Secrecy Types for Asymmetric Communication

Martin Abadi! and Bruno Blanchet?

! Bell Labs Research, Lucent Technologies,
abadi@research.bell-labs.com
2 INRIA Rocquencourt* * *,
Bruno.Blanchet@inria.fr

Abstract. We develop a typed process calculus for security protocols in
which types convey secrecy properties. We focus on asymmetric commu-
nication primitives, especially on public-key encryption. These present
special difficulties, partly because they rely on related capabilities (e.g.,
“public” and “private” keys) with different levels of secrecy and scopes.

1 Introduction

A secret is something you tell to one person at a time, according to a popu-
lar definition. Research on security has led to several other concepts of secrecy
(e.g., [T2T612]). This paper studies secrecy in the context of security protocols
with the methods of process calculi and type systems. Here, a secret is a da-
tum (such as a cryptographic key) that never appears on a channel on which an
adversary can listen, even if the adversary actively tries to obtain the datum.
We develop a process calculus with a type system in which types convey secrecy
properties and such that well-typed programs keep their secrets.

Many security protocols use asymmetric communication primitives, namely
communication channels with only one fixed end-point (the receiver) and partic-
ularly public-key encryption. These primitives present special difficulties, partly
because they rely on pairs of related capabilities (e.g., “public” and “private”
keys) with different levels of secrecy and scopes. Therefore, we concentrate on
these primitives, and their treatment constitutes the main novelty of this work.
(An extended version of this paper gives corresponding type rules for symmetric
primitives, such as shared-key encryption; they are more straightforward.)

Basically, our type system is concerned with the question of when it is per-
missible to tell a secret, and particularly to one person at a time. Telling it to
one person at a time means that any communication channel used to transmit
the secret has a unique receiver, or, if the secret is sent encrypted, that only one
person has the corresponding decryption key. Of course, the person in question
should be allowed to know the secret—it may still be a secret with respect to
the adversary. Moreover, the person should realize that this is a secret, and treat
it accordingly. The type system helps enforce these conditions.

*** This work was partly done while the author was at Bell Labs Research.

F. Honsell and M. Miculan (Eds.): FOSSACS 2001, LNCS 2030, pp. 25-F1] 2001.
© Springer-Verlag Berlin Heidelberg 2001

26 M. Abadi and B. Blanchet

The rest of this introduction describes the process calculus that serves as
setting for this work, the type system, and some of their properties. It also
describes difficulties connected with public-key encryption and other asymmetric
communication primitives. Along the way, it mentions relevant related work.

The process calculus. The process calculus is a relative of the pi calculus [21] and
the spi calculus [3]. It includes channels with fixed receivers, as in the local pi
calculus [19], the join calculus [I1], and many object-oriented languages (e.g, [6]).
Such a channel can be used for transmitting secrets if the adversary cannot listen
on the channel. On the other hand, the capability for sending on the channel
may be published. The channel may therefore convey not only secrets but also
public data from the adversary. The receiver needs static and dynamic checks
for distinguishing these two cases; our type system accounts for some of these
mechanisms.

In addition, the process calculus includes cryptographic operations, specifi-
cally public-key encryption. In a public-key encryption scheme, the capabilities
of encryption and decryption are separate (e.g., [18]), and can be handled differ-
ently. Hence public-key encryption is often called asymmetric encryption. Typ-
ically, the capability for decryption (the “private” key) remains with one prin-
cipal, while the capability for encryption (the “public” key) may be published.
Therefore, both secrets and public data from the adversary may be encrypted
under the public key. Thus, pleasingly, public-key encryption resembles commu-
nication on channels with fixed receivers. Our process calculus and type system
treat them analogously.

The phrase “public key” has at least two distinct meanings in this context. It
may refer to one of the two keys in a public-key cryptosystem, used for encrypting
data or for verifying digital signatures (which we do not treat here). Although
such a key may be widely known, and it often is in examples, it can also be kept
secret. Alternatively, a “public key” may be a key which happens to be public,
that is, not secret. We try to use “public key” only with the latter meaning, and
prefer “encryption key” for the former.

The type system. The type system is based on old ideas on secrecy levels [10]
and on the newer trend of representing these levels in types (e.g., [2RITT3IT4]
23122T5269]). For example, Public and Secret are the types of public data and
secret data, respectively. In addition, the type system gives information on the
intended usage and structure of data, like standard type systems. For example,
| Secret [T1, T3] is the type of a secret encryption key that is used to encrypt pairs
with components of respective types 77 and T5. Similarly, K Public [Ty, T»] is the
type of a public encryption key. Analogous types apply to channels.

Substantial difficulties arise because, in the study of security protocols, we
cannot assume that the adversary politely obeys our typing discipline [1/27]
9]. Although honest protocol participants may use public channels and public
keys according to declared types, the adversary may be an untyped process
and disregard those types. Nevertheless, the declared types remain useful when
combined with the static and dynamic checks mentioned above.

Secrecy Types for Asymmetric Communication 27

In this respect, asymmetric communication primitives (channels with fixed
receivers, public-key encryption) are more delicate and interesting than their
symmetric counterparts (shared channels as in the pi calculus, shared-key en-
cryption). A shared channel or shared key that the adversary knows should
never be employed for transmitting secrets, only public data. Therefore, types
like KPUP¢[Secret] are useless in this setting; a public shared key may simply
be given the type Public. On the other hand, a channel with a fixed receiver
may be employed for transmitting secrets, even if the adversary knows it (as
long as the adversary is not the receiver). Similarly, an encryption key in a
public-key cryptosystem may be employed for encrypting secrets, even if the
adversary knows it (as long as the adversary does not know the corresponding
decryption key). Therefore, types like K*"?¢[Secret] give useful information. For
instance, although the adversary may encrypt public data under a key of type
KP"Plic[Secret], this type can tell others that encrypting secrets under the key
is acceptable too, that these secrets will not escape. The typing of asymmetric
communication primitives in the context of an untyped adversary is the main
novelty of this work.

Secrecy results. We prove a subject-reduction property, namely, that typing is
preserved by computation. Relying on this property, we also prove a secrecy
theorem that shows that well-typed processes do not reveal their secrets. As an
example, let us consider a well-typed process P with just two free names, a of
type Public and k of type K5°"[T}, Ty]. As an adversary, we allow any process
Q@ with the free name a (and possibly other free names, except for k). The secrecy
theorem implies that the parallel composition of P with an adversary @ never
outputs k on a.

This kind of secrecy guarantee is common and useful in the analysis of se-
curity protocols. It is particularly adequate and effective for dealing with the
secrecy of fresh values that can be viewed as atomic, such as keys and nonces. In
contrast, secrecy guarantees based on the concept of noninterference are better
at excluding flows of partial information about compound values and implicit
information flows. (See [2, section 6] for some further discussion and references.)
Most type systems for secrecy concern noninterference; a recent exception is that
of Cardelli, Ghelli, and Gordon [9)].

Application to protocols. Our type system can be applied to some small but
subtle security protocols. For example, in the Needham-Schroeder public-key
protocol [24] (a standard test case), one might expect a certain nonce to be
secret; however, the protocol fails to typecheck under the assumption that this
nonce is secret. This failure is not a shortcoming of the type system: it manifests
Lowe’s attack on the protocol [I7]. On the other hand, a corrected version of the
protocol does typecheck under the assumption. Our secrecy theorem yields the
expected secrecy property in this case.

A variety of other techniques have been applied to this sort of protocol anal-
ysis. They include theorem proving, model checking, and control-flow analysis

28 M. Abadi and B. Blanchet

M,N ::= terms
T,Y, 2 variable
a,b,c, k,s name
{Mi,... ,My}m encryption
P,Q = processes
M{M;i,..., M) output
a(z1,...,zn).P input
0 nil
P|@Q parallel composition
\P replication
(va)P restriction
case M of {x1,... ,xn}r: P else Q decryption
if M = N then P else Q conditional

Fig. 1. Syntax of the process calculus

methods (e.g., [25/20/17/8l[7]). Type-based analyses, such as ours, are in part ap-
pealing because of their simplicity and because of their connections to classical
information-flow methods. They do not require exhaustive state-space explo-
ration; they take advantage of the structure of protocols. On the other hand,
they are not always applicable: some reasonable examples fail to typecheck for
trivial reasons (as in most typed programming languages and logics). Typing
is a discipline, and it works best for processes that use channels and keys in
disciplined ways, but disciplined design can lead to more robust protocols [4/5]
1].

Outline. The next section defines the process calculus. Section Bl defines a con-
cept of secrecy. Section M presents the type system. Section [l establishes the
secrecy theorem and other results. Section [G develops an example. Section [7]
concludes. Because of space constraints, we leave for an extended version of
this paper: some auxiliary rules, the study of the Needham-Schroeder public-key
protocol, (negative) observations on “best” typings, the treatment of symmetric
communication primitives, and details of proofs.

2 The Process Calculus (Untyped)

This section introduces our process calculus, by giving its syntax and informal
semantics and then formalizing its operational semantics.

The syntax of our calculus is summarized in Figure[ll. It assumes an infinite
set of names and an infinite set of variables; a, b, ¢, k, s, and similar identifiers
range over names, and x, y, and z range over variables. For simplicity, we do
not formally separate the names for channels and those for keys. The syntax
distinguishes a category of terms (data) and processes (programs). The terms
are variables, names, and terms of the form {Mj,...M,}r, which represent

Secrecy Types for Asymmetric Communication 29

encryptions. The processes include constructs for communication, concurrency,
and dynamic name creation, roughly those of the pi calculus, a construct for
decryption (case M of {x1,...,zp}k : P else Q), and a conditional (if M =
N then P else Q). As usual, we may omit an “else” clause when it consists of
the nil process 0.

The calculus is polyadic, in the sense that messages are tuples of terms, and
asynchronous, in the sense that the output construct does not have a built-in
acknowledgment. It is also local, as explained below. Therefore, the calculus
could be called the local, asynchronous, polyadic spi calculus (but we refrain
from such a jargon overload).

The calculus is based on asymmetric communication: channels with only
one fixed end-point (the receiver) and public-key encryption. We adopt an el-
egant, economical approach to asymmetric communication from the local pi
calculus [T9]. In the local pi calculus, input is possible only on channels that
are syntactically represented by names (and not variables). Output is possible
on channels represented by names or variables. Thus, the input capability for a
channel a remains within the scope of the restriction (va)P where a is created,
while the output capability can be transmitted outside. Further, we extend this
approach to public-key encryption, as follows. Decryption is possible only with
keys that are syntactically represented by names (and not variables). Encryp-
tion is possible with keys represented by names or variables. Thus, we model
that the encryption capability may be public while the decryption capability
remains private, in the scope where it is generated. (We do not explicitly model
the distribution of decryption keys across scopes; it is relatively unimportant in
public-key cryptosystems.)

Thus, when a name «a refers to a channel, it represents both end-points of the
channel, that is, the capabilities for output and input on the channel. A variable
can confer only the former capability, even if its value is a at run-time. Similarly,
a name k will not represent a single encryption or decryption key, but rather the
pair of an encryption key and a corresponding decryption key. A variable can
confer only the capability of encrypting, even if its value is k£ at run-time.

Specifically, the constructs for asymmetric communication are output, input,
encryption, and decryption:

— The process M{(Mj,...,M,) outputs the tuple Mj,... M, on M. Here
an arbitrary term M is used to refer to a channel: M can be a variable,
a name, or even an encryption. This last case is however unimportant for
the present purposes; when M is an encryption, no process can receive the
message M (M, ..., M,).

— The process a(x1,... ,z,).P inputs a message with n components on chan-
nel a, then executes P with the variables z1,... ,x, bound to the contents
of the message. Note that ¢ must be a name.

— The term {My,..., My} represents an encryption of the tuple M,...
M,, under M. Here an arbitrary term M is used to refer to an encryption
key: M can be a variable, a name, or even an encryption. This last case

30 M. Abadi and B. Blanchet

is however unimportant, again; when M is an encryption, no process can
decrypt {My, ..., M,}um.

— In the process case M of {x1,...,z,}k : P else Q, the term M is decrypted
with the key k. If M is indeed a ciphertext encrypted under k, and the
underlying plaintext has n components, then the process P is executed with
the variables z1,... ,z, bound to those components. Otherwise, the process
Q is executed. Note that & must be a name.

The remaining constructs are standard. The nil process 0 does nothing.
The process P | @ is the parallel composition of P and . The replica-
tion !P represents any number of copies of the process P in parallel. The re-
striction (va)P creates a new name a, and then executes P. The conditional
if M = N then P else Q executes P if M and N evaluate to the same closed
term; otherwise, it executes @. This construct is not always present in relatives
of the pi calculus, but it is helpful in modeling security protocols.

For example, the following expression is a process:

(vk)@(k) | th(a).case = of {y}s : 2(y))

This process relies on three public channels, a, b, and c. It generates a fresh key
pair k; outputs the corresponding encryption key on a; and receives messages on
b, filtering for one encrypted under k, of which it outputs the plaintext on c.

The name a is bound in (va)P. The variables z1,...,z, are bound in P
in the processes a(x1,...,2,).P and case M of {x1,... ,x,}r : P else Q. We
write fn(P) and fv(P) for the sets of names and variables free in P, respec-
tively. A process is closed if it has no free variables; it may have free names.
We identify processes up to renaming of bound names and variables. We write
{My/z1,... ,My,/x,} for the substitution that replaces xy, ..., 2, with M,

., My, respectively.

The rules of Figure [2] axiomatize the reduction relation — for processes; they
are a formal definition for the operational semantics of our calculus. Auxiliary
rules axiomatize the structural congruence relation =; this relation is useful for
transforming processes so that the reduction rules can be applied. Both = and
— are defined only on closed processes. (In particular, we do not include rules
for structural congruence under an input, a decryption, or a conditional; such
rules are not necessary to apply reduction rules.) All rules are fairly standard.

Using this operational semantics, we can give a precise definition of a simple
concept of output, which we use below in a definition of secrecy. Here, —* is the
reflexive and transitive closure of —.

Definition 1. The process P outputs M immediately on c if and only if P =
¢(M) | R for some process R. The process P outputs M on c if and only if
P —* Q and Q outputs M immediately on c for some process Q.

3 A Definition of Secrecy

We think of an attacker as any process @ of the calculus, under some restrictions
that characterize the attacker’s initial capabilities. We formulate the restrictions

Secrecy Types for Asymmetric Communication 31

Structural congruence:

PlOo=P P=Q = P|R=Q|R
PlQ=Q|P P=Q = 'P=1Q
(P1Q) | R=P|@Q|R) P=Q = wa)P = (va)Q
IP=P|IP

P=P
(vai1)(vaz2)P = (vaz)(va1)P if a1 # a2 Q=P = P=Q
(va)(P|Q)=P| (va)Q ifa ¢ fn(P) P=Q, Q=R = P=R

Reduction:
a(My,... ,Myn)|a(z1,... ,zn).P — P{Mi/z1,...,Mp/zn} (Red I/O)
case {Mu,... ,Mp}tr of {z1,... ,zn}r: P else Q

— P{M/z1,... ,Mn/xn} (Red Decrypt 1)
case M of {z1,... ,xn}tr: Pelse @ — Q

if M is not of the form {Mi,... , My}« (Red Decrypt 2)
if M = M then P else Q — P (Red Cond 1)
if M =N then P else Q@ — Q

itM#N (Red Cond 2)
P—-Q=P|R—->QI|R (Red Par)
P - Q = (va)P — (va)Q (Red Res)
P=PP 5 QQ=Q = P — (Red =)

Fig. 2. Operational semantics

by using a set of names RW (“read-write”) and a set of closed terms W (“write”).
Initially, the attacker is able to output, input, encrypt, and decrypt using the
names of RW. He can output and encrypt using names in W. He has the terms
in RW and W, and can compute on them and include them in messages. In the
course of computation, the attacker may acquire capabilities not represented in
RW and W, by creating fresh names and receiving terms in messages.

In order to express the limited use of the terms in W, we also introduce
a set of variables {x1,...,x;} of the same cardinality ! as W. When W =
{My, ..., M}, the attacker is a process @ of the form Q' {Mi/xy,... ,M;/x;}.
Since @’ should be a well-formed process before the application of the substitu-
tion {M1/x1,... , M;/x;}, it cannot input or decrypt using the variables {z1,. .. ,
2;}. Further, in order to express that the attacker cannot initially use any other
names or terms, we impose that fn(Q") C RW and fv(Q') C {z1,... ,2;}.

Definition 2. Let RW be a finite set of names and let W = {M,... , M}
be a finite set of closed terms. The process Q is a (RW,W)-adversary if and
only if it is of the form Q'{Mi/x1,... ,M;/x;} for some process Q' such that
Q) € RW and fo(Q') C {x1,..., 21}

We say that a process preserves the secrecy of a piece of data M if the
process never publishes M, or anything that would permit the computation

32 M. Abadi and B. Blanchet

of M, even in interaction with an attacker. This concept of secrecy is common
in the literature on security protocols. A precise definition of it appears in [2],
for the spi calculus; Cardelli, Ghelli, and Gordon use that definition in their
work on secrecy and groups in the pi calculus [9]. Here we introduce and use
a different definition that captures the same concept. This definition takes into
account asymmetric communication; it is also more syntactic, and a little easier
to treat in our proofs.

Definition 3. Let RW be a finite set of names and let W be a finite set of closed
terms. The process P preserves the secrecy of M from (RW , W) if and only if
P | Q does not output M on ¢ for any (RW,W)-adversary @ and ¢ € RW.

Clearly, if P preserves the secrecy of M from (RW,W), it cannot output M on
some ¢ € RW, that is, on one of the channels on which an (RW, W)-adversary
can read. This guarantee corresponds to the informal requirement that P never
publishes M on its own. Moreover, P cannot publish data that would enable an
adversary to compute M, because the adversary could go on to output M on
some ¢ € RW.

For instance, (vk)a({s}x,k) preserves the secrecy of s from ({a},). This
process publishes an encryption of s and the corresponding encryption key on
the channel a, but keeps the decryption key, so s does not escape. Similarly,
a({s}k, k) preserves the secrecy of s from ({a}, {k}). However, a({s}, k) does not
preserve the secrecy of s from ({a, k},0): the adversary a(z,y).case x of {2}y :
a(z) can receive {s}, on a, decrypt s, and resend it on a. As a more substantial,
untyped example we consider the following process P:

P = (vk)(@({ky, k2}x) | b(x).case @ of {y1,y2}r : €{y1))

This process relies on three public channels, a, b, and c. It generates a fresh
key pair k; outputs the encryption {k1,ks}x on a; and receives messages on b,
filtering for one encrypted under k, of which it outputs the first component of
the plaintext on c. Although P does not output k1 in clear on its own, it does not
preserve the secrecy of k; from ({a,c}, {b}): the adversary a(z).b(z) can receive
{k1, k2}r on a and resend it on b, causing k; to appear on ¢. On the other hand,

P does preserve the secrecy of kg from ({a,c}, {b}).

4 The Type System

The types of our type system are defined by the grammar:

T := types
Public
Secret
CPubliC [T . T]
CSecret [Th o 7Tn]
KSccrct [Tl, o 7Tn]
KPublic [T T]

Secrecy Types for Asymmetric Communication 33

We let L range over {Public, Secret}, and may for example write CX[T1, ... | T,,]
and KL[Tl, ..., T,]. The subtyping relation is the least reflexive relation such
that CL[Tl,... ,T,] < L and KL[Tl,... ,T,] < L. (We do not have Secret <
Public or vice versa.)

The types have the following informal meanings:

— Public is the type of public data, and is a supertype of all types CFuPlic [Ty,
., T,] and KPNery T

— Similarly, Secret is the type of secret data, and is a supertype of all types
CSeeret [y . Th] and KS°°U[Ty ... T,

— (Secret [Ty, ...,T,] is the type of a channel on which the adversary cannot
send messages, and which conveys n-tuples with components of respective
types 11, ... ,Ty.

— Similarly, KS™'[T}, ... | T,,] is the type of an encryption key that the adver-
sary does not have, and which is used to encrypt n-tuples with components
of respective types 11, ... ,Ty.

— CPublicry, - T,] is the type of a channel on which the adversary may send
messages; the channel may be intended to convey n-tuples with components
of respective types 11, ... ,T,, but the adversary may send any data it has
(that is, any public data) on the channel.

— Similarly, KPublic [Ty,...,T,] is the type of an encryption key that the ad-
versary may have; this key may be intended for encrypting n-tuples with
components of respective types 11, ... ,T,, but the adversary may encrypt
any data it has (that is, any public data) under this key.

Figure[gives the main rules of the type system. In the rules, the metavariable
u ranges over names and variables. The rules concern four judgments:

(1) E F ¢ means that F is a well-formed environment. The environment E is
well-formed if and only if F is a list of pairs u : T" where each u is a name or
a variable and distinct from all others in E.

(2) EF M:T means that M is a term of type T in the environment E. Basically,
names and variables have the types declared in E, and any supertypes, while
encryptions all have the type Public.

(3) E o M : S means that S is the set of possible “true” types of M in the
environment E (the declared type when M is a name, the declared type and
any subtype when M is a variable, and Public when M is an encryption).

(4) EF P says that the process P is well-typed in the environment E.

Figure [3 omits the rules for proving the first and the third.
The type rules for output say that any public data can be sent on a public

channel (Output Public), and tuples with the expected types T1,... , T, can be
sent on a channel of type CE [T}, ..., T,] (Output C¥). Therefore, by subtyping,
any public data can be sent on a channel of type C'"Pi¢[Ty ... T),]. This use

of the channel may not seem to conform to its declared type. However, it is
unavoidable, since we expect that an attacker can use the channel; moreover, it
does not cause harm from the point of view of secrecy. Similarly, the type rule

34 M. Abadi and B. Blanchet

EFo (u:T)€EE
Etu:T
E + M : Public vie{1,...,n}, E+ M;:Public
EF {M,...,M,} : Public
Er-M:K*[Ty,...,T,] Vie{l,...,n},EFM;:T;
EF {M,...,M,} : Public
EFM:T T<T
EFM:T
EF M :Public Vi€ {l,...,n},E+ M, :Public
E+M(M,..., M,)
Er-M:CHTy,...,T.] Vie{l,...,n},EF M;:T;
Ev-DM(M,...,M,)
(a:Public) € E E,x1:Public,... ,z, : Publick P
Eta(zi,...,2n).P
(@:CP™Ne[Ty ... Tn]))€E E,z;:Public,...,z, : Public - P
Exi:T,...,x;m: Ty FP ifm=n
Eta(zy,... ,zn).P
(@:C8%ty, ... T,)€EE E,x1:Ti,...,zn: Ty F P
EtFa(z,...,zn).P
Etro

(Atom)

(Encrypt Public)

(Encrypt K¥)

(Subsumption)

(Output Public)

(Output C¥)

(Input Public)

(Input CPublic)

(Input CSecret)

EFO (Nil)
W (Parallel)
L?'F_ !1;) (Replication)
% (Restriction)

E F M : Public (k : Public) € £
FE,x; : Public,... ,z, : Public - P ErFQ
EF case M of {x1,... ,xn}r: P else Q
E + M : Public (k:KPwlerr . T,]) € F
E,xz;y : Public, ... ,z, : Public P ErQ
Exi:T,... ,¢m: T EP ifm=n
Et case M of {z1,...,zn}r: P else Q
E + M : Public (k:KSet Ty ... T]) € F
E,x1:Th,...,xn:Tn - P E-Q
EF case M of {x1,... ,xn}r: P else Q
Etre M: S Elo N:Sy if S1 NSy # 0 then £+ P EFQ
EFif M = N then P else Q

(Decrypt Public)

(Decrypt KPublic)

(Decrypt KSecret)

(Cond)

Fig. 3. Type rules: terms and processes

Secrecy Types for Asymmetric Communication 35

(Output Public) also permits processes that use an encryption as a channel, such
as {M},(N). A standard type system might attempt to exclude such processes.
Ours does not, essentially because an attacker might run {M },(N), but this does
not cause harm from the point of view of secrecy. On the other hand, the attacker
cannot have channels of type C5°™*[Ty, ... T),]. Therefore, we can guarantee
that such channels are represented by names at run-time and that only tuples
with types 11, ... ,T;, can be sent on such channels.

As for input, we distinguish three cases, considering the type of the channel
a on which an input happens:

— If a is of type Public, then the corresponding output must have been typed
using (Output Public), so the input values are public. Rule (Input Public)
treats this case. This rule may seem superfluously liberal, but it is helpful
in our proofs. It enables us to type an arbitrary adversary, which can input
public values on the public channels on which it listens (see section [3]).

— When a is of type CF"PEC[Ty ... T,], two cases arise. In the first case, the
corresponding output has been typed using (Output Public) and subtyping.
Then the input values are of type Public. In the second case, the corre-
sponding output has been typed using (Output CL). In this case, the input
values have the expected types T4, ... ,T,. Rule (Input CF"P¢) takes into
account both cases, by checking that the process P executed after the input
is well-typed in both.

— When a is of type CSecret [T1,...,T,], it cannot be known by the attacker,
and the corresponding output must have been typed using (Output ct).
The input values are therefore of the expected types T1,... ,T.

The type rules for encryption are similar to those for output. Any public data
can be encrypted under a public encryption key (Encrypt Public), and data of
types T4, ... , T, can be encrypted under a key of type KX[T1, ... ,T,] (Encrypt
KL). Ciphertexts are always of type Public; this typing simplifies the rules and
is reasonable for most protocols (particularly for most public-key protocols).

The type rules for decryption resemble those for input, in the same way as
those for encryption resemble those for output.

The type rules for nil, parallel composition, replication, and restriction are
standard. It is worth noting that we use a Curry-style typing for restriction, so
we do not mention a type of a explicitly in the construct (va). (That is, we do
not write (va : T) for some T'.) This style of typing gives rise to an interesting
form of polymorphism: the type of a can change according to the environment.
For instance, in ¢(z).(va)Z(a), with ¢ of type CF"PIC[C5"*![Secret]], a can be
of type Secret when z is of type CSecret [Secret], and of type Public when z is of
type Public, so that the output Z{(a) is well-typed in both cases.

Rule (Cond) exploits the idea that if two terms M and N cannot have the
same type, then they are certainly different. In this case, if M = N then P else Q
may be well-typed without P being well-typed. To determine whether M and N
may have the same type, we determine the set of possible types of M and N. If
M is a variable x, and (x : T) € F, then 2 may of course have type T. Because
of subtyping, x may also be substituted at run-time by a name whose type is

36 M. Abadi and B. Blanchet

a subtype of T. Hence the possible types of x are {I" | 7 < T'}. When M is
a name a, its only possible type is the type assigned to it in the environment.
When M is a ciphertext, its only possible type is Public, by definition of the
judgment F+ M :T.

The following example illustrates the use of rule (Cond), informally. Suppose
that a participant A in a security protocol invents a fresh quantity a of type
Secret (as a nonce challenge), sends it on a channel of type C5°™*[Secret], so a
should remain secret. Some time later, A gets a ciphertext encrypted under a
key k of type KP“b“C[Secret, T); decryption yields a pair 21, 2. The type system
covers two possibilities: (1) z; has type Secret and x2 has type T, (2) both are
public (for example, because the attacker constructed the ciphertext). That is,
the type rule for decryption (Decrypt Kpublic) has hypotheses that correspond
to each of these possibilities. Suppose further that A checks, dynamically, that
x1 = a (and halts if 21 # a). This check guarantees that z; has type Secret,
and hence is not public. At the same time, it guarantees that xo has type T.
After the check, A can assume that x5 has type T, and act accordingly. Dynamic
checks of this sort are common and important in security protocols.

This type system reflects a binary view of secrecy, according to which the
world is divided into system and attacker, and a secret is something that the
attacker does not have. When we wish to express that a piece of data is a secret
for a given set of principals, we define the system to include only the processes
that represent those principals.

In this respect and in others, our type system is most similar to that of
Abadi [1] for the spi calculus and that of Cardelli, Ghelli, and Gordon [9] section
4] for the pi calculus. Both treat only symmetric communication primitives. The
latter, however, is mostly introduced as an auxiliary type system for a proof.
The proof concerns another type system, which elegantly exploits a powerful
construct for group creation. Group creation directly supports a rich view of se-
crecy that does not simply divide the world into two parts. We believe that the
type system with group creation can be extended with symmetric cryptographic
primitives and further extended to deal with asymmetric communication. Un-
fortunately (as far as we can tell) this last extension does not retain the elegance
of the original.

5 The Secrecy Theorem and Other Results

This section studies the type system of section [l First it establishes a subject-
reduction theorem and a typability lemma. Then it derives the secrecy theorem
sketched in the introduction.

The subject-reduction theorem says that typing is preserved by computation.
Its proof is mostly a fairly routine induction on computations with a case analysis
on typing proofs.

Theorem 1 (Subject congruence and subject reduction). If E -+ P and
ifP=Q or P— Q then EF Q.

Secrecy Types for Asymmetric Communication 37

The following typability lemma says that every process is well-typed, at least
in a fairly trivial way that makes its free names public. This lemma is important
because it means that any process that represents an adversary is well-typed.
It is a formal counterpart to the informal idea that the type system cannot
constrain the adversary. Its proof is an easy induction on the structure of P.

Lemma 1 (Typability). Let P be an untyped process. If fn(P) C {a1,... ,an},
fo(P) CH{x1,... ,xm}, and T; < Public for alli € {1,... ,m}, then

ay : Public, ... ,a, : Public,xy:Ty,... .,y : T b P

The secrecy theorem says that if a closed process P is well-typed in an en-
vironment F, and a name s has type Secret in F, then P preserves the secrecy
of s from (RW,W), where RW is the set of names declared Public in E, and
W is the set of names declared CP"PHe[.] or KP"PH°[] The name s may be
declared Secret in F, but it may also be declared C5°™°*[...] or K®*°'[..]. In
other words, P preserves the secrecy of Secret names against adversaries that
can output, input, encrypt, and decrypt on names declared Public, and output
and encrypt on names declared CP"PHC[. .] and KPUPie[.],

Theorem 2 (Secrecy). Let P be a closed process. Suppose that E + P and
E & s: Secret. Let

RW ={a| (a: Public) € E}
W ={d | (a:CP"")€ E or(a: K[..]) ¢ E}

Then P preserves the secrecy of s from (RW,W).

Proof. The secrecy theorem is a fairly easy consequence of the subject-reduction
theorem and the typability lemma. (In truth, the type system and the definition
of secrecy were refined with this proof of the secrecy theorem in mind.) Suppose
that RW = {a1,...,an} and W = {af, ..., q;}, and that T} is the type of a; in E,
so (a;:T!) € Eforalli € {1,...,1}. In order to derive a contradiction, we assume
that P does not preserve the secrecy of s from (RW,W). Then there exists a
process Q = Q'{a} /1, ... ,a)/x;} with fn(Q") C RW and fu(Q') C {z1,... , 2},
such that P | @ —* R and R = ¢(s) | R/, where ¢ € RW. By Lemma [I]
ap : Public, ... ,a, : Public,z1 : 17, ... ,z; : T} F Q’. By a standard substitution
lemma, E + Q'{a}/z1,... ,a;/x;}, that is, E - Q. Therefore, E - P | Q. By
Theorem [E + R and E - ¢(s) | R'. Since ¢ € RW, we have (c : Public) € F,
so E F ¢(s) could have been derived only by (Output Public). Such a derivation
would require that E + s: Public. However, this is impossible, since we have
FE I s:Secret and the two typings are incompatible. We have a contradiction,
so P preserves the secrecy of s from (RW,W). m]

We restate a special case of the theorem, as it may be particularly clear.

Corollary 1. Suppose that a : Public,s : T+ P with T < Secret. Then P pre-
serves the secrecy of s from ({a},0). That is, for all closed processes @ such that
(Q) C {a}, P|Q does not output s on a.

38 M. Abadi and B. Blanchet

For instance, we can obtain a : Public,s : Secret F (vk)a({s}y, k) by letting
k : KPPi¢[Secret]. So this corollary implies that (vk)a({s}x,k) preserves the
secrecy of s from ({a},0), as claimed in section [3 In other words, if @ is a
closed process and fn(Q) C {a}, then ((vk)a({s}k,k)) | @ does not output s
on a. Thus, assuming that () does not have s in advance, (Q cannot guess s or
compute it from the message on a.

6 Further Examples

This section applies the type system to security protocols. Although these pro-
tocols are often fairly small, informal reasoning about them is error-prone and
difficult. The type system provides a simple yet rigorous approach for proving
secrecy properties of these protocols.

Because of space constraints, we develop only one example. This example
does not explicitly rely on cryptography but it brings up some issues common
in cryptographic protocols. An extended version of this paper also covers the
Needham-Schroeder public-key protocol and a variant (in 3-4 pages).

Our example concerns a protocol in which a principal A sends a secret s to a
principal B. The following message sequence describes the protocol informally:

Message 1. A — B : k,a on b
Message 2. B — A : k,b on a
Message 3. A — B:son bt/

Here, a and b are channels with A and B as only receivers, respectively; k is a
secret nonce, created by A; and b’ is a new channel, created by B, with B as only
receiver and A as only sender. Instead of sending s directly on b, A creates the
nonce k and sends it along with the return channel a on b; B’s reply contains k,
as proof of origin; the reply also includes the fresh channel b’ on which A sends s.
This channel is analogous to a session key in a cryptographic protocol.

We may represent the principals of this protocol by the processes:

A= (vk)(b(k,a) | a(x,y).if =k then T(s))
B = b(x,y). () (G(,V) | ¥/(2).0)

We can then use our type system to prove that s remains secret, as expected.
For this proof, we let:

E = a: CP"le[Secret, C5°r! [Secret]],
b: CPUPlic[Secret, CPUPC[Secret, C5°°t [Secret]]],

s : Secret

and obtain F,c: Public - A | B for any ¢, as follows. In the typing of A, we
choose k : Secret. The output b(k, a) is then typed by (Output C*). The input
a(x,y) is typed by (Input CPuPlic) "and two cases arise:

Secrecy Types for Asymmetric Communication 39

(1) «: Public,y : Public: This case is vacuous by rule (Cond): in the test = = k,
the two terms cannot have the same type.
(2) x: Secret, y : C5°*"[Secret]: In this case, 7(s) is typed by (Output CF).

CPubliC)

The input b(z,y) is also typed by (Input , and again two cases arise:

(1) @ : Public,y : Public: In this case, we let b’ : Public.
(2) x : Secret, y : CPUPi[Secret, C5°*"[Secret]]: In this case, instead, we let b’ :
C5ecret[Secret].

In both cases, the rest of process B is easy to typecheck. Having derived F,c:
Public H A | B, we apply Theorem B] and conclude that A | B preserves the
secrecy of s from ({c}, {a, b}).

We can also treat a more general system in which A and B communicate with
other principals: A may initiate sessions with others than B, and B is willing to
respond to several principals at once. Still, s should remain within A | B, and
not escape to third parties. The following process represents the system:

P = (A|A)|'B

Here A’ is an arbitrary process, notionally grouped with A, which may receive
messages on a, under the assumption that E, E’ - A’ for some E’. In partic-
ular, this assumption implies that A’ respects the secrecy of s and uses a in
conformance with a : CP"?1¢[Secret, C5°*°t [Secret]]. Tt follows that E, E' - P, so
Theorem P still applies. For example, A’ may be:

A" 2 (vk)(Elk,a) | a(z,y).if © =k then 7(s'))

that is, a variant of A that initiates a session with a third party on the channel ¢
and sends s’. With E/ = c¢:Public, s’ : Public, Theorem Blyields that P preserves
the secrecy of s from ({c,s'},{a,b}). Remarkably, the replication of B causes
no complication whatsoever. In contrast, replication tends to be problematic for
proof methods based on state-space exploration.

7 Conclusion

This paper presents a type system that can serve in establishing secrecy prop-
erties of processes. The type system is superficially straightforward: it consists
of fairly elementary rules in a standard format. The proof of its soundness (the
subject-reduction theorem) is also fairly standard; the subject-reduction theorem
then yields the main secrecy theorem. This simplicity is not entirely accidental:
we explored more complex type systems (with dependent types) and notions of
secrecy before arriving at the current ones.

On the other hand, the type system is powerful enough to apply to some
delicate security protocols, yielding concise proofs for subtle results. It is also
fairly tricky, when examined more closely. For instance, as indicated above, the
type rules allow certain forms of polymorphism.

40

M. Abadi and B. Blanchet

A challenging subject for further work is to develop type systems with richer

forms of polymorphism, with stronger theories, perhaps even with algorithms
for inferring secrecy types. In another direction, it would be worthwhile to give
type rules for more cryptographic primitives, for example for digital signatures.
Finally, it would be useful to integrate proofs by typing with other proof methods.

References

1]

2]

Martin Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46(5):749-786, September 1999.

Martin Abadi. Security protocols and their properties. In F.L. Bauer and R. Stein-
brueggen, editors, Foundations of Secure Computation, NATO Science Series,
pages 39-60. IOS Press, 2000. Volume for the 20th International Summer School
on Foundations of Secure Computation, held in Marktoberdorf, Germany (1999).
Martin Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:
The spi calculus. Information and Computation, 148(1):1-70, January 1999. An
extended version appeared as Digital Equipment Corporation Systems Research
Center report No. 149, January 1998.

Martin Abadi and Roger Needham. Prudent engineering practice for crypto-
graphic protocols. IEEE Transactions on Software Engineering, 22(1):6-15, Jan-
uary 1996.

Ross Anderson and Roger Needham. Robustness principles for public key proto-
cols. In Proceedings of Crypto 95, pages 236247, 1995.

Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network ob-
jects. Software Practice and Experience, S4(25):87-130, December 1995.

Chiara Bodei. Security Issues in Process Calculi. PhD thesis, Universita di Pisa,
January 2000.

Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson.
Control flow analysis for the m-calculus. In CONCUR’98: Concurrency Theory,
volume 1466 of Lecture Notes in Computer Science, pages 84—98. Springer Verlag,
September 1998.

Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Secrecy and group cre-
ation. In Catuscia Palamidessi, editor, CONCUR 2000: Concurrency Theory, vol-
ume 1877 of Lecture Notes in Computer Science, pages 365-379. Springer-Verlag,
August 2000.

Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, Reading,
Mass., 1982.

Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine
and the join-calculus. In Proceedings of the 23rd ACM Symposium on Principles
of Programming Languages, pages 372—-385, January 1996.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28:270-299, April 1984.

Nevin Heintze and Jon G. Riecke. The SLam calculus: programming with se-
crecy and integrity. In Proceedings of the 25th ACM Symposium on Principles of
Programming Languages, pages 365—-377, 1998.

Matthew Hennessy and James Riely. Information flow vs. resource access in the
asynchronous pi-calculus. In Proceedings of the 27th International Colloquium
on Automata, Languages and Programming, Lecture Notes in Computer Science,
pages 415-427. Springer-Verlag, 2000.

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Secrecy Types for Asymmetric Communication 41

Kohei Honda, Vasco Vasconcelos, and Nobuko Yoshida. Secure information flow
as typed process behaviour. In Gert Smolka, editor, Programming Languages and
Systems: Proceedings of the 9th European Symposium on Programming (ESOP
2000), Held as Part of the Joint European Conferences on Theory and Practice
of Software (ETAPS 2000), volume 1782 of Lecture Notes in Computer Science,
pages 180-199. Springer-Verlag, 2000.

K. Rustan M. Leino and Rajeev Joshi. A semantic approach to secure information
flow. In Mathematics of Program Construction, 4th International Conference, vol-
ume 1422 of Lecture Notes in Computer Science, pages 254—271. Springer Verlag,
1998.

Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 1055 of Lecture Notes in Computer Science, pages 147-166. Springer
Verlag, 1996.

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi.
In Proceedings of the 25th International Colloguium on Automata, Languages and
Programming, volume 1443 of Lecture Notes in Computer Science, pages 856—867.
Springer-Verlag, 1998.

Jon Millen and Harald Ruess. Protocol-independent secrecy. In Proceedings 2000
IEEE Symposium on Security and Privacy, pages 110-119, May 2000.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
parts I and II. Information and Computation, 100:1-40 and 41-77, September
1992.

Andrew C. Myers. JFlow: Practical mostly-static information flow control. In Pro-
ceedings of the 26th ACM Symposium on Principles of Programming Languages,
pages 228-241, January 1999.

Andrew C. Myers and Barbara Liskov. A decentralized model for information
flow control. In Proceedings of the 16th ACM Symposium on Operating System
Principles, pages 129-142, 1997.

Roger M. Needham and Michael D. Schroeder. Using encryption for authentica-
tion in large networks of computers. Communications of the ACM, 21(12):993—
999, December 1978.

L. C. Paulson. The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security, 6(1-2):85—-128, 1998.

Francois Pottier and Sylvain Conchon. Information flow inference for free. In
Proceedings of the 2000 ACM SIGPLAN International Conference on Functional
Programming (ICFP’00), pages 46-57, September 2000.

James Riely and Matthew Hennessy. Trust and partial typing in open systems
of mobile agents. In Proceedings of the 26th ACM Symposium on Principles of
Programming Languages, pages 93—-104, January 1999.

Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system for
secure flow analysis. Journal of Computer Security, 4:167-187, 1996.

	Introduction
	The Process Calculus (Untyped)
	A Definition of Secrecy
	The Type System
	The Secrecy Theorem and Other Results
	Further Examples
	Conclusion

