

refer to both V and V 0.

Typically, a bounded-data parameterized system is a parallel composition

H kP [1] k � � � kP [N]. The R-assertion p`(h) often describes the local e�ect of

taking a transition �` within process P [h], while q`(h; t) describes the e�ect of

this transition on all other processes. Usually, q`(h; t) will say that the local

variables of all processes P [t], for t 6= h, are preserved under a step of process

P [h]. Note that a state s of a bounded-data system should also interpret the

parameter N . We refer to s[N] as the size of the global state s.

Since in this paper we only consider the veri�cation of invariance properties,

we omitted from the de�nition of a BDS the components that relate to fairness.

86 Amir Pnueli, Sitvanit Ruah, and Lenore Zuck

When we will work on the extension of these methods to liveness, we will add

the relevant fairness components.

To illustrate the representation of a parameterized system as a BDS, consider

programmux-sem, presented in Fig. 1. The semaphore instructions \request x"

and \release x" appearing in the program stand, respectively, for

hwhen x = 1 do x := 0i and x := 1

in N : natural where N > 1

local x : boolean where x = 1

N

h=1

P [h] ::

2
6664
loop forever do2
64
I : Non-Critical

T : request x

C : Critical

E : release x

3
75
3
7775

Fig. 1. Program mux-sem

In Fig. 2, we present the BDS which corresponds to program mux-sem. Note

that the BDS standardly contains the additional system array variable �[1::N],

which represents the program counter in each of the processes.

V :

(
N : natural where N > 1

x : boolean where x = 1

� : array [1::N] of fI; T;C;Eg

� : x ^ 8h : [1::N] : �[h] = I

� : 9h : [1::N]

8>>>>>>>>>>>:
�0[h] = �[h] ^ x0 = x

_ �[h] = I ^ �0[h] = T ^ x0 = x

_ �[h] = T ^ x= 1 ^ �0[h] = C ^ x0= 0

_ �[h] = C ^ �0[h] = E ^ x0 = x

_ �[h] = E ^ �0[h] = I ^ x0 = 1

9>>>>>>>>>>>; ^ 8t 6= h : �0[t] = �[t]

Fig. 2. The BDS corresponding to program mux-sem.

A computation of the BDS S = hV;�; �i is an in�nite sequence of states

� : s0; s1; s2; :::; satisfying the requirements:

� Initiality | s0 is initial, i.e., s0 j= �.

� Consecution | For each ` = 0; 1; :::, the state s`+1 is a S-successor of s`.

That is, hs`; s`+1i j= �(V; V 0) where, for each v 2 V , we interpret v as s`[v]

and v0 as s`+1[v].

The de�nitions of R-assertions and BDS are such that the only tests applied

to Par-variables are equalities (and disequalities). Consequently, states, compu-

tations, and satisfaction of R-assertions are all symmetric with respect to an

arbitrary permutation of indices. Consider the system instance S(N0), i.e., an

instance of the system in which N has the value N0. Let � : [1::N0] ! [1::N0]

be a permutation on the indices [1::N0]. We say that the state es is a �-variant

of s, denoted es = s[�] if the following holds:

Automatic Deductive Veri�cation with Invisible Invariants 87

� exr = xr, for every r 2 [1::a].
� eyr = �

�1(yr), for every r 2 [1::b].
� ezr [h] = zr [�(h)], for every r 2 [1::c], h 2 [1::N0].

where, we write ev to denote the value of v 2 V in es, while writing simply v

denotes the value of this variable in state s.

For example, applying the permutation

� : 1! 2; 2! 3; 3! 1

to the state
s : hz[1] : 10; z[2] : 20; z[3] : 30; y1 : 1; y2 : 2i

yields the state es : hz[1] : 20; z[2] : 30; z[3] : 10; y1 : 3; y2 : 1i
Given an in�nite state sequence, � : s0; s1; : : : and a permutation�, we de�ne the

�-variant of �, denoted �[�] to be the state sequence �[�] = s0[�]; s1[�]; : : :.

The following claim makes the statement of symmetry precise.

Claim (Statement of Symmetry). Let S = hV;�; �i be a BDS, and � be a

permutation with �nite domain. Then

� For a closed R-assertion p and a state s, s j= p i� s[�] j= p. This leads to

the following consequences:
� State s j= � is i� s[�] j= �.
� State s2 is a �-successor of s1 i� s2[�] is a �-successor of s1[�].
� � : s0; s1; : : : is a computation of S i� �[�] is a computation of S.

From now on, we will refer to R-assertions simply as assertions.

3 Veri�cation Methods

In this section we will brie
y survey the two main approaches to veri�cation:

Enumeration and Deduction. Both establish a property of the type S j= 2 p for

an assertion p.

3.1 The Method of Enumeration: Model Checking

For an assertion p = p(V) and transition relation � = �(V; V 0), we de�ne the

�-postcondition of p, denoted by p � �, by the formula

p � � = unprime(9V : p(V) ^ �(V; V 0))

The operation unprime is the syntactic replacement of each primed occurrence

v
0 by its unprimed version v.

We can also de�ne the iterated computation of postconditions:

p ��
� = p _ p �� _ (p ��) � � _ ((p � �) � �) � � _ � � � ;

which, for �nite-state systems, is guaranteed to terminate. Using this concise

notation, veri�cation by model checking can be summarized by the following

claim:

Claim (Model Checking). Let S = hV;�; �i be a �nite-state system and p an

assertion. Then, S j= 2 p i� the implication

� � �
�
! p

is valid.

88 Amir Pnueli, Sitvanit Ruah, and Lenore Zuck

3.2 Deductive Veri�cation: The Invariance Rule

Assume that we wish to prove that assertion p is an invariant of system S. The

method of deductive veri�cation suggests that the user comes up with an aux-

iliary assertion ', intended to be an over-approximation of the set of reachable

states, and then show that ' implies p. This can be summarized by rule INV,

presented in Fig. 3.

I1. � ! '

I2. ' ^ � ! '0

I3. ' ! p

2 p

Fig. 3. The invariance Rule INV.

An assertion ' satisfying premises I1 and I2 is called inductive. An inductive

assertion is always an over-approximation of the set of reachable states. Premise

I3 ensures that assertion ' is a strengthening (under-approximation) of the prop-

erty p. In rare cases, the original assertion p is already inductive. In all other

cases, the deductive veri�er has to perform the following tasks:

T1. Divine (invent) the auxiliary assertion '.

T2. Establish the validity of premises I1{I3.

For the case that the system S is �nite-state all the assertions can be represented

by BDD's. Validity of these premises can then be checked by computing the BDD

of their negations, and checking that it equals 0 (false). For the case that S is not

a �nite-state system, for example, if it is a BDS, one traditionally uses interactive

theorem provers such as PVS [SOR93] and STeP [MAB+94].

Performing interactive �rst-order veri�cation of implications such as the

premises of rule INV for any non-trivial system is never an easy task. Neither

is it a one-time task, since the process of developing the auxiliary invariants

requires iterative veri�cation trials, where failed e�orts lead to correction of the

previous candidate assertion into a new candidate. Therefore, our �rst e�orts

were directed towards the development of methods which will enable establish-

ing the validity of the premises of Rule INV for bounded-data parameterized

systems in a fully automated manner.

4 Deciding the Veri�cation Conditions

In this section, we outline a decision procedure for establishing the validity of the

veri�cation conditions generated by rule INV for bounded-data parameterized

systems. Consider �rst the case that the auxiliary assertion ' has the form

' = 8i : (i), where (i) is a quanti�er-free (R-)assertion. The most complex

veri�cation condition is premise I2 which can be written as:

(8j : (j)) ^ (9h :
_

`=1;:::;M

p`(h) ^ 8t : q`(h; t)) ! 8i : 0(i) (1)

Automatic Deductive Veri�cation with Invisible Invariants 89

The following claim states that, for a bounded-data parameterized system S(N),

condition (1) can be decided by establishing it over �nitely (and not too) many

instances of S(N).

Claim. Let S(N) be a bounded-data parameterized system. Then, the implica-

tion (1) is valid over S(N) for all N > 1 i� it is valid over S(N) for all N ,

1 < N � 2b+ 2, where b is the size of Y .

For example, the claim states that it is suÆcient to check the premises of rule

INV over mux-sem(2) in order to establish their validity over all instances of

mux-sem(N).

Proof: (Sketch) Let N0 = 2 + 2b. To prove the claim, it is suÆcient to show

that the negation of condition (1), given by

(8j : (j)) ^ (9h :
_

`=1;:::;M

p`(h) ^ 8t : q`(h; t)) ^ 9i : : 0(i) (2)

is satis�able for some N > 1 i� it is satis�able for some 1 < N � N0. Clearly,

formula (2) is satis�able i� the formula

(8j : (j)) ^

_
`=1;:::;M

(p`(h) ^ 8t : q`(h; t)) ^ :
0(i) (3)

is satis�able. It suÆces to show that if formula (3) is satis�able over a state

(pair) of size N > N0, it is also satis�able over a state (pair) of size N0.

Let s be a state of size N1 > N0 which satis�es assertion (3). The states

s assigns to the variables Vaug = fh; i; y1; y
0
1
; : : : ; yb; y

0
b
g values in the domain

[1::N1]. Let � � N0 be the number of the di�erent values assigned to those

variables, and assume these values are v1 < v2 < � � � < v�. There obviously

exists a permutation � on [1::N1] such that ��1[vk] = k for every k = 1; : : : ; �.

Let es be the �-variant of s, applying the permutation-induced transformation

described in Section 2 to the augmented set of state variables Vaug = V [fh; ig.

The size of es is N1, and, according to Claim 2, it satis�es assertion (3), which is

a closed assertion relative to the augmented variable set V [fh; ig.

We proceed to show how to derive a new state bs of size � � N0 which also sat-

is�es assertion (3). The state bs is de�ned by letting es[N] = � and letting bs and es
agree on the interpretation of the variables in h; i; y1; y

0
1; : : : ; yb; y

0
b; x1; x

0
1; : : : ; xa;

x
0
a. For the remaining variables (the zr's), we let bs and es agree on the interpre-

tation of every variable zr [k] and z
0
r[k] where r 2 [1::c] and k � �.

It remains to show that if es satis�es the N1-version of assertion (3) then bs
satis�es the �-version of assertion (3), where the assertions are

(

N1^
j=1

 (j)) ^

_
`=1;:::;M

(p`(h) ^

N1^
t=1

q`(h; t)) ^ :
0(i); (4)

and (

�^
j=1

 (j)) ^
_

`=1;:::;M

(p`(h) ^

�^
t=1

q`(h; t)) ^ :
0(i) (5)

respectively.

Since the di�erence between the two assertions is that the conjunctions in

assertion (5) extend only over the [1::�] subrange of the conjunctions in assertion

90 Amir Pnueli, Sitvanit Ruah, and Lenore Zuck

(4), and since bs and es agree on the interpretation of variables in this subrange,

we conclude that bs satis�es assertion (5).

Claim 4 can be extended in several di�erent ways. For example, we can

trivially modify it to establish that premises I1 and I3 of Rule INV can also be

checked only for systems of size not exceeding 2b+2. Another useful modi�cation

applies to the case of Par-deterministic systems. A bounded-data system is said

to be Par-deterministic if, for every Par-variable yr and every disjunct p`(h)

of the transition relation, p`(h) contains a conjunct of the form y
0
r = u for

some unprimed Par-variable u. Recall that the bound of 2b+ 2 was derived in

order to cover the possibility that h; i; y1; y
0
1; : : : ; yb; y

0
b
may all assume disjoint

values. Under a Par-deterministic transition relation, all the primed variables

must assume values that are equal to the values of some unprimed variables.

Therefore, the set of variables h; i; y1; y
0
1; : : : ; yb; y

0
b can assume at most b + 2

distinct values. This leads to the following corollary:

Corollary 1. Let S(N) be a Par-deterministic BDS. Then, the premises of rule

INV are valid over S(N) for all N > 1 i� they are valid over S(N) for all N ,

1 < N � b+ 2.

The last extension considers the case that both the property p to be proven

and the auxiliary invariant ' have the form 8h; t : (h; t) for some quanti�er-free

(R-)assertion .

Corollary 2. Let S(N) be a bounded-data parameterized system, and let p and

' both have the form 8h; t : (h; t). Then, the premises of rule INV are valid

over S(N) for all N > 1 i� they are valid over S(N) for all N , 1 < N � 2b+3.

In the case that S(N) is Par-deterministic, it is suÆcient to check the premises

for N � b+ 3.

5 Automatic Calculation of the Auxiliary Invariants

Providing a decision procedure for the premises of rule INV greatly simpli�es the

process of deductive veri�cation. Yet, it still leaves open the task of inventing the

strengthening assertion '. As illustrated in the next section, this strengthening

assertion may become quite complex for all but the simplest systems.

Here we propose a heuristic for an algorithmic construction of an inductive

assertion for a given bounded-data parameterized system. Let us consider �rst

the case that we are looking for an inductive assertion of the form ' = 8h : (h).

The construction algorithm can be described as follows:

Algorithm 1. Compute Auxiliary Assertion of the form 8h : (h)
1. Let reach be the assertion characterizing all the reachable states of system

S(N0), where N0 = 2b+ 2 (or b + 2 if S is Par-deterministic). Since S(N0)

is �nite-state, reach can be computed by letting reach := � � ��.
2. Let 1 be the assertion obtained from reach by projecting away all the

references to variables subscripted by indices other than 1. Technically, this

is done by using BDD operations for computing

 1 = 9z1[2]; : : : ; z1[N0]; : : : ; zc[2]; : : :; zc[N0] : reach

Automatic Deductive Veri�cation with Invisible Invariants 91

3. Let (h) be the assertion obtained from 1 by abstraction, which involves

the following transformations:

� Replace any reference to zr [1] by a reference to zr [h].

� Replace any sub-formula of the form yr = 1 by the formula yr = h, and

any sub-formula of the form yr = v for v 6= 1 by the formula yr 6= h.

Let us illustrate the application of this algorithm to program mux-sem (as pre-

sented in Fig. 1). Since, for this program, b = 0, we take N0 = 2 and obtain

reach :

8>>: (x = 1) ^ �[1] 2 fI; Tg ^ �[2] 2 fI; Tg

_ (x = 0) ^ (�[1] 2 fI; Tg $ �[2] 62 fI; Tg)

9>>;
 1 : (x = 1) ! �[1] 2 fI; Tg

 (h) (x = 1) ! �[h] 2 fI; Tg

Unfortunately, when we take the proposed assertion ' : 8h : (x = 1) ! �[h] 2

fI; Tg we �nd out that it is not inductive over S(2). This illustrates the fact

that the above algorithm is not guaranteed to produce inductive assertions in

all cases.

Another version of the algorithm can be used to compute candidates for

inductive assertions of the form ' : 8h 6= t : (h; t).

Algorithm 2. Compute Auxiliary Assertion of the form 8h 6= t : (h; t)

1. Let reach be the assertion characterizing all the reachable states of system

S(N0), where N0 = 2b+ 3 (or b+ 3 if S is Par-deterministic).

2. Let 1;2 be the assertion obtained from reach by projecting away all the

references to variables subscripted by indices other than 1 or 2.

3. Let (h; t) be the assertion obtained from 1;2 by abstraction, which involves

the following transformations:

� Replace any reference to zr[1] by a reference to zr[h] and any reference

to zr [2] by a reference to zr [t].

� Replace any sub-formula of the form yr = 1 by the formula yr = h,

any sub-formula of the form yr = 2 by the formula yr = t, and any sub-

formula of the form yr = v for v 62 f1; 2g by the formula yr 6= h ^ yr 6= t.

Let us apply this algorithm again to system mux-sem. This time, we take N0 = 3

and compute:

reach : (�[1] 2 fC;Eg) + (�[2] 2 fC;Eg) + (�[3] 2 fC;Eg) + y = 1

 1;2 :

8>>: �[1] 2 fC;Eg ! (x = 0) ^ �[2] 2 fI; Tg

^ �[2] 2 fC;Eg ! (x = 0) ^ �[1] 2 fI; Tg

9>>;
 (h; t) :

8>>: �[h] 2 fC;Eg ! (x = 0) ^ �[t] 2 fI; Tg

^ �[t] 2 fC;Eg ! (x = 0) ^ �[h] 2 fI; Tg

9>>;
Taking ' = 8h 6= t : (h; t) yields an assertion which is inductive over S(3). By

Corollary (2), it follows that ' is inductive for all S(N). It is straightforward

to check that ' implies the property of mutual exclusion 8h 6= t : :(�[h] =

C ^ �[t] = C) which we wished to establish for program mux-sem.

92 Amir Pnueli, Sitvanit Ruah, and Lenore Zuck

5.1 The Integrated Processes

The description of the two algorithms for computing auxiliary assertions may

have given some of the readers the false impression that there is a manual step

involved. For example, that after computing 1 in Algorithm (1), we print it out

and ask the user to perform the abstraction herself. This is certainly not the case.

The whole process of deriving the candidate for inductive auxiliary assertion and

utilizing it for an attempt to verify the desired property is performed in a fully

automated manner. In fact, without an explicit request, the user never sees the

generated candidate assertion, which is the reason we refer to this method as

\veri�cation by invisible invariants".

To explain how the entire process is performed, we observe that steps (2) and

(3) of Algorithm (1) obtain a symbolic representation of (h). However, to check

that it is inductive over S(N0), we immediately instantiate h in (h) to formVN0

j=1
 (j). In the integrated process, we perform these three steps together.

This is done by de�ning an abstraction relation �j for each j 2 [1::N0]. The

abstraction relation is given by

�j :

a^
r=1

(x0r = xr) ^

b^
r=1

�
(y0r = j) $ (yr = 1)

�
^

c^
r=1

(z0r [j] = zr [1])

This relation de�nes an abstract state consisting of the interpretation of a primed

copy V 0 which only cares about the interpretation of z0r [j], whether y
0
r equals

or is unequal to j, and the precise values of xr. These values correspond to

the interpretation of these variables for j = 1 in the unprimed state. Given the

assertion reach which characterizes all the reachable states of S(N0), we can

form the assertion j = reach ��j. Then we claim that

The state es is in k jk i� there exists a state s 2 kreachk, such thatexr = xr for every r 2 [1::a]eyr = j i� yr = 1 for every r 2 [1::b]ezr[j] = zr [1] for every r 2 [1::c]

Thus, we reuse the operator � for performing abstraction+instantiation instead

of computation of a successor, which is its customary use.

With this notation, we can describe the full veri�cation process as follows:

Veri�cation Process 3. Verify property p, using a singly indexed auxiliary

assertion.

1. Let reach := � � ��, computed over S(N0) for an appropriately chosen N0.
2. Let j := reach ��j, for each j 2 [1::N0].

3. Let ' :=
VN0

j=1
 j.

4. Check that ' is inductive over S(N0).
5. Check that ' ! p is valid.

If tests (4) and (5) both yield positive results, then property p has been veri�ed.

To illustrate the application of Veri�cation Process (3), consider the aug-

mented version of program mux-sem, presented in Fig. 4. In this program, we

added an auxiliary variable last entered which is set to h whenever process P [h]

enters its critical section. Applying Veri�cation Process (3) to this program, we

obtained the calculated invariant

Automatic Deductive Veri�cation with Invisible Invariants 93

in N : natural where N > 1

local x : boolean where x = 1

local last entered : [1::N]

N

h=1

P [h] ::

2
6664
loop forever do2
64
I : Non-Critical

T : hrequest x; last entered := hi

C : Critical

E : release x

3
75
3
7775

Fig. 4. Augmented Program mux-sem

' : 8h : �[h] 2 fC;Eg $ (x = 0 ^ last entered = h)

The candidate assertion ' is inductive and also implies the property of mutual

exclusion, speci�able as

p : 8h 6= t : :(�[h] = C ^ �[t] = C)

To handle the case of an auxiliary assertion which depends on two di�erent

indices, we de�ne the abstraction relations

�ht :

8>>>>>>>:
Va

r=1
(x0r = xr)

^
Vb

r=1

�
(y0r = h)$ (yr = 1)

�
^

�
(y0r = t) $ (yr = 2)

�
^
Vc

r=1
(z0r [h] = zr[1]) ^ (z0r [t] = zr [2])

9>>>>>>>;
We then formulate the veri�cation process for doubly indexed assertions:

Veri�cation Process 4. Verify property p, using a doubly indexed auxiliary

assertion.

1. Let reach := � � ��, computed over S(N0) for an appropriately chosen N0.

2. Let ht := reach ��ht, for each h < t 2 [1::N0].

3. Let ' :=
^

h<t2[1::N0]

 ht.

4. Check that ' is inductive over S(N0).

5. Check that ' ! p is valid.

6 German's Cache Case Study

In this section we illustrate the application of the invisible-invariants veri�cation

method to a case study which is a simple cache algorithm provided to us by Steve

German [Ger00]. The algorithm consists of a central controller called Home and

N client processes P [1]; : : :; P [N]. Each of the clients communicates with Home

via the following channels:

{ channel1 { Client P [c] uses this channel to send Home requests for either

shared or exclusive access to the cache line.

{ channel2 {Home uses this channel to send P [c] permissions (grants) for the

requested access rights. It also sends on this channel requests to P [c] to

invalidate its cache status.

94 Amir Pnueli, Sitvanit Ruah, and Lenore Zuck

in N : natural where N > 1

type message = fempty; req shared; req exclusive; invalidate; invalidate ack;

grant shared; grant exclusiveg

type cache state = finvalid; shared; exclusiveg

local channel1; channel2; channel3 : array[1::N] of message where

8i : [1::N]:(channel1[i] = channel2[i] = channel3[i] = empty)

local sharer list; invalidate list : array[1::N] of bool where

8i : [1::N]:(sharer list[i] = invalidate list[i] = 0)

local exclusive granted : bool where exclusive granted = 0

local curr command : message where curr command = empty

local curr client : [1::N] where curr client = 1

local cache : array[1::N] of cache state where 8i : [1::N]:(cache[i] = empty)

Fig. 5. Variables for German's cache algorithm

{ channel3 { Client P [c] uses this channel to send Home acknowledgments of

invalidation of the client's cache status.

Fig. 5 presents the variables used in the algorithm.

The algorithm can be presented as

Home

N

c=1

P [c]

An SPL program for Home is presented in Figure Fig. 6, and an SPL program

for P [c] is presented in Fig. 7.

The main property we wish to verify for this system is that of coherence by

which there cannot be two clients, c and d, such that P [c] holds an exclusive

access to the cache line while P [d] holds a shared access to the same cache line

at the same time. This can be speci�ed by the invariance of the assertion

8c 6= d : :(cache [c] = exclusive ^ cache [d] = shared) (6)

Following are the results of our veri�cation experiments applied to the cache

algorithm:

1. We applied Veri�cation Process (3) to the cache program. The computed

candidate assertion failed to be inductive.
2. We augmented the cache program with an auxiliary variable last granted

which is assigned the value of curr client in transitions m0 and m1. We

then applied Veri�cation Process (3) to the augmented program. This time,

the candidate assertion proved to be inductive and implied the property

of coherence. It took 1.97 seconds to compute the candidate assertion, and

31.43 seconds to check that it is inductive (over an instance of the program

with N = 4).
3. We applied Veri�cation Process (4) to the original cache program. It pro-

duced an inductive assertion which implied the property of coherence. It

took 15.42 seconds to compute the candidate assertion, and 186.82 seconds

to check that it is inductive.

Automatic Deductive Veri�cation with Invisible Invariants 95



loop forever do

m0: 〈when

 curr command = req shared ∧ ¬exclusive granted
∧ channel2 [curr client] = empty


do

[
sharer list [curr client] := true ; curr command := empty ;
channel2 [curr client] := grant shared

]
〉

or

m1: 〈when

 curr command = req exclusive ∧ channel2 [curr client] = empty
∧ ∀i : [1..N].sharer list [i] = false


do

[
sharer list [curr client] := true; curr command := empty ;
exclusive granted := true; x granted := curr client ;
channel2 [curr client] := grant exclusive

]
〉

or
m2: 〈when curr command = empty ∧ channel1 [c] �= empty do[

curr command := channel1 [c]; channel1 [c] := empty ;
invalidate list := sharer list ; curr client := c

]
〉

or

m3: 〈when

(curr command = req shared ∧ exclusive granted
∨ curr command = req exclusive)

∧ invalidate list [c] ∧ channel2 [c] = empty


do [channel2 [c] := invalidate; invalidate list [c] := false]〉

or
m4: 〈when curr command �= empty ∧ channel3 [c] = invalidate ack do

[sharer list [c] := false; exclusive granted := false; channel3 [c] := empty]〉



Fig. 6. Program for Home

We repeated these experiments over two erroneous versions of the cache program,

also provided to us by Steve German. In both cases, Veri�cation Process (4)

produced inductive assertions but they failed to imply the property of coherence.

References

ABJN99. P.A. Abdulla, A. Bouajjani, B. Jonsson, and M. Nilsson. Handling global

conditions in parametrized system veri�cation. In CAV'99, LNCS 1633,

pages 134{145, 1999.

AK86. K. R. Apt and D. Kozen. Limits for automatic program veri�cation of �nite-

state concurrent systems. Information Processing Letters, 22(6), 1986.

BCG86. M.C. Browne, E.M. Clarke, and O. Grumberg. Reasoning about networks

with many �nite state processes. In Proc. 5th ACM Symp. Princ. of Dist.

Comp., pages 240{248, 1986.

CFJ96. E.M. Clarke, , R. Enders T. Filkron, and S. Jha. Exploiting symmetry in

temporal logic model checking. Formal Methods in System Design, 9(1/2),

8 1996. Preliminary version appeared in 5th CAV, 1993.

CGJ95. E.M. Clarke, O. Grumberg, and S. Jha. Verifying parametrized networks

using abstraction and regular languages. In 6th International Conference

on Concurrency Theory (CONCUR'95), pages 395{407, Philadelphia, PA,

August 1995.

96 Amir Pnueli, Sitvanit Ruah, and Lenore Zuck

2
666666666666666666666664

`0: skip

or

`1: hwhen cache[c] = invalid ^ channel1[c] = empty do

[channel1[c] := req shared]i

or

`2: hwhen (cache[c] = invalid _ cache[c] = shared) ^ channel1[c] = empty do

[channel1[c] := req exclusive]i

or

`3: hwhen channel2[c] = invalidate ^ channel3[c] = empty do

[channel2[c] := empty; channel3[c] := invalidate ack; cache[c] := invalid]i

or

`4: hwhen channel2[c] = grant shared do

[cache[c] := shared; channel2[c] := empty]i

or

`5: hwhen channel2[c] = grant exclusive do

[cache[c] := exclusive; channel2[c] := empty]i

3
777777777777777777777775

Fig. 7. Program for Process P [c]

CR99a. S.J. Creese and A.W. Roscoe. Formal veri�cation of arbitrary network

topologies. In Proc. of the Int. Conf. on Parallel and Distributed Processing

Techniques and Applications (PDPTA'99), Las Vegas, 1999. CSREA Press.

CR99b. S.J. Creese and A.W. Roscoe. Verifying an in�nite family of inductions

simultaneously using data independence and fdr. In Formal Description

Techniques for Distributed Systems and Communication Protocols and Pro-

tocol Speci�cation, Testing and Veri�cation (FORTE/PSTV'99), Beijing,

1999. Kluwer Academic Publishers.

CR00. S.J. Creese and A.W. Roscoe. Data independent induction over structured

networks. In Proc. of the Int. Conf. on Parallel and Distributed Processing

Techniques and Applications (PDPTA'00), Las Vegas, June 2000. CSREA

Press.

EK00. E.A. Emerson and V. Kahlon. Reducing model checking of the many to the

few. In 17th International Conference on Automated Deduction (CADE-

17), pages 236{255, 2000.

EN95. E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In POPL'95,

1995.

EN96. E.A. Emerson and K.S. Namjoshi. Automatic veri�cation of parameterized

synchronous systems. In CAV'96, LNCS 1102, 1996.

ES96. E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal

Methods in System Design, 9(1/2), 8 1996. Preliminary version appeared

in 5th CAV, 1993.

ES97. E. A. Emerson and A. P. Sistla. Utilizing symmetry when model checking

under fairness assumptions. ACM Trans. Prog. Lang. Sys., 19(4), 1997.

Preliminary version appeared in 7th CAV, 1995.

Ger00. S. German. Personal Communication, 2000.

GS97. V. Gyuris and A. P. Sistla. On-the-
y model checking under fairness that

exploits symmetry. In CAV'97, LNCS 1254, 1997.

Automatic Deductive Veri�cation with Invisible Invariants 97

GZ98. E.P. Gribomont and G. Zenner. Automated veri�cation of szymanski's

algorithm. In TACAS'98, LNCS 1384, pages 424{438, 1998.
HLR92. N. Halbwachs, F. Lagnier, and C. Ratel. An experience in proving regu-

lar networks of processes by modular model checking. Acta Informatica,

29(6/7):523{543, 1992.
ID96. C.N. Ip and D. Dill. Verifying systems with replicated components in Mur'.

In CAV'96, LNCS 1102, 1996.
JL98. E. Jensen and N.A. Lynch. A proof of burn's n-process mutual exclusion

algorithm using abstraction. In TACAS'98, LNCS 1384, pages 409{423,

1998.
JN00. B. Jonsson and M. Nilsson. Transitive closures of regular relations for

verifying in�nite-state systems. In TACAS'00, LNCS 1785, 2000.
KM95. R.P. Kurshan and K.L. McMillan. A structural induction theorem for

processes. Information and Computation, 117:1{11, 1995.
KMM+97. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic

model checking with rich assertional languages. In CAV'97, LNCS 1254,

pages 424{435, 1997.
KP00. Y. Kesten and A. Pnueli. Control and data abstractions: The cornerstones

of practical formal veri�cation. Software Tools for Technology Transfer,

4(2):328{342, 2000.
LHR97. D. Lesens, N. Halbwachs, and P. Raymond. Automatic veri�cation of pa-

rameterized linear networks of processes. In POPL'97, 1997.
LS97. D. Lesens and H. Saidi. Automatic veri�cation of parameterized networks of

processes by abstraction. In 2nd InternationalWorkshop on the Veri�cation

of In�nite State Systems (INFINITY'97), 1997.
MAB+94. Z. Manna, A. Anuchitanukul, N. Bj�rner, A. Browne, E. Chang, M. Col�on,

L. De Alfaro, H. Devarajan, H. Sipma, and T.E. Uribe. STeP: The Stanford

Temporal Prover. Technical Report STAN-CS-TR-94-1518, Dept. of Comp.

Sci., Stanford University, Stanford, California, 1994.
McM98. K.L. McMillan. Veri�cation of an implementation of Tomasulo's algorithm

by compositional model checking. In CAV'98, LNCS 1427, pages 110{121,

1998.
MP90. Z. Manna and A. Pnueli. An exercise in the veri�cation of multi { process

programs. In W.H.J. Feijen, A.J.M van Gasteren, D. Gries, and J. Misra,

editors, Beauty is Our Business, pages 289{301. Springer-Verlag, 1990.
PS00. A. Pnueli and E. Shahar. Livenss and acceleraiton in parameterized veri�-

cation. In CAV'00, LNCS 1855, 2000.
RKR+00. A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, I.V. Ramakr-

ishnan, and S.A. Smolka. Veri�cation of parameterized systems using logic

program transformations. In TACAS'00, LNCS 1785, 2000.
SG89. Z. Shtadler and O. Grumberg. Network grammars, communication behav-

iors and automatic veri�cation. In CAV'89, LNCS 407, pages 151{165,

1989.
SG92. A.P. Sistla and S.M. German. Reasoning about systems with many pro-

cesses. J. ACM, 39:675{735, 1992.
SOR93. N. Shankar, S. Owre, and J.M. Rushby. The PVS proof checker: A refer-

ence manual (draft). Technical report, Comp. Sci.,Laboratory, SRI Inter-

national, Menlo Park, CA, 1993.
WL89. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes

with network invariants. In CAV'89, LNCS 407, pages 68{80, 1989.

	Introduction
	Bounded-Data Parameterized Systems
	Verification Methods
	The Method of Enumeration: Model Checking
	Deductive Verification: The Invariance Rule

	Deciding the Verification Conditions
	Automatic Calculation of the Auxiliary Invariants
	The Integrated Processes

	German's Cache Case Study

