Verified Bytecode Verifiers

Tobias Nipkow

Fakultat fiir Informatik, Technische Universitat Miinchen
http://www.in.tum.de/ nipkow/

Abstract. Using the theorem prover Isabelle/HOL we have formalized
and proved correct an executable bytecode verifier in the style of Kildall’s
algorithm for a significant subset of the Java Virtual Machine. First an
abstract framework for proving correctness of data flow based type in-
ference algorithms for assembly languages is formalized. It is shown that
under certain conditions Kildall’s algorithm yields a correct bytecode
verifier. Then the framework is instantiated with a model of the JVM.

1 Introduction

Over the past few years there has been considerable interest in formal models for
Java and the JVM, and in particular its bytecode verifier (BCV). So far most
of the work has concentrated on abstract models of particularly tricky aspects
of the JVM, in particular the idiosyncratic notion of “subroutines”. This paper
complements those studies by focussing on machine-checked proofs of executable
models. Its distinctive features are:

— The first machine-checked proof of correctness of a BCV implementation for
a nontrivial subset of the JVM.

— The BCV is an almost directly executable functional program (which can
be generated automatically from its Isabelle/HOL formalization). The few
non-executable constructs (some choice functions) are easily implemented.

— The work is modular: the BCV (and its correctness proof!) becomes a simple
instance of a general framework for data flow analysis.

— Almost all details of the model are presented. The complete formalization,
including proofs, is available via the author’s home page.

Thus the novelty is not in the actual mathematics but in setting up a framework
that matches the needs of the JVM, instantiating it with a description of the
JVM, and doing this in complete detail, down to an executable program, and
including all the proofs. Moreover this is not an isolated development but is based
firmly on existing formalizations of Java and the JVM in Isabelle/HOL [11l12]
13]. From them it also inherits the absence of subroutines, object initialization,
and exception handling. Although our only application is the JVM, our modular
framework is in principle applicable to other “typed assembly languages” as well;
hence the plural in the title.

F. Honsell and M. Miculan (Eds.): FOSSACS 2001, LNCS 2030, pp. 347-B63] 2001.
© Springer-Verlag Berlin Heidelberg 2001

348 T. Nipkow

What does the BCV do and what does it guarantee? The literature already
contains a number of (partial) answers to this question. We follow the type
system approach of Stata, Abadi and others [16/45l[14/7]. The type systems check
a program w.r.t. additional type annotations that provide the missing typing of
storage locations for each instruction. These type systems are then shown to
guarantee type soundness, i.e. absence of type errors during execution (which
was verified formally by Pusch [13] for a subset of the system by Qian [14]). Only
Qian [15] proves the correctness of an algorithm for turning his type checking
rules into a data flow analyzer. However, his algorithm is still quite abstract.

Closely related is the work by Goldberg [6] who rephrases and generalizes
the overly concrete description of the BCV given in [9] as an instance of a
generic data flow framework. Work towards a verified implementation in the
SPECWARE system is sketched by Coglio et al. [3]. Although we share the lattice-
theoretic foundations with this work and it appears to consider roughly the same
instruction set, it is otherwise quite different: whereas we solve the data flow
problem directly, they generate constraints to be solved separately, which is not
described. Furthermore, they state desired properties axiomatically but do not
prove them. Casset and Lanet [2] also sketch work using the B method to model
the JVM. However, their subset of the JVM is extremely simple (it does not even
include classes), and it remains unclear what exactly they have proved. Based on
the work of Freund and Mitchell] Bertot [I] has recently used the Coq system
to prove the correctness of a bytecode verifier that handles object initialization
(but again without classes).

The rest of the paper is structured as follows. The basic datatypes and semi-
lattices required for data flow analysis are introduced in §2. Our abstract frame-
work relating type systems, data flow analysis, and bytecode verification is set
up in {3 It is proved that under certain conditions bytecode verification deter-
mines welltypedness. In §4], Kildall’s algorithm, an iterative data flow analysis, is
shown to be a bytecode verifier. Finally, in §5] the results of the previous sections
are used to derive a bytecode verifier for a subset of the JVM.

2 Types, Orders, and Semilattices

This section introduces the basic mathematical concepts and their formalization
in Isabelle/HOL. Note that HOL distinguishes types and sets: types are part of
the meta-language and of limited expressiveness, whereas sets are part of the
object language and very expressive.

2.1 Basic Types

Isabelle’s type system is similar to ML’s. There are the basic types bool, nat, and
int, and the polymorphic types a set and « list, and a conversion function set
from lists to sets. The “cons” operator on lists is the infix #, concatenation the
infix @. The length of a list is denoted by size. The i-th element (starting with
0!) of list xs is denoted by xsli. Overwriting the i-th element of a list s with a

Verified Bytecode Verifiers 349

new value z is written zs[i := z]. Recursive datatypes are introduced with the
datatype keyword. The remainder of this section introduces the HOL-formal-
ization of the basic lattice-theoretic concepts required for data flow analysis and
its application to the JVM.

2.2 Partial Orders

Partial orders are formalized as binary predicates. Based on the type synonym
a ord = a — a — bool and the notations ¢ <, y = rzyandz <,y = (z <,
y AN x # y) we say that r :: a ord is a partial order iff the predicate order :
a ord — bool holds for r:

orderr = (Vo. 2 <, o) A (Voy. 2 <, yAy <,z —xz=y) A
(Vayz. 2 <, yANy <,z — x <, 2)

We say that r satisfies the ascending chain condition if there is no infinite
ascending chain g <, 1 <, --- and call T a top element if z <, T for all x.

2.3 Semilattices

Based on the type synonyms « binop = @« — o — « and « sl = « set X a ord X
a binop and the supremum notation x4y = f 2y we say that (4,r, f) :: o sl
is a semilattice iff the predicate semilat :: & sl — bool holds:

semilat(A4,r, f) =order r A closed A f A (Vay e A x <, x+5y) A
VeyeA y<,az+5y) N Veyze A o<, 2Ny <,z —2+5y <, 2)

where closed A f = Vaye A. v +;yc A

Usually data flow analysis is phrased in terms of infimum semilattices. We
have chosen a supremum semilattice because it fits better with our intended
application, where the ordering is the subtype relation and the join of two types
is the least common supertype (if it exists).

We will now look at a few datatypes and the corresponding semilattices which
are required for the construction of the JVM bytecode verifier. In order to avoid
name clashes, Isabelle provides separate names spaces for each theory, where a
theory is like a module in a programming language. Qualified names are of the
form Theoryname.localname.

2.4 The Error Type and err-Semilattices
Theory Err introduces an error element to model the situation where the supre-
mum of two elements does not exist. We introduce both a datatype and an

equivalent construction on sets:

datatype « err = Err | OK « err A={Err} U{OK a|a € A}

350 T. Nipkow

Orderings 7 on « can be lifted to a err by making Err the top element:

ler (OKz) (OKy) =z <,y
le r _ Err = True
le 7 Err (OK y) = False

We proved that le preserves the ascending chain condition.
The following lifting functional is frequently useful:

lift2 f (OKz) (OKy)=faxy
lift2 f _ - = Err

This brings us to the genuinely new notion of an err-semilattice. It is a
variation of a semilattice with top element. Because the behaviour of the ordering
and the supremum on the top element are fixed, it suffices to say how they behave
on non-top elements. Thus we can represent a semilattice with top element Err
compactly by a triple of type esl:

a ebinop =a — a — « err a esl =« set X a ord X a ebinop
Conversion between the types sl and esl is easy:

esl:: v sl — «v esl sl::aesl — a err sl

esl(A,r, f) = (A, r, Azy. OK(f z v)) sl(A,r, f) = (err A,le r,lift2 f)

Now we define L :: o esl to be an err-semilattice iff sl L is a semilattice. It
follows easily that esl L is an err-semilattice if L is a semilattice. The supremum
operation of sl(esl L) is useful on its own:

sup f = lift2(Azy. OK(z +¢ v))
In a strongly typed environment like HOL we found err-semilattices easier to
work with than semilattices with top element.
2.5 The Option Type
Theory Opt introduces type option and set opt as duals to type err and set err,
datatype o« option = None | Some @ opt A = {None} U {Some a | a € A}

an ordering that makes None the bottom element, and a corresponding supre-
mum operation:

le 7 (Some z) (Some y) =2 <,y sup f (Some z) (Some y) = Some(f = y)
le 7 None _ = True sup f None z =z
le 7 (Some x) None = False sup f 2 None =z

We proved that function sl(A,r, f) = (opt A,le r,sup f) maps semilattices to
semilattices and that le preserves the ascending chain condition.

Verified Bytecode Verifiers 351

2.6 Products

Theory Product provides what is known as the coalesced product, where the top
elements of both components are identified. In terms of err-semilattices, this is

esl:: v esl — 3 esl — (a x f3) esl
esl (A7TA7fA) (B7TBafB) = (A X Byle TA TB,SUp fA fB)

le:: o ord — B ord — (a X) ord
le ra rp = Aai,b1)(az,b2). a1 <,y ag Aby <ppy by

sup :: « ebinop — 3 ebinop — (a x B)ebinop
sup f g = Aa1,b1)(az,b2). Errsup (Azy.(z,y)) (a1 +5 a2) (b1 +4 b2)
Note that we use x both on the type and set level.
We have shown that if both L; and Lo are err-semilattices, so is esl L1 Lo, and
that if both r4 and rp satisfy the ascending chain condition, so does le r4 rg.

2.7 Lists of Fixed Length

Theory Listn provides the concept of lists of a given length over a given set. In
HOL, this is formalized as a set rather than a type:

list n A= {xs|size xs =n Aset xs C A}

This set can be turned into a semilattice in a componentwise manner, essentially
viewing it as an n-fold cartesian product:

sl :: nat — a sl — « list sl le:: o ord — « list ord
sln (A,r, f) = (list n A,le r,map2 f) le r = list_all2 (\zy. « <, y)

where map2 :: (& = 8 =) = « list = (3 list — ~ list and list_all2 =1 (o —
B — bool) — « list — [list — bool are the obvious functions. We introduce the
notation zs <] ys = ws S(Ie . ¥s. We have shown (by induction on n) that
if L is a semilattice, so is sl n L, and that if r is a partial order and satisfies the
ascending chain condition, so does le r.

In case we want to combine lists of different lengths, or if the supremum on
the elements of the list may return Err, we use the following function:

sup :: (e = B — v err) = « list — (3 list — ~y list err

sup f xs ys = if size xs = size ys then coalesce(map2 f xs ys) else Err
coalesce [| = OK |]

coalesce (e#es) = Errsup (Ax xs. x#xs) e (coalesce es)

This corresponds to the coalesced product. Below we also need the structure of
all lists up to a specific length:

upto_esl :: nat — « esl — « list esl
upto-esl n (A, 7, f) = (U<, list i A,le r,sup f)

We have shown that if L is an err-semilattice, so is upto_esl n L.

352 T. Nipkow

3 Relating Type Checking and Data Flow Analysis

The purpose of this section is to set up an abstract framework for relating type
checking and data flow analysis of machine code, i.e. lists of instructions. We
assume that instructions may be typed (e.g. distinguishing integer from floating
point addition) but storage locations are not necessarily typed and may also
change their type during execution. Thus it is necessary to infer the type of
each storage location at each instruction to see if the instruction will manipulate
values of the required type. To keep things abstract, we do not fix the type
system or the machine architecture. We simply assume that our model contains
a type of states that characterizes the state of the machine. This state type is a
parameter of our setup and will be represented by the type variable o. Note that
o is intended not to represent values but their abstraction, types. For example,
in a register machine o would be a list of types, one for each register (roughly
speaking). We can now define a program type, i.e. the type of a program,
simply as a list of state types: each element in the list characterizes the state of
the machine before execution of the corresponding instruction.

In order to lessen the confusion between types in the programming language
under consideration and types in our modeling language, the latter are sometimes
referred to as HOL types. For example, o is a HOL type that represents part
of the programming language type system.

In this abstract setting, we do not yet have to talk about the instruction
sequences themselves. They will be hidden inside functions that characterize
their behaviour. These functions form the parameters of our model, namely
the type system and the data flow analyzer. In the Isabelle formalization, these
functions are parameters of everything. In this article, we pretend they are global
constants, thus increasing readability.

3.1 Welltyped Instructions
The type system is characterized by a function and an order with top element:

wti :: o list — nat — bool stands for well typed instruction: wti ss p is true
iff instruction number p is welltyped w.r.t. the program type ss. Thus wti
characterizes welltypedness of the instructions of a particular program, which
remains implicit. When instantiating the framework, wti will be instantiated
by the partial application of some type system to a program.

r :: (0 x 0)set, an ordering relation on o representing the subtype relation lifted
to program states. Thus our framework can deal with programming lan-
guages with subtypes.

T :: o is the top element w.r.t. r and should be thought of as the inconsistent
state, indicating a type error.

The program embodied by wti is welltyped w.r.t. some program type ss iff all
instructions are welltyped with non-T states:

welltyping ss = Vp < size(ss). wti ss pAsslp £ T

Verified Bytecode Verifiers 353

3.2 Abstract Semantics
The semantics of a program is characterized by the functions

step :: nat — o — o is the abstract execution function: step p s is the result of
executing instruction p starting in state s. In the literature step p is called
the transfer function or flow function associated with instruction p.

succs :: nat — nat list computes the possible successor instructions: succs p =

[q1,---,qx] means that execution of instruction p may transfer control to
any of the instructions q1, ..., gx. We use lists instead of sets for reasons of
executability.

We say that succs is bounded by n if for all p < n the elements of succs p are
less than n, i.e. control never leaves the list of instructions below n.

3.3 A Specification of Data Flow Analysis and Bytecode Verification

Data flow analysis is concerned with solving data flow equations, i.e. systems of
equations involving the flow functions over a semilattice. In our case step is the
flow function and o the semilattice. Instead of an explicit formalization of the
data flow equation it suffices to consider certain prefixed points. To that end we
define what it means that a program type ss is stable at p and stable:

stable ss p = Vq € set(succs p). step p (sslp) <y sslq
stables ss = Vp < size(ss). stable ss p

We call a function dfa :: o list — o list a data flow analyzer (w.r.t. n :: nat
and A :: o set) iff for all ss € listn A

1. dfa preserves A: dfa ss € list n A,

2. dfa produces stable program types: stables (dfa ss)
3. dfa is increasing: ss <[y dfa ss

4. dfa is bounded by stable program types:

Vits € list n A. ss < ts A stables ts — dfa ss < ts

In case you are not initimately familiar with data flow analysis: the correctness
of this specification is not an issue because it is merely a stepping stone that
does not occur in our main result.

We need to introduce the subset A of o to make distinctions beyond HOL’s
type system: for example, when representing a list of registers, o is likely to
be a HOL list type; but the fact that in any particular program the number
of registers is fixed cannot be expressed as a HOL type, because it requires
dependent types to formalize lists of a fixed length. We use sets to express such
fine grained distinctions.

A bytecode verifier is defined as a function between program types, where
the absence of T in the result indicates welltypedness. Formally, a function
bev :: o list — o list is a bytecode verifier (w.r.t. n :: nat and A :: o set) iff

Vss € listn A. T ¢ set(bcv ss) = (3ts. ss iy ts A welltyping ts)

354 T. Nipkow

3.4 Relating Data Flow Analysis and Bytecode Verification

Since the data flow analyzer is specified in terms of stability and the bytecode
verifier in terms of welltyping, the two notions need to be related. Naively one
may assume that the stable program types are exactly the welltypings. This
is almost true, but for lists containing T: they may be stable but will not be
welltypings. We say that wti and stable agree for T-free program types
(wrt. n = nat and A :: o set) iff for all ss€listn Aandp<n

T ¢ set(ss) — (wti ss p = stable ss p)

Note that because stable is defined in terms of step, r and succs, this property
relates wti to those three constants.

Theorem 1. Let r be a partial order with top element T. If wti and stable agree
for T-free program types and dfa is a data flow analyzer then dfa is a bytecode
verifier (all w.r.t. some n and A).

This theorem follows easily from the definitions. The hard part is to discharge the
premise that dfa is a data flow analyzer, i.e. to provide a correct implementation.
This is the topic of §4l.

Note that instead of having both wti and step as parameters of the framework
and requiring that they agree, one could define wti in terms of stable. We have
not done so because much of the work on Java’s bytecode verifier is based on
type systems rather than flow functions. In particular, in §5.5] we build on the
verification by Pusch which is phrased in terms of a type system.

4 Kildall’s Algorithm

This section defines and verifies a functional version of Kildall’s algorithm [8/10],
a standard data flow analysis tool. In fact, the description of bytecode verifica-
tion in the official JVM specification [9], pages 129-130] is essentially Kildall’s
algorithm. We define the algorithm in the context of semilattice (A,f,r) and the
functions step and succs. Its core is the iteration on a state type ss and a work-
list w :: nat set that holds the set of all indices of ss whose contents has changed
and still needs to be propagated. Once w becomes empty, ss is returned:

iter(ss,w) = if w = {} then ss else
let p=c¢ep. p € w; t =step p (sslp)
in iter(propa (succs p) t ss (w — {p}))

The choice of which position to consider next is made by Hilbert’s e-operator:
ex.P(x) is some arbitrary but fixed = such that P(x) holds; if there is no such
x, then the value of ex.P(z) is arbitrary but still defined. Since the choice in iter
is guarded by w # {}, we know that p € w. An implementation is free to chose
whichever element it wants.

Verified Bytecode Verifiers 355

The body of the iteration is hidden in function propa which propagates the
new value at sslp to all its successors, thus reflecting the execution of a single
instruction p. This means, the result of step p (ss!p) has to be “merged” [9]
page 130] with the state sslg of all successor instructions g of p. “Merging”
means the computation of the supremum w.r.t. (A, f,r). The worklist is updated
in case this merging results in a change.

propa [] t ssw=(ss,w)
propa (q#qs) t ss w = let u =t +¢sslg
w' =1if u = sslg then w else {¢} Uw
in propa ¢s t (ss[q := u]) w’

Kildall’s algorithm is simply a call to iter where the worklist is initialized with
the set of indices that need propagating:

kildall ss = iter(ss, {p. p < size ss A3q € set(succs p).step p (ss!p)+¢sslq # sslq})

Function iter is partial in general. Thus its above definition is illegal in HOL,
a logic of total functions. The actual definition of iter in HOL requires that the
ordering r of our semilattice satisfies the ascending chain condition. For reasons
discussed already towards the end of §3-3] we also require that the functions step
and succs do not lead outside the semilattice carrier A:

1. succs is bounded by size ss
2. step preserves A: Vs € A,)p<n.steppseA

Finally, ss and w must also be initialized appropriately: set ss C A and w is
bounded by size ss: Vp € w. p < size ss.

4.1 Kildall’s Algorithm Is a Bytecode Verifier

We will now sketch the proof that, under suitable assumptions, Kildall’s algo-
rithm is indeed a bytecode verifier. For that purpose we introduce some more
terminology. We call step monotone (w.r.t. A and n) iff for all s € A, p < n,
s <y t implies step p s <y step p t. The main theorem states that iter satisfies
the properties of a data flow analyzer as defined in 3.3

Theorem 2. If r satisfies the ascending chain condition, step preserves A and
18 monotone w.r.t. A and n, succs and w are bounded by n, ss € list n A, and ss
is stable at p < n for all p ¢ w, then

iter(ss,w) € list n A N stables (iter(ss,w)) N ss <ip iter(ss,w) A
Vis € list n A. ss <ip ts A stables ts — iter(ss,w) <[p ts

The following two corollaries follow easily from the definition of a data flow
analyzer and kildall and from Theorem [k

Corollary 3. If r satisfies the ascending chain condition, step preserves A and
18 monotone w.r.t. A and n, and succs is bounded by n, then kildall is a data flow
analyzer.

356 T. Nipkow

Corollary 4. If r satisfies the ascending chain condition, T is its top element,
step preserves A and is monotone w.r.t. A and n, succs is bounded by n, and wti
and stable agree for T-free program types, then kildall is a bytecode verifier.

The proof of Theorem [@ is by induction along the recursion of iter. In an
imperative language, iter would be a while-loop and the proof would proceed by
the following invariant:

ssclistn A A (Vp<n.p¢gw—> stable ssp) A cs <jppss A
Vts € list n A. cs <[rj ts A stables ts — ss <[] ts

where cs is a logical variable that refers to the initial value of ss. Of course, the
proof of Theorem [2 follows exactly the same line. As a first step we show that
propa can be split into two independent computations: if w is bounded by size ss
then

propa gs t ss w = (merges t gs ss,{q. q € set gs ANt +¢ sslq # sslq} Uw)
where merges is defined recursively:

merges ¢ [] 58 = 85
merges t (p#ps) ss = merges t ps (ss[p := t 4 ss!p])

Thus the verification can be phrased in terms of the simpler merges instead of
propa. Preservation of the invariant can be shown with a few suitable lemmas
about merges. When w = {} it is easy to see and prove that the invariant implies
the corresponding conditions in Theorem [2]

5 Application to JVM

In this section we apply the generic framework to a subset of the JVM. We do not
consider the details of how information, e.g. the subclass relationship, is encoded
in the compiled class files. Instead, we represent this information abstractly, e.g.
as a binary relation between class names. To minimize explicit parameterization,
such class file derived information is dealt with via implicit parameters, just as
explained in the beginning of §3l

5.1 Types

Theory JType describes the types of our JVM. The machine only supports the
void type, integers, null references and class types (based on a type cname of
class names):

datatype ty = Void | Integer | NullT | Class cname

Each class file records the direct superclass. In our formalization this gives rise
to an implicit parameter S of HOL type (cname x cname)set, where (D,C) € S
means that D is a direct subclass of C. Subclasses induce a subtype relation:

Verified Bytecode Verifiers 357

subtype 11 T =(rn=m V 11 =NullT Ais_Class 75 V
AC D. 71 = Class C A1y = Class D A (C, D) € S¥)

is_Class (Class C) = True
is_Class _ = False

is_ref T = (7 = NullT vis_Class 7)
Corresponding to it we have a supremum operation on types:

sup NullT (ClassD) = OK(Class D)

sup (Class C) NullT = OK(Class ()
sup (Class C) (Class D) = OK(Class(some_lub C' D))
sup Ty To = if 7y = 75 then OK 71 else Err

The auxiliary function some_lub used in the computation of the supremum of two
classes is defined non-constructively (as some least upper bound, using Hilbert’s
e-operator). Of course we also prove that (under suitable conditions) least upper
bounds are uniquely determined and exist. Thus our work is independent of the
particular algorithm used for this calculation.

The type cname is assumed to have a distinguished element Object. Predicate
is_type :: ty — bool is true for all basic types and for all class types below Class
Object (w.r.t. the given subclass hierarchy S). As abbreviations we introduce
types = {7 |istype 7} and 1 C 1o =7y Ssubtype Ty.

Theorem 5. The triple esl = (types, subtype, sup) is an err-semilattice provided
S is univalent (each subclass has at most one direct superclass, i.e. S represents
a single inheritance hierarchy) and S is acyclic.

Univalence and acyclicity together imply that S is a set of trees, and is_type
focusses on the subtree below Object.

Because any infinite subtype chain would induce an infinite subclass chain
we also obtain

Lemma 6. If S is wellfounded (there is no infinite ascending subclass chain
(Ci,Ciy1) € S) then subtype satisfies the ascending chain condition.

Note that by incorporating a fixed class hierarchy into our model we assume
that all required classes have been loaded, i.e. we model an eager class loader.
Although Sun’s JVM is a bit lazier, the JVM specification [9, p. 127] does permit
eager loading.

5.2 Instructions

For our subset of the JVM we have selected the following representative instruc-
tion set

datatype instr = Load nat | Store nat | AConst_Null | IConst int | IAdd
| Getfield ty cname | Putfield ty cname | New cname
| Invoke cname mname ty ty | CmpEq nat | Return

358 T. Nipkow

where mname is the type of method names. The main difference to Sun’s JVM
is that Load, Store, CmpEq, and Return are polymorphic (the real JVM has one
such instruction for each base type), Invoke only supports methods with a single
parameter (the first ty argument), Getfield and Putfield carry the field type but
not its name, and CmpEq uses absolute instead of relative addressing.

The JVM is a stack machine where each activation record consists of a stack
for expression evaluation and a list of local variables (which we call registers).
The abstract semantics, which operates on the type level, records the type of
each stack element and each register. At a specific program point, a register may
hold either of two incompatible types, e.g. an integer or a reference, depending on
the computation path that lead to that point. This facilitates reuse of registers
and is modeled by the HOL type ty err, where OK 7 represents type 7 itself and
Err represents the unusable/inconsistent type. In contrast, the stack should only
hold values that can actually be used. Thus the configurations of our abstract
JVM are pairs of an expression stack and a list of registers:

config = ty list X ty err list

The execution of a single instruction is modeled by function exec :: instr —
config — config err where the result Err indicates a run time error, either because
of stack over or underflow or because of type mismatch. In Sun’s JVM the
maximal stack size is recorded in the class file as the code attribute max_stack
for each method. To simplify the presentation, we concentrate on the verification
of a single method and introduce two further implicit parameters maxs :: nat
and rT :: ty, the method’s maximal stack size and its return type. The definition
of exec below is quite straightforward.

Note that access to a register beyond the size of reg is not checked during
execution because it is prevented easily by a single pass over the instruction
sequence (see wfi below). A dynamic check would merely add clutter.

We now start to instantiate the parameters of our abstract framework in §3t
o = config err option where None indicates a program point that has not been
reached yet, Some(OK c) is a normal configuration ¢ and Some Err an error. The
introduction of the extra option layer means that our data flow analyzer will also
determine reachability of instructions and enforce type correctness for reachable
instructions only. Function step is merely a lifted version of exec

step p = option_map (lift exec (bs!p))

lift f e=case e of Err=Err |OKz = f =z
option_map f None = None

option_map f (Some z) = Some(f)

where bs is yet another implicit parameter, the list of instructions of the method
under examination. As dictated by the general framework in §3.2] we also need

a successor function. Its definition is straightforward:

succs p = case bslp of Return = [p] | CmpEq ¢ = [p+1,4q] | - = [p+]1]

Verified Bytecode Verifiers 359

exec instr (st,reg) = case instr of
Load n = if size st < maxs then case reg!n of Err = Err | OK 7 = OK(7#st, reg)
else Err

| Store n = (case st of [| = Err | 7#st1 = OK(st1, reg[n := OK 7))
| AConst_Null = if size st < maxs then OK(NullT#st,reg) else Err
| IConst ¢ = if size st < maxs then OK(Integer#st,reg) else Err
| IAdd = (case st of Integer#lInteger#sta = OK(Integer#sta, reg) | - = Err)
| Getfield 7y C' = (case st of [| = Err
| To# sty = if 7, C Class C then OK(7s#st1,reg) else Err)
| Putfield 77 C' = (case st of T,#Toftsta = if 7, C 75 A7, E Class C
then OK(st2,reg) else Err
| -= Err)
| New C' = if size st < maxs then OK((Class C)#st,reg) else Err
| Invoke C' m 7p 7 = (case st of To#ToF# st = if 7, C Class C A7 C 7p
then OK(7,#st2,reg) else Err
| .= Err)
| CmpEq g = (case st of Ti#ToFtsta = if 71 = 7o Vis_ref 71 Alis_ref 12
then OK(st2,reg) else Err
| = Err)
| Return = (case st of [| = Err | 7#_= if 7 C rT then OK(st,reg) else Err)

Modelling the Return instruction by a self loop may seem odd, but it needs a
successor instruction because otherwise data flow analysis would never execute
it. And a loop is simpler than introducing a fictitious successor.

The main omissions in our model of the JVM are exceptions, object initial-
ization, and jsr/ret instructions because our work builds on the type safety
proof by Pusch (see §5.5)) which does not cover these features either. Including
object initialization is straightforward, but exceptions require a modification of
our abstract framework: flow functions (step) need to be associated with edges
rather than nodes of the program graph because exceptional behaviour can differ
from normal behaviour. The difficulty of including jsr/ret is unclear.

5.3 Type System

We start with those context conditions that can be checked separately for each
instruction. This check uses a method dictionary of HOL type

mdict = cname — (mname X ty — ty option)

A method dictionary is a functional abstraction of the information about the
types of all methods defined in the current collection of class files. It maps a
class name C, method name m, and a type 7 to the result type of the method
that is selected when m is invoked with an object of class C' and a parameter of
type 7 (remember that Invoke only supports single argument methods). In case
there is no applicable method, None is returned. The argument type is necessary

360 T. Nipkow

because Java allows overloading of method names, which are disambiguated via
their argument types. The formal details need not concern us here and can be
found elsewhere [11].

The wellformedness of an instruction is checked in the context of two further
implicit parameters: a method dictionary md :: mdict and a limit maxr :: nat
for the maximal register index in the current method (the max_locals code
attribute in Sun’s JVM).

wfi(Load n) =n < maxr

wfi(Store n) =n < maxr

wfi(Getfield 7 C) = is_type 7 Ais_type (Class C)
wfi(Putfield 7 C) = is_type 7 Ais_type (Class C)

wfi(New C') = is_type (Class C)

wfi(Invoke C'm 7, 7.) = md C (m, 7,) = Some(r;.)

wfi(_) = True

The instruction sequence bs is wellformed iff all of its elements are: Vinstr €
set bs. wfi instr.

The method dictionary also comes with a wellformedness condition reflecting
the type soundness requirement that a method redefined in a subclass must have
a more specialized result type: md is wellformed iff

md C mT = Some 7 —
is-type 7 A (VD. (D,C) € S* — (37'. md D mT = Some 7/ A7/ C 7))

Note that the official JVM specification does not mention this wellformedness
property but imposes a stronger one implicitly: one method can override another
only if their result types are identical, a restriction we have relaxed.

Now we come to the core of the type system, namely the semilattice structure
on ¢ and the predicate wti. Turning ¢ into a semilattice is easy, because all of
its constituent types are (err-)semilattices. The expression stacks form an err-
semilattice because the supremum of stacks of different size is Err; the list of
registers forms a semilattice because the number of registers is fixed:

stk_esl :: ty list esl regsl :: ty err list sl
stk_es| = upto_esl maxs JType.esl reg_sl = Listn.sl maxr (Err.sl JType.esl)

See Theorem [l for JType.esl. Since any error on the stack must be propagated,
the stack and registers are combined in a coalesced product via Product.esl and
then embedded into err and option to form the final semilattice sl :: o sl:

sl = Opt.sl(Err.sl(Product.es| stk_esl (Err.esl reg_sl))) (1)

As a shorthand, the three components of sl are named states (the carrier set),
le (the ordering), and sup (the supremum). Furthermore we introduce an infix
abbreviation for the ordering le: s <t = s <

Combining the theorems about the various (err-)semilattice constructions
involved in the definition of sl (starting from Theorem [), it is easy to prove

Verified Bytecode Verifiers 361

Corollary 7. If S is univalent and acyclic then sl is a semilattice.

It is trivial to show that T = Some Err is the top element of this semilattice.

Below you find the definition of wti, the only remaining parameter of our
abstract framework. If you expect type systems to come as a set of inference rules,
note that each case in the definition of wti could be turned into an equivalent
inference rule for a judgment ss,p - instr.

wti ss p = case sslp of None = True | Some e = case e of Err = False
| OK(st,reg) = case bslp of
Load n=>size st <maxs A 37. regln=0K 7 A Some(OK(7#st, reg)) < ss!(p+1)
| Store n = 37 stq. st = T#st1 A Some(OK(st1,reg[n := OK 7])) < ss!(p+1)
| AConst_Null = size st < maxs A Some(OK(NullT#st, reg)) < ss!(p+1)
| IConst ¢ = size st < maxs A Some(OK(Integer#st,reg)) < ss!(p+1)
| IAdd=>Tsts. st=Integer#Integer#sto ASome(OK(Integer#sta, reg)) < ss!(p+1)
| Getfield 74 C' = 37 sty. st = 7#sty AT C Class C' A
Some(OK(7s#st1,reg)) < ssl(p+1)
| Putfield 7 C = 371, T, sta. st = 7, #To#sta ATy C 75 AT, C Class C' A
Some(OK(sta,reg)) < ss!(p+1)
| NewC' = size st < maxs A Some(OK((Class C)#st,reg)) < ss!(p+1)
| Invoke C ' m 7, 7, = 31, T, Sta. st = To#To#sta AT, & Class C A7 C 7, A
Some(OK(7,#sta, reg)) < ss!(p+1)
| CmpEq ¢ = 371 T2 sto. st = Ti#TaFsta A (11 = T2 Vis_ref 7 Alis_ref 72) A
Some(OK(sta,reg)) < ss!(p+1) A Some(OK(sts, reg)) < sslq
| Return = 37 sty. st = 7#sty AT rT

5.4 A Verified Bytecode Verifier

We can now instantiate Kildall’s algorithm with its remaining (implicit) param-
eter, namely the semilattice. Clearly (A,f,r) must be sl as defined in () and
hence A = states, f = sup and r = le. We call the resulting specialized algorithm
kiljvm :: o list — o list. Before we can use Corollary [to prove that kiljym is a
bytecode verifier, we need three properties of step:

Lemma 8. If bs and md are wellformed, step preserves states and is monotone.
If succs is bounded by size bs then wti and stable agree for T-free program types.

Each property is proved by a case distinction over the different instructions.

Corollary 9. If S is univalent and S~ wellfounded (see LemmalB), bs and md
are wellformed, and succs is bounded by size bs, then kiljvm is a bytecode verifier.

It follows directly from Corollary [4: some of its preconditions are covered by
Lemma [8 the ascending chain property of le follows from Lemma [because the
semilattice constructions involved preserve the property. This corollary clearly
shows that the verification of class files can be split up into separate tasks: a
first phase where static wellformedness conditions of class files are checked (the
class hierarchy, the method result types, and the individual instructions), and
the actual data flow analysis. The same separation is also present in the official
JVM specification.

362 T. Nipkow

5.5 The Global Picture

So far we have only considered an abstraction of the JVM that works on types
rather than values. It remains to show that this abstraction is faithful, i.e. that
welltypedness on this abstract level actually guarantees the absence of type errors
in the concrete JVM operating on values. To this end we connect our work with
that of Pusch [13] who gave a specification of a bytecode verifier and showed that
it implies type soundness of the concrete JVM. Roughly speaking, she proved
that during execution of welltyped code, all values conform to the types given in
the welltyping. That is, she defined a type jumstate of concrete machine states
(which include the pc), a function exec,q :: jumstate — jumstate option for
executing a single instruction, and a conformance relation corrstate s ss between
a concrete machine state s and a program type ss (all in the context of a set of
class files). And she proved

welltyping ss A corrstate s ss A exec,q § = Some t — corrstate t ss

i.e. a welltyping guarantees type safe execution. By our definition of “bytecode
verifier” in terms of welltyping (§8:3) and the fact that kiljvm is a bytecode
verifier (Corollary [@)) it follows that if T ¢ kiljvm sso then execution is type
safe from any concrete state s conforming to ssg (because corrstate is monotone:
corrstate s ssp and ssg S[Ie] ss imply corrstate s ss).

The program type ssg that iteration starts from is initialized as follows. When
checking a method in class C' with parameter types 71, ..., 7, we set

ssp = [Some(OK(init)), None, ..., None]
init = ([],[Some(Class C),p1, ..., pn, None,...,None])

such that size ssg = size bs; init models the state upon entry into the method: the
stack is empty, the first register contains the this-pointer, the next n registers
contain the parameters p; = Some(7;), and the remaining registers, which hold
the actual local variables, are uninitialized, i.e. do not contain a usable value.

6 Conclusion

By verifying an executable BCV, this work closes a significant gap in the effort to
provide a machine-checked formalization of the Java/JVM architecture. Despite
its relative compactness (500 lines of specifications and programs, and 2000 lines
of proofs), the amount of work to construct such a detailed model should not be
underestimated. But when it comes to security, there is no substitute for com-
plete formality. And since both the theory and the tools are available, we intend
to verify implementations of more realistic BCVs (incl. object initialization and
exceptions) in the not too distant future.

Acknowledgments. I thank Zhenyu Qian, Gilad Bracha, Gerwin Klein and
David von Oheimb for many helpful discussions and for reading drafts of this

paper.

Verified Bytecode Verifiers 363

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

Y. Bertot. A Coq formalization of a type checker for object initialization in the
Java Virtula Machine. Technical Report RR-4047, INRIA, Nov. 2000.

L. Casset and J. L. Lanet. A formal specification of the Java bytecode seman-
tics using the B method. In ECOOP’99 Workshop Formal Techniques for Java
Programs, 1999.

A. Coglio, A. Goldberg, and Z. Qian. Toward a provably-correct implementation
of the JVM bytecode verifier. In Proc. DARPA Information Survivability Confer-
ence and Ezxposition (DISCEX’00), Vol. 2, pages 403—-410. IEEE Computer Society
Press, 2000.

S. N. Freund and J. C. Mitchell. A type system for object initialization in the
Java bytecode language. In ACM Conf. Object-Oriented Programming: Systems,
Languages and Applications, 1998.

S. N. Freund and J. C. Mitchell. A formal framework for the java bytecode language
and verifier. In ACM Conf. Object-Oriented Programming: Systems, Languages and
Applications, 1999.

A. Goldberg. A specification of Java loading and bytecode verification. In Proc.
5th ACM Conf. Computer and Communications Security, 1998.

M. Hagiya and A. Tozawa. On a new method for dataflow analysis of Java virtual
machine subroutines. In G. Levi, editor, Static Analysis (SAS’98), volume 1503 of
Lect. Notes in Comp. Sci., pages 17-32. Springer-Verlag, 1998.

G. A. Kildall. A unified approach to global program optimization. In Proc. ACM
Symp. Principles of Programming Languages, pages 194-206, 1973.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1996.

S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, 1997.

T. Nipkow and D. v. Oheimb. Javagign: is type-safe — definitely. In Proc. 25th
ACM Symp. Principles of Programming Languages, pages 161-170, 1998.

T. Nipkow, D. v. Oheimb, and C. Pusch. pJava: Embedding a programming lan-
guage in a theorem prover. In F. Bauer and R. Steinbriiggen, editors, Foundations
of Secure Computation, pages 117-144. 10S Press, 2000.

C. Pusch. Proving the soundness of a Java bytecode verifier specification in Is-
abelle/HOL. In W. Cleaveland, editor, Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’99), volume 1579 of Lect. Notes in Comp. Sci.,
pages 89-103. Springer-Verlag, 1999.

Z. Qian. A formal specification of Java Virtual Machine instructions for objects,
methods and subroutines. In J. Alves-Foss, editor, Formal Syntax and Semantics
of Java, volume 1523 of Lect. Notes in Comp. Sci., pages 271-311. Springer-Verlag,
1999.

7. Qian. Standard fixpoint iteration for Java bytecode verification. ACM Trans.
Programming Languages and Systems, 7:7-7, 2007 Accepted for publication.

R. Stata and M. Abadi. A type system for Java bytecode subroutines. In Proc. 25th
ACM Symp. Principles of Programming Languages, pages 149-161. ACM Press,
1998.

	Introduction
	Types, Orders, and Semilattices
	Basic Types
	Partial Orders
	Semilattices
	The Error Type and {relax fontsize {12}{14}selectfont {it {err}}}-Semilattices
	The Option Type
	Products
	Lists of Fixed Length

	Relating Type Checking and Data Flow Analysis
	Welltyped Instructions
	Abstract Semantics
	A Specification of Data Flow Analysis and Bytecode Verification
	Relating Data Flow Analysis and Bytecode Verification

	Kildall's Algorithm
	Kildall's Algorithm Is a Bytecode Verifier

	Application to JVM
	Types
	Instructions
	Type System
	A Verified Bytecode Verifier
	The Global Picture

	Conclusion

