
Building a Tool for the Analysis and Testing of

Web Applications: Problems and Solutions

Filippo Ricca and Paolo Tonella

ITC-irst

Centro per la Ricerca Scienti�ca e Tecnologica

38050 Povo (Trento), Italy

fricca, tonellag@itc.it
tel. +39.0461.314592, fax +39.0461.314591

Abstract. Web applications are becoming increasingly complex and im-

portant for companies. Their design, development, analysis and testing

need therefore to be approached by means of support tools and method-

ologies. In this paper we consider the problems related to building tools

for the analysis and testing of Web applications and we try to provide

some indications on possible solutions, based upon our experience in the

development of the tools ReWeb and TestWeb.

The de�nition of a proper reference model will be discussed, as well as

the impact of dynamic pages during Web site downloading and subse-

quent model construction. Visualization techniques addressing the large

amount of extracted data will be presented, while infeasibility problems

will be considered with reference to the testing phase.

1 Introduction

In the last years, Web applications have become important assets for several com-
panies, being a convenient and inexpensive way to provide product information,
e-commerce and services on-line. Since a software bug in a Web application could
interrupt an entire business and cost millions of dollars, there is a strong demand
for methodologies, tools and models that can improve the web site quality and
reliability [7,8]. For example, tools can support developers understanding the
abstract structure of a Web application by means of views and analyses, ensur-
ing that the requirement speci�cations are satis�ed by the application, and they
can help in the testing phase. Developing a tool that extracts a model of a Web
application, implements some static analyses and supports the developers in the
testing phase is not easy. Main problems are related to: modeling the abstract
structure of Web applications, adapting known analysis and testing techniques
to the characteristics of Web based systems, and visualizing large graphs [6,10].
Only few works have insofar considered the problems related to Web site static
analysis, maintenance, testing and to building the associated tools. One of the
�rst systematic studies on Web maintenance is [12], where the authors recog-
nize the similarity between software systems and web based systems and the
importance of the maintenance phase. They have built a tool called SiteSeer

T. Margaria and W. Yi (Eds.): TACAS 2001, LNCS 2031, pp. 373{388, 2001.
c
 Springer-Verlag Berlin Heidelberg 2001

374 Filippo Ricca and Paolo Tonella

that downloads web sites and computes some metrics on them. The paper [9]
describes SPHINX, a Java toolkit and interactive development environment for
Web spiders. SPHINX consists of two parts: the Spider workbench, a customiz-
able spider that supports a graphical user interface and visualizes the web site
recovered as a graph, and the WebSPHINX class library, that provides support
for writing Web spiders in Java. The CAPBAK/Web tool, explained in [8], is a
web testing tool that supports functional testing and regression testing. In [7]
an approach to data
ow testing of Web applications is presented.

In this paper we consider the problems related to building tools for the anal-
ysis and testing of Web applications and we try to provide some indications on
possible solutions, based upon our experience in the development of the tools
ReWeb and TestWeb. ReWeb downloads and analyzes the pages of a Web
application with a twofold purpose: building a model of the application and sup-
plying some views and analyses to the developer. TestWeb, a structural testing
tool, generates and executes a set of test cases for a Web application whose
model was computed by ReWeb.

The remainder of this paper is organized as follows: the next section describes
a generic Web application infrastructure, Section 3 introduces the general archi-
tecture of our tools and presents the adopted analysis model for Web applica-
tions, Sections 4 and 5 explain problems encountered and solutions adopted in
the development of the toolsReWeb andTestWeb. Finally, Section 6 concludes
the paper.

2 Web Applications

A typical generic Web Application infrastructure is shown in Figure 1 (a similar
schema is proposed in [13]).

Web
Browser

Web
Server

Back-end
ServicesHTTP Response

HTTP Request Request

HTML Output

Content ResponseContent Request

Request

Response

Presentation Content Application Data and
Layer Layer Layer

Request

Response

Service Layer

DatabasesRepository
(dynamic contents)(static information)

Application
Server

Fig. 1. Web application infrastructure.

Building a Tool for the Analysis and Testing of Web Applications 375

The browser sends the requests via HTTP to the server for an interactive
view of Web pages. Web pages can be static or dynamic. While the content
of a static page is �xed and stored in a repository, the content of a dynamic
page is computed at run-time by the application server and may depend on the
information provided by the user through input �elds (a similar distinction is
proposed in [4] and [5]). The programs that generate dynamic pages at run-time,
as for example CGI scripts and servlets, run on the application server and can
use information stored in databases and other resources. The Web server and the
application server can be located on the same machine or on di�erent machines.

Similarly to [5], we classify Web applications1 according to a taxonomy, or-
dered by growing complexity, which is characterized by dynamism, page decom-
position and data
ow.

{ Level 0: static pages without frames.
{ Level 1: static pages with frames.
{ Level 2: dynamic pages without data transfer from client.
{ Level 3: dynamic pages with data transfer from client.

The diÆculties and problems in the construction of a tool, that supports
developers in the phases of analysis and testing of Web applications, grow with
increasing levels in the taxonomy. Applications at levels 2 and 3 typically exploit
information stored inside a database to build the content of the dynamic pages.
All four levels are in the scope of the proposed techniques.

3 Tool Architecture

Output
pages

Coverage

Pass/fail

values
Expected

UML
model

TestWebReWeb
Internet

URL

Input forms

Views Analyses

Uses,
Dynamic pages,

Cond. edges
Input values Test criterion

Fig. 2. Roles of Reweb and TestWeb.

The two tools ReWeb and TestWeb have been developed to support anal-
ysis and testing of Web applications. Their relative roles are schematized in
1 Although some authors distinguish between Web sites and applications, using the

latter term only in presence of dynamic pages (our levels 2 and 3), we will use them

interchangeably in the following if the distinction is not important.

376 Filippo Ricca and Paolo Tonella

Figure 2. ReWeb downloads and analyzes the pages of a Web application with
the purpose of building a model of it and producing some analyses and views.
TestWeb generates and executes a set of test cases for a Web application whose
model was computed by ReWeb. The whole process is semi-automatic, and the
interventions of the user are indicated within diamonds in Figure 2. Explanations
on the manual interventions will be given in the following sections.

Both tools perform their operations on an abstraction of the Web applica-
tions, indicated in Figure 2 as UML model. UML, the Uni�ed Modeling Lan-
guage [3], was exploited to express such a model. Let us consider the key require-
ments on the model. We are interested in a model that can be directly abstracted
from the implementation. Some important characteristics that it should have can
be summarized as follows:

{ The focus should be on the navigational features of the site;

{ It should be complete i.e. the most important entities as, for example links, frames,

forms and dynamic pages must be explicitly represented in the model;

{ It should be possible to provide (partial) automatic support for its extraction;

{ It should be possible to apply to it some static analyses and testing techniques

derived from those used with traditional software systems.

{ It should be possible to derive some views from it that represent the Web site in

an intuitive mode;

WebPage

Form

input: Set<Var>

Frame

StaticPage DynamicPage

use: Set<Var>

link

LoadPageIntoFrame

f: Frame

ConditionalEdge

{optional}

c: Condition<Var>

{optional}

include

into

initial page

submit

split
split into

0..*

0..*

0..*
0..*

1

{only from DynamicPage}

0..1

Fig. 3. Meta model of a generic Web application structure.

Figure 3 shows our meta model used to describe the elements in the model
of a Web application. It satis�es all key requirements given above. The central
entity in a Web site is the WebPage. A Web page contains the information to

Building a Tool for the Analysis and Testing of Web Applications 377

be displayed to the user, and the navigation links toward other pages. It also
includes organization and interaction facilities (e.g., frames and forms).

The two subclasses of WebPage model the static and dynamic pages. When
the content of a dynamic page depends on the value of a set of input variables,
the attribute use of class DynamicPage contains them.

A frame is a rectangular area in the current page where navigation can take
place independently. Moreover the di�erent frames into which a page is decom-
posed can interact with each other, since a link in a page loaded into a frame can
force the loading of another page into a di�erent frame. This can be achieved by
adding a target to the hyperlink. Organization into frames is represented by the
association split into, whose target is a set of Frame entities. Frame subdivision
may be recursive (auto-association split into within class Frame), and each frame
has a unary association with the Web page initially loaded into the frame (absent
in case of recursive subdivision into frames). When a link in a Web page forces
the loading of another page into a di�erent frame, the target frame becomes the
data member of the (optional) association class LoadPageIntoFrame.

In HTML user input can be gathered by exploiting forms. A Web page can
include any number of forms (association include). Each form is characterized
by the input variables that are provided by the user through it (data member
input). Values collected by forms are submitted to the Web server via the special
link submit, whose target is always a dynamic page. Since links, frames and forms
are part of the content of a Web page, and for dynamic pages the content may
depend on the input variables, even the organization of a page is, in general,
not �xed and depends on the input. This is the reason for the association class
ConditionalEdge, which optionally adds a boolean condition, function of the
input variables, representing the existence condition of the association (which
can in turn be a link, an include or a split into). The target, page, form or frame,
is referenced by the source dynamic page only when the input values satisfy the
condition in the ConditionalEdge.

4 ReWeb

The ReWeb tool consists of three modules: a Spider, an Analyzer and a Viewer.
The Spider downloads all pages of a target web site, starting from a given URL
and providing the input required by dynamic pages, and it builds a model of
the downloaded site. Each page found within the site host is downloaded and
marked with the date of downloading. The HTML documents outside the web
site host are not considered. The user has to specify the set of inputs for each
page that contains Forms. The Analyzer uses the UML model of the web site and
the downloaded pages to perform several analyses, presented in the following,
some of which are exploited during static veri�cation. The Viewer provides a
Graphical User Interface (GUI) to display the Web application model as well as
the output of the static analyses. The graphical interface supports a rich set of

378 Filippo Ricca and Paolo Tonella

navigation and query facilities. Web Spider and Analyzer are written in Java,
while the Viewer is based on Dotty2.

4.1 Spider

SPIDER(target url)

1 UML Model ;
2 Error urls ;
3 Pages already visited ;
4 Urls found ;
5 S ftarget urlg
6 while (S 6= ;)
7 choosen url chooseElement(S)

8 S S n fchoosen urlg
9 if not (choosen url 2 Pages already visited) then

10 if (choosen url is OK) then

11 Pages already visited Pages already visited [fchoosen urlg
12 if (choosen url is a HTML page) then

13 Download(choosen url)

14 Urls found scanPage(choosen url)

15 S S [Urls found

16 AddElementsToModel(UML Model, choosen url, Urls found)

17 endif

18 else

19 Error urls Error urls [fchoosen urlg
20 endif

21 endif

22 endwhile

Fig. 4. Pseudo-code of the Spider.

Web pages are not actually written using a single language. They can be
rather regarded as multilanguage documents, where code fragments in languages
di�erent fromHTML can be loaded (e.g. Applets) or interpreted (e.g. Javascript).
Libraries for the construction of Spider programs are available for programming
languages such as Perl, C/C++, or Java. An example is the WebSPHINX class
library [9]. We decided to implement our Web Spider just exploiting the Java
language and its standard library, starting from scratch, in order to have to-
tal control on the multilingual aspects of the downloaded pages. We developed a
parser which recognizes both HTML and Javascript code fragments, and extracts
the needed information (links, forms, frames, etc.) from them.

Figure 4 shows the pseudo-code of our Spider. The procedure SPIDER takes
a given URL in input and builds the associated UML model. The body of the
command while (contained in lines 6-22) is executed until there are elements in
the set S. The function chooseElement (line 7) chooses an element in the set S
while the condition chosen url is OK (line 10) is true if chosen url is well-formed
and the corresponding page exists in the Web site. The condition chosen url is

2 Dotty is a customizable graph Editor developed at AT&T Bell Laboratories by

Eleftherios Koutso�os and Stephen C. North.

Building a Tool for the Analysis and Testing of Web Applications 379

an HTML page (line 12) is true if the content type of the document connected
to chosen url is HTML. In line 13 the procedure Download is called to store the
retrieved page in the �le-system. The function scanPage (line 14) scans the page
and returns the set of URLs found within it and contained in the site host. The
procedure AddElementsToModel (line 16) adds nodes and edges to the model
in accordance with our meta model. If the set S is implemented as a stack, the
algorithm visits the Web site in depth-�rst way, while using a queue produces a
breadth-�rst visit.

Problems encountered in the construction of the Spider are due to irregu-
larities and ambiguities present in HTML code, also noted in [12], and to the
current state of the Web technology, o�ering a large spectrum of alternatives to
implement a web site. Our solution was to improve the robustness of the parser,
so that it could accept a superset of HTML including the main irregularities
commonly recognized and properly interpreted by available browsers.

Dynamic pages pose additional problem to the activity of the Spider. Since
the content of these pages is decided at run time, it may in general depend
on the input previously provided by the user. In particular, the structure of
a dynamic page may change when it is encountered in a di�erent interaction.
Since the model of a Web site encompasses all possibilities, the Spider has to
recover all variants of a dynamic page, and has to merge them into a single
representative object. This can be achieved by specifying the input values to be
provided before downloading the dynamic page of interest. Moreover, the same
dynamic page has to be downloaded several times, with di�erent inputs, when
the di�erent conditions generate a di�erent page structure. All sequences of input
values to be provided before each page download are speci�ed in a �le which is
read by the Spider. All dynamic pages speci�ed in the �le are downloaded after
providing the Web server with the given inputs. Finally, all versions of the same
page are merged. Although the number of inputs to be provided may explode
combinatorially, out experience suggests that in practice few alternatives are
suÆcient to cover all variants.

An additional input that may a�ect the content displayed in a dynamic page
is the cookie that the browser provides to the Web server. A cookie is a user
identi�er that is stored by the browser in the local �le system and is provided
to the Web server to allow user identi�cation each time a new connection with a
given server is established. After recognizing the user, the Web server can provide
a customized version of the dynamic pages in the site. Since their structure may
depend on the cookie, the Spider needs the ability to send a cookie to the Web
server, in order to obtain also the pages that are generated when the user is
identi�ed.

4.2 Analyzer

The UML model of a Web site can be interpreted as a graph by associating
objects with nodes and associations with edges. Some simple analyses may de-
termine the presence of unreachable pages, i.e., pages that are available at
the server site but cannot be reached along any path starting from the initial

380 Filippo Ricca and Paolo Tonella

FLOW ANALYSIS(graph G = (N, E))
1 for each (n 2 N)

2 initialize INn and OUTn
3 endfor

4 change true

5 while (change)
6 change false

7 for each (n 2 N)
8 INn

L
p2pred(n)OUTp

9 OLDOUTn OUTn

10 OUTn GENn

S
(INn �KILLn)

11 if OUTn 6= OLDOUTn then

12 change true

13 endif

14 endfor

15 endwhile

Fig. 5. Pseudo-code of the
ow analysis algorithm.

page. They are obtained as the di�erence between the pages available in the
Web server �le system and those downloaded by the Spider. Ghost pages are
associated with pending links, which reference a non existing page.

More advanced analyses [11] can be derived from the general framework of

ow analysis [1], described by the algorithm in Figure 5. The algorithm propa-
gates
ow information inside a graph until the �x-point is reached. The kind of

ow information to be propagated depends on the purpose of the analysis being
performed. Some examples are given below. Moreover, the con
uence operator
exploited at line 8 to collect outgoing information from predecessor nodes is also
dependent on the analysis, and is typically either the intersection or the union.
After initializing the input and output sets of each node (INn and OUTn, lines
1-3) with the initial
ow information, propagation is achieved inside a �x-point
loop (line 5) by subtracting the destroyed information (KILLn set) and adding
the generated information (GENn set) to the incoming information (line 10) for
each node n in the graph.

An example of analysis which specializes the algorithm in Figure 5 is the
computation of the reaching frames, which determines the set of frames in
which each page can appear. When a page is loaded into a frame as its initial
page or is reachable through an edge decorated with a LoadPageIntoFrame asso-
ciation class instance, it generates the name of the frame as
ow information. By
propagating such information along the site graph until the �x-point is reached,
the reaching frames of each page are determined. The outcome of the reaching
frames analysis is useful to understand the assignment of pages to frames. The
presence of undesirable reaching frames is thus made clear. Examples are the
possibility to load a page at the top level, while it was designed to always be
loaded into a given frame, or the possibility to load a page into a frame where
it should not be.

Flow analyses can be employed in a more traditional fashion to determine the
data dependences. Nodes of kind Form generate a de�nition of each variable
in the input set. Such de�nitions are propagated along the edges of the Web site

Building a Tool for the Analysis and Testing of Web Applications 381

graph. If a de�nition of a variable reaches a node where the same variable is used
(use attribute of a dynamic page), there is a data dependence between de�ning
node and user node. Data dependences are useful to represent the information

ows in the application. They may reveal the presence of undesirable possibilities,
such as using a variable not yet de�ned or using an incorrect de�nition of a
variable. Data dependences are also extremely important for dynamic validation,
when data
ow testing techniques are adopted.

When the pages of a site are traversed, it is impossible to reach a document
without traversing a set of other pages, called its dominators. Sites in which
traversing a given page is considered mandatory, e.g., because it contains im-
portant information, will have it in the dominator set of every node. Dominator
analysis, also derived from the algorithm in Figure 5, automates the check.

The evolution of web sites [10,12] is another interesting object of investiga-
tion. Such an analysis requires the ability to compare successive versions of its
pages and to graphically display the di�erences. Given two versions of a web
site, downloaded at di�erent dates, their comparison aims at determining which
pages were added, modi�ed, deleted or left unchanged. It can be combined with
the static analyses described above, since their re-computation over time allows
controlling the evolution of the application quality.

4.3 Viewer

The graph view of a Web application is a graph, whose nodes correspond to the
objects in the model and whose edges correspond to the associations between
objects. Labeled edges are used for the links having a LoadPageIntoFrame or
ConditionalEdge relation speci�er. In the graph view, to intuitively suggest de-
composition into frames, we adopt the convention of joining horizontally the
nodes of type frame contained in the same page, and collapsing the edges of
type \split into" into a single edge. An example of decomposition into frames
is shown in Figure 6. Page madmaxpub/index.html (the main page) is divided
into two frames with identi�ers a and b, and frame a is used as a menu to force
the loading of pages into the other frame.

The graph view of a web application can be enriched with information about
its history [10], by coloring the nodes and associating di�erent colors to di�erent
time points (see Figure 6). In particular, a scale of colors ranging from the blue,
going through the green and reaching the red can be employed to represent nodes
added/modi�ed in the far past, in the medium past or more recently.

The Viewer is based on Dotty, and uses the algorithm explained in [6] for
drawing directed graphs. The aesthetic principles followed by the algorithm are:
to expose hierarchical structure (if any) in the graph, to avoid edge crossings
(if possible) and sharp bends, to keep edges short, to favor symmetry and bal-
ance. The layout algorithm of the graph view of a web site is very important to
understand its structure, especially when the site is very complex.

Another problem connected with the visualization of a web site is the fact
that also small sites (e.g. with 100 pages) can have an entangled structure diÆ-
cult to understand. A way to improve the Viewer display is to use techniques to

382 Filippo Ricca and Paolo Tonella

b

b

bb

Fig. 6. Colored graph view of the site www.ubicum.it/madmaxpub at date 3-2-

2000.

abstract, to simplify, to extract a portion of, or to see only a part of the graph
view. Another possibility can be to add other views of a web site as for example
the birdeye and overview diagrams or to display only the depth-�rst tree with-
out return edges (solution adopted in [9]). The views and facilities we propose
follow. The system view represents the organization of pages into directories;
the data
ow view displays the read/write accesses of pages to variables, respec-
tively through incoming/outgoing edges linking pages to variables; the history

representation with percentage bars describes, in compact way, the percentages
of nodes with the same color. Among the provided facilities, the viewer supports
zoom, search, deletion of incoming or outgoing edges, and focus. The facilities
for focusing on and searching a node are useful when the visualized graphs are
very large. By exploiting the focusing facility it is possible to display only a
limited neighborhood of a selected node. Another possibility to access the graph
view, not yet implemented, is the identi�cation and extraction of a portion of
a web site by means of pattern matching techniques. Recurrent patterns are
expected to be used in the design of web sites (for example tree, hierarchy, full
connectivity, indexed-sequence).

5 TestWeb

Web sites can involve a complex interaction among Web browser, operating
systems, plug-in applications, communicating protocols, Web servers, databases,
server programs (for example CGI programs) and �rewalls. Such complexity
makes the test of Web Sites a great challenge [8]. Ideally all components and
functionality of a Web site on both client and server sides should be completely
tested. However, this is rarely possible in modern Web site projects because of

Building a Tool for the Analysis and Testing of Web Applications 383

the extreme time pressure under which Web systems are developed. Available
testing techniques [8] di�er on the features of the Web site we want to test. For
example it is possible to execute link testing, HTML validation, performance
testing, and security testing. We are interested in dynamic validation using our
UML model as a base for this type of testing. In general, dynamic validation
methods aim at exercising the system by supplying a vector of input data (test
case) and comparing the expected outputs with the actual ones after execution.
In particular, we considered white box testing of Web Applications: the internal
structure of a Web application is accessed to measure the coverage that a given
test suite (collection of test cases) reaches, with respect to a given test criterion

(stating the features to be tested). Some white box testing criteria, derived from
those available for traditional software [2], are: Page testing, Hyperlink testing,
De�nition-use testing, All-uses testing, All-paths testing. A test case for a Web
application is a triple: URL, input (a sequence of variable-value assignments
separated by the character '&'), type of parameter passing (GET or POST).
Execution consists of requesting the Web server for the URL in the triple with
the associated input and storing the output pages. Satisfaction of any of the white
box testing criteria involves selecting a set of paths in the Web site graph and
providing input values. Since path selection is independent (conditional edges
excluded) from input values, it can be automated.

Output
pages

Coverage

Pass/fail

model
UML Test

cases
Test

Executor

values
Expected

Test Criterion

Generator
Test

dynamic pages
cond. edges

uses

Input values

Fig. 7. Architecture of the tool TestWeb.

TestWeb (see Figure 7) contains a test case generation engine (Test gen-
erator), able to generate test cases from the UML model of a Web application.
The user has to add some information to the model produced by ReWeb to
complete it for testing purposes and furthermore the user has to choose a test
criterion. The user speci�es the page type when the distinction between static
and dynamic pages cannot be obtained automatically (e.g., dynamic pages with
no input). The user also provides the set of used variables, use, for each dy-
namic page whose content depends on some input value. Finally, the user has
to attach conditions to the edges whose existence depends on the input values.

384 Filippo Ricca and Paolo Tonella

Additional manual interventions, related to state unrolling, will be described in
the following on an example. Generated test cases are sequences of URLs which,
once executed, grant the coverage of the selected criterion. Input values in each
URL sequence are left empty by the Test generator, and the user has to �ll in
them, possibly exploiting the techniques traditionally used in black box testing
(boundary values, etc.). TestWeb's Test executor can now provide the URL
request sequence of each test case to the Web server, attaching proper inputs
to each form. The output pages produced by the server are stored for further
examination. After execution, the test engineer intervenes to assess the pass/fail
result of each test case. A second, numeric output of test case execution is the
level of coverage reached by the current test suite.

Regression testing highly bene�ts from the automation in test case execution,
since each test case can be re-executed unattended on a new version of the Web
application, and its output pages can be automatically compared with those
obtained from a run of the previous version.

5.1 Test Generator

Given the graph representation of a Web application, a reduced graph can be
computed for the purposes of white box testing: each static page without forms
is removed from the graph by a Cross-Term step described in [2] (see Figure 8).

A

D
B

C

E

A
A

BB
B

B
D

D

C

E

C

EA

Fig. 8. Step of the Cross-Term algorithm at a node selected for removal.

In the resulting graph, a �ctitious entry node is added, connected with all
nodes with no predecessor, and a �ctitious exit node is directly reachable from all
output nodes, i.e., dynamic nodes with non empty use attribute. In fact, the end
of a computation is reached, in a Web application, when some result is displayed
to the user, but no intrinsic notion of termination for a navigation session exists.

Di�erently from the
ow-graph of a structured program, the graph view of a
Web application can contain horrible-loops [2], i.e., there may be nodes jumping
into or out of a loop and/or there may be more than one iterating node for
the same loop. In presence of horrible-loops the usual strategies used to cover
nested-loops and concatenated-loops do not work. We have chosen a general so-
lution: a test case generation technique based on the computation of the path
expression [2] of the reduced Web site graph. A path expression is an algebraic
representation of all paths in a graph. Variables in a path expression are edge
labels. They can be combined through operators + and �, associated respec-
tively with selection and loop. Brackets can be used to group subexpressions.

Building a Tool for the Analysis and Testing of Web Applications 385

REDUCTION(graph)
1 Combine all serial links by multiplying their expressions

2 Combine all parallel links by adding their path expressions
3 Remove all self-loops by replacing them this a link of the form X�

4 while (number of nodes in the graph > 2)

5 n choose a node of the graph di�erent from initial or �nal node
6 Apply Cross-Term elimination to n
7 Combine any remaining serial links as in step 1
8 Combine all parallel links as in step 2
9 Remove all self-loops as in step 3
10 endwhile

Fig. 9. Reduction algorithm.

Computation of the path expression for a site can be performed by means of the
Reduction algorithm described in [2] and depicted in Figure 9.

The lines 1-3 of the Reduction algorithm initialize the process and put the
graph in normal form. The body of the command while is executed until the
number of nodes in the graph is greater than 2. Line 5 assigns a node of the
graph di�erent from the initial or �nal node to variable n, while line 6 executes
a Cross-Term step on node n. This step eliminates the node n and transforms
the graph according to the diagram shown in Figure 8. Lines 7-10 combine all
serial and parallel links and remove self-loops. At the end of the execution, the
path-expression of the input graph is obtained.

PATH GENERATION(path expression)

1 while criterion not satis�ed

2 for each alternative from inner to outer nesting

3 choose one never considered before, if any

4 or randomly choose one

5 endfor

6 if computed path increases coverage then

7 add it to the resulting paths

8 endif

9 endwhile

Fig. 10. The heuristic technique adopted to obtain the paths satisfying a crite-

rion.

Since the path expression directly represents all paths in the graph, it can
be employed to generate sequences of nodes (test cases) which satisfy any of
the coverage criteria. Determining the minimum number of paths, from a path
expression, satisfying a given criterion is in general a hard task. However, heuris-
tics can be de�ned to compute an approximation of the minimum. The heuristic
technique adopted for this work is based on the scheme of Figure 10 (the alter-
native at line 2 for a loop is whether to re-iterate or not). De�nition-use and
all-uses testing can be achieved by considering, for each data dependence, the
de�nition as entry node and the use as exit of the subgraph to be tested. Criteria

386 Filippo Ricca and Paolo Tonella

such as de�nition-use and all-paths testing, for which the coverage of possibly
in�nite paths should be achieved, could require that only independent paths be
considered or that loops be k-limited.

:Form

input = {va}

:Form

input = {va}

:Form

input = {va}

:Form

:Form

:ConditionalEdge

:Form

input = {va}

:Form

input = {jump}

thesaurus.htm

thesaurus

:Form

input = {va}

dictionary.htm

dictionary

:Form

input = {va}

:Form

a

b

c

e

d

input = {jump}

c = ’#entries(va) > 1 and
not (jump selected)’

Fig. 11. Model of a portion of www.m-w.com, including two conditional edges.

Figure 11 shows the portion of the Web site www.m-w.com which provides on
line access to the Merriam-Webster English dictionary and thesaurus. A word
can be entered in the initial page (either dictionary.htm or thesaurus.htm).
A dynamic page dictionary is then composed in response to the input word,
stored in variable va. The content of the resulting page depends on the number
of entries found in the dictionary. If there are more than one entry, a selection
list is displayed to the user, together with an explanation of the main entry. The
user can choose among the alternatives { the selection is stored in variable jump
{ and move to a page, still named dictionary, with an explanation of such an
entry. The model of the site represents the conditional existence of the list of
alternatives with a ConditionalEdge object associated with the edge labelled b.
The site o�ers the possibility to enter a new word from both the dynamic pages
dictionary and thesaurus, and allows switching from dictionary to thesaurus
and vice versa from the initial and result pages.

In order to determine a set of paths to be exercised during white box testing,
the path expression is computed. Let us consider the portion of the site devoted
to the extraction of entries from the dictionary (symmetric considerations can
be made for the thesaurus). The path expression associated with the labelled
edges of Figure 11 is a(bc + de)�. Some of the paths generated from it can be
traversed only if proper inputs are provided, while some other paths are infeasible
for every input. For example, the path abc can be traversed only if the input
word has more than one entry in the dictionary. This condition is quite easy
to achieve and requires only a careful selection of input data. A path whose
infeasibility does not depend on the input is abcbc. In fact, if one of the entries is

Building a Tool for the Analysis and Testing of Web Applications 387

selected from the list displayed to the user, the next dynamic page dictionary
that is obtained will not include the list of alternative entries any longer. This
condition is represented as 'not (jump selected)' in Figure 11: if a selection
was performed by the user, edge b does not exist. As a consequence the path
expression cannot be easily exploited for path generation.

dictionary2dictionary1

:Form

input = {va}

:Form

input = {jump}

:ConditionalEdge:ConditionalEdge

:Form

input = {va}

a c = ’#entries(va) > 1’b

d

c

e

h

gf

c = ’#entries(va) = 0 or 1’

Fig. 12. Page dictionary was unrolled into dictionary1 and dictionary2.

The problem highlighted above derives from the possibility to use a same
dynamic page for di�erent purposes. Actually, some Web sites consist of just
one dynamic page which displays di�erent information according to an inter-
nally recorded state of the interaction. In other words, while for static sites the
Web page is coincident with the state of the interaction, this is not necessar-
ily true with dynamic sites. A possible solution to this problem is to perform
an operation of state unrolling on the dynamic pages that are used to display
di�erent contents under di�erent conditions. In the example of Figure 11, page
dictionary is used for two purposes: to propose a list of alternative dictio-
nary entries and to provide the �nal result of the search, once a single entry is
identi�ed. Such two purposes may be represented explicitly by the two pages
dictionary1 and dictionary2 into which the initial page is unrolled (see Fig-
ure 12). The conditions in the ConditionalEdge objects are now simpli�ed and
verify only the number of dictionary entries. The path expression of such site
portion becomes (ac+ bf + bhgc)(dc+ ef + ehgc)� and all the paths that can be
generated from it are feasible, provided that an input word with the appropriate
number of dictionary entries is selected.

6 Conclusions and Future Work

We proposed some analysis and testing techniques working on Web applications.
The starting point for their de�nition is a model of Web sites, designed to include
all characteristics that are relevant from an architectural point of view. Page
downloading and model construction were achieved by providing input values
for the forms in the site. Moreover, the site model was enriched with information
about conditional edges and variable uses, exploited during testing.

388 Filippo Ricca and Paolo Tonella

Facilities for the display of the resulting model are provided by the analysis
tool ReWeb, while test generation and execution is automated by TestWeb.
Our experience with ReWeb and TestWeb suggests that the choice of a good
model is fundamental for both analysis and testing. We showed some views
and facilities of ReWeb on a real example (www.ubicum.it). Path testing in
presence of an internal representation of the interaction state can be simpli�ed
by means of a state unrolling operation, which was also described with reference
to a real world example (www.m-w.com).

Our future work will be devoted to extending the set of analyses available
(to include, for example, pattern matching), adding abstraction techniques to
support a high level view of the site, (partially) automating input selection during
testing in presence of conditional edges and providing better support to state
unrolling.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers. Principles, Techniques, and

Tools. Addison-Wesley Publishing Company, Reading, MA, 1985.
2. B. Beizer. Software Testing Techniques, 2nd edition. International Thomson Com-

puter Press, 1990.
3. G. Booch, J. Rumbaugh, and I. Jacobson. The Uni�ed Modeling Language { User

Guide. Addison-Wesley Publishing Company, Reading, MA, 1998.
4. J. Conallen. Building Web Applications with UML. Addison-Wesley Publishing

Company, Reading, MA, 2000.
5. D. Eichmann. Evolving an engineered web. In Proc. of the International Workshop

on Web Site Evolution, Atlanta, GA, USA, October 1999.
6. E.R. Gasner, E. Koutso�os, S. North, and Kiem-Phong Vo. A technique for drawing

directed graphs. In IEEE-TSE 1993, March 1993.
7. Chien-Hung Liu, David C.Kung, Pei Hsia, and Chih-Tung Hsu. Structural testing

of web applications. In Proc. of ISSRE 2000, International symposium on software

reliability engineering, San Jose, California, pages 84{96, October 2000.
8. Edward Miller. The web site quality challenge. - companion paper: "website test-

ing". In Proc. of QW1998 conference, 901 Minesota street San Francisco, CA 94107

USA, 1998.
9. Robert C. Miller and Krishna Bharat. Sphinx: A framework for creating personal,

site-speci�c web-crawlers. In Proc. of WWW7, Brisbane Australia, April 1998.
10. F. Ricca and P. Tonella. Visualization of web site history. In Proc. of the In-

ternational Workshop on Web Site Evolution, pages 30{33, Zurich, Switzerland,

2000.
11. F. Ricca and P. Tonella. Web site analysis: Structure and evolution. In Proceedings

of the International Conference on Software Maintenance, pages 76{86, San Jose,

California, USA, 2000.
12. P. Warren, C. Boldyre�, and M. Munro. The evolution of websites. In Proc. of the

International Workshop on Program Comprehension, pages 178{185, Pittsburgh,

PA, USA, May 1999.
13. Y. Zou and K. Kontogiannis. Enabling technologies for web-based legacy sys-

tem integration. In Proc. of the International Workshop on Web Site Evolution,

Atlanta, GA, USA, October 1999.

	Introduction
	Web Applications
	Tool Architecture
	ReWeb
	Spider
	Analyzer
	Viewer

	TestWeb
	Test Generator

	Conclusions and Future Work

