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Abstract. We identify a set of programming constructs ensuring that
a programming language based on graph transformation is computatio-
nally complete. These constructs are (1) nondeterministic application of
a set of graph transformation rules, (2) sequential composition and (3)
iteration. This language is minimal in that omitting either sequential
composition or iteration results in a computationally incomplete langu-
age. By computational completeness we refer to the ability to compute
every computable partial function on labelled graphs. Our completeness
proof is based on graph transformation programs which encode arbitrary
graphs as strings, simulate Turing machines on these strings, and decode
the resulting strings back into graphs.

1 Introduction

The use of graphs to represent and visualise complex structures is ubiquitous
in computer science, and often these structures occur in contexts where they
have to be dynamically changed. Functional and logic programming languages,
on the other hand, are successful examples of high-level programming languages
based on rules. Thus a natural idea is to design programming languages based
on graph transformation rules, in order to combine the strengths of graphs and
rule-based programming.

Existing programming languages of this type include Progres [SWZ99],
Agg [ERT99], Gamma [FM98], Grrr [Rod98] and Dactl [GKS91]. These lan-
guages have in common that they are based on graph transformation rules, but
they vary strongly with respect to both the formalisms underlying the rules and
the available constructs for controlling rule applications. In view of the variety
of control mechanisms, the question arises what programming constructs are
really needed on top of graph transformation rules to obtain a computationally
complete language. By computational completeness we mean the ability to com-
pute every computable partial function on labelled graphs. Identifying such a
kernel language for graph transformation will benefit to both the understanding
of existing languages and the design of new programming languages of this kind.
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In this paper we show that three programming constructs suffice to guarantee
computational completeness: (1) nondeterministic application of a rule from a
set of graph transformation rules (according to the so-called double-pushout
approach), (2) sequential composition and (3) iteration in the form that rules
are applied as long as possible. This language is not only complete but also
minimal in that omitting either sequential composition or iteration makes the
language computationally incomplete.

One may wonder why plain sets of graph transformation rules with the se-
mantics “apply as long as possible” are not computationally complete. Indeed it
is not difficult to simulate Turing machines by sets of graph transformation rules
(in the double-pushout approach), but this only means that all computations on
representations of graphs can be modelled. The ability to transform a string re-
presentation of a graph G into a string representation of the graph f(G), where
f is some graph function, does not imply that there is a set of rules transforming
G directly into f(G).

So what is different to the case of string rewriting, where sets of rules do
suffice to compute all computable functions on strings? (See, for example, Lewis’
and Papadimitriou’s concept of a grammatically computable function [LP98].)
The point is that in a string-based model, prior to computations input strings
are provided with some context of auxiliary symbols which must not occur in
inputs but which can be used in the rules. This context allows to control the
application of rules, ensuring that computations have universal power. It is open
whether there is a similar concept that makes sets of graph transformation rules
universally powerful. The problem is that in contrast to strings, arbitrary graphs
do not possess distinguished points for attaching context.

For the programming language introduced below we do not assume that
input graphs come in any particular format, the idea is rather to provide just
enough control constructs to ensure computational completeness. Our comple-
teness proof is based on the sequential composition of three programs: the first
encodes arbitrary graphs as certain strings, the second simulates Turing ma-
chines on these strings, and the third decodes the resulting strings back into
graphs. The strings for representing graphs are similar to those of Uesu [Ues78]
who showed that graph grammars according to the double-pushout approach
can generate all recursively enumerable sets of labelled graphs.

Finally we show that our programming language is minimal, by proving that
the function converse which swaps sources and targets of all edges in a graph
cannot be computed if either sequential composition or iteration is missing.

2 Rules

This section recalls the application of graph transformation rules according to
the “double-pushout” approach. Details and pointers to the literature can be
found in [HMP99].

A label alphabet C = 〈CV , CE〉 is a pair of finite sets of node labels and edge
labels. A graph over C is a system G = (VG,EG, sG, tG, lG,mG) consisting of
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two finite sets VG and EG of nodes (or vertices) and edges, two source and
target functions sG, tG: EG → VG, and two labelling functions lG: VG → CV and
mG: EG → CE .

A graph morphism g:G → H between two graphs G and H consists of two
functions gV : VG → VH and gE : EG → EH that preserve sources, targets, and
labels, that is, sH◦gE = gV ◦sG, tH◦gE = gV ◦tG, lH◦gV = lG, and mH◦gE = mG.
A morphism g is injective (surjective) if gV and gE are injective (surjective), and
an isomorphism if it is both injective and surjective. In the latter case G and
H are isomorphic, which is denoted by G ∼= H. A morphism g is an inclusion if
gV (v) = v and gE(e) = e for all v ∈ VG and e ∈ EG.

A rule r = 〈L ← K → R〉 consists of two graph morphisms with a common
domain K, which is the interface of r. We throughout assume that K → L is an
inclusion. The application of r to a graph G amounts to the following steps:

(1) Find an injective graph morphism g:L → G satisfying the dangling condi-
tion: No edge in G− g(L) is incident to a node in g(L)− g(K).

(2) Remove g(L)−g(K) from G, yielding a graph D, a graph morphism K → D
which is the restriction of g, and the inclusion D → G.

(3) Construct the pushout of K → D and K → R, yielding a graph H and graph
morphisms D → H and R → H. (See [Ehr79] or the appendix of [HMP99]
for the construction of graph pushouts.)

This construction yields the pushout diagrams (1) and (2) in Figure 1. Roughly,
H is obtained from the intermediate graph D by merging items according to the
morphism K → R (in case this morphism is not injective) and adding the items
of R that are not in the image of K.

The transformation of G into H is denoted by G⇒r,g H. We write G⇒r H
to express that there is a graph morphism g such that G ⇒r,g H. Given a set
R of rules, G ⇒R H means that there is a rule r in R such that G ⇒r H. So
the relation ⇒R is nondeterministic with respect to both the rule chosen from
R and the position in the given graph where this rule is applied.

L K R

G D H

(1) (2)

Fig. 1. A transformation step in form of a double-pushout

We will use graph transformation to compute relations on abstract graphs
rather than on concrete graphs as above, so we identify isomorphic graphs and
lift transformation steps to isomorphism classes of graphs. An abstract graph over
a label alphabet C is an isomorphism class of graphs over C. We write [G] for the
isomorphism class of a graph G and denote by AC the set of all abstract graphs
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over C. The relation ⇒R is lifted to AC by: [G]⇒R [H] if G⇒R H. This yields
a well-defined relation since, by the definition of transformation steps as double-
pushouts, we have for all graphs G, G′, H and H ′ over C: G′ ∼= G⇒R H ∼= H ′

implies G′ ⇒R H ′.

3 Programs

The programs we are going to define are based on sets of graph transformation
rules. In this paper we do not address the issue how to represent rules syntac-
tically, we rather assume that sets of rules, single rules and graphs have names
to which programs can refer.

Definition 1 (Program). Programs over a label alphabet C are inductively
defined as follows:

(1) Every finite set R of rules over C is a program.
(2) If P1 and P2 are programs, then 〈P1;P2〉 is a program.
(3) If P is a program according to (1) or (2), then P ↓ is a program.

Programs according to (1) are elementary, the program 〈P1;P2〉 is the se-
quential composition of P1 and P2, and P ↓ is the iteration of P . Programs of
the form 〈P1; 〈P2;P3〉〉 and 〈〈P1;P2〉;P3〉 are considered as equal; by convention,
both can be written as 〈P1;P2;P3〉.

Next we provide programs with a relational input/output semantics. Given
a binary relation → on a set S, we denote by →+ the transitive closure of →
and by →∗ the reflexive-transitive closure. An element a in S is a normal form
with respect to → if there is no b in S such that a→ b.

Definition 2 (Semantics). Given a program P over a label alphabet C, the
semantics of P is a binary relation →P on AC which is inductively defined as
follows:

(1) →P =⇒R if P is an elementary program R.
(2) →〈P1;P2〉 = →P1 ◦ →P2 .
(3) →P↓ = {〈G, H〉 | G→∗

P H and H is a normal form with respect to →P }.
Consider now subalphabets C1 and C2 of C and a relation Rel ⊆ AC1 ×AC2 .

We say that P computes Rel if Rel =→P ∩ (AC1×AC2), that is, if Rel coincides
with the semantics of P restricted to AC1 and AC2 . The same applies to partial
functions f :AC1 → AC2 , which are just special relations.

Example 1 (Functions computed by programs).

1. Given a graph K in AC , the constant function constK :AC → AC with
constK(G) = K for all G ∈ AC is computed by the program

ConstK = 〈Delete↓; AddK〉,
where Delete is an elementary program deleting nodes and edges (with
arbitrary labels in C), and AddK is the elementary program consisting of the
single rule 〈∅ ← ∅ → K〉.
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2. The function converse:AC → AC swaps source and target of each edge in a
graph. It is computed by the program

Converse = 〈Redirect↓; Relabel↓〉
over the label alphabet 〈CV , CE ∪ (CE × {′})〉. The rules of Converse are
shown in Figure 2.1 Note that the redirected edges temporarily get auxiliary
labels to prevent further redirection. After termination of Redirect ↓ all
edges get their original labels by the subprogram Relabel↓.

Redirect:
A 1

B 2

a ⇒
A 1

B 2

a′ for all A, B ∈ CV and a ∈ CE

Relabel:
A 1

B 2

a′ ⇒
A 1

B 2

a for all A, B ∈ CV and a ∈ CE

Fig. 2. The rules of the program Converse

In the proof of our completeness result in Section 6, we will use a program
scheme Ite(K, P1, P2) which checks whether the input graph equals K and exe-
cutes P1 or P2 depending on whether the check is successful or not. More pre-
cisely, the semantics is given by G →Ite(K,P1,P2) H if and only if G = K and
G→P1 H or G 6= K and G→P2 H. The scheme is defined by

Ite(K, P1, P2) = 〈Check(K); 〈Delete1; P1〉↓; 〈Delete2; P2〉↓〉,
where Check(K) copies the input graph G and reduces the copy to a node with
label 1 if G = K, and to a node with label 2 otherwise. For i = 1, 2, Deletei

deletes a node with label i. If Check(K) yields 1, then 〈Delete1; P1〉 can be
executed only once because the node with label 1 is deleted and 〈Delete2; P2〉
is executed zero times because there is no node with label 2. Vice versa, if
Check(K) yields a node with label 2, then 〈Delete1; P1〉 is executed zero times
and 〈Delete2; P2〉 is executed once. We omit the rules of this program scheme
for space reasons.

4 Computable Graph Functions

In this section we introduce the notion of a computable partial function on ab-
stract graphs, by using Turing computability on strings and an encoding of ab-
stract graphs as strings. This is consistent with Weihrauch’s concept of (strong)
relative computability [Wei87].
1 In order to present rules concisely, we show only the left- and right-hand sides. The

interfaces consist of the numbered nodes of the left-hand sides and have no edges.
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We start by defining graph expressions as certain well-formed strings and a
surjective partial function gra from strings to abstract graphs which assigns to
every graph expression an abstract graph. To this end, let C be a label alphabet
and set Σ = CV ∪ CE ∪ {1, 2,#}. We assume CV ∩ CE = ∅ and that 1, 2 and #
do not occur in CV and CE.

Definition 3 (Graph expression). The set Exp of graph expressions over Σ
and the graph w2 represented by a graph expression w are inductively defined
as follows:

(1) The empty string λ is in Exp and λ2 = ∅.
(2) For all A ∈ CV, #A1# ∈ Exp and #A1#2 is the graph consisting of a single

node 1 with label A.
(3) If v#w ∈ Exp and A ∈ CV, then v#A1n#w ∈ Exp with n = |Vv#w2 | + 1

and v#A1n#w2 is obtained from v#w2 by adding a node n with label A.
(4) If v#w ∈ Exp, F ∈ CE and v#w contains substrings A1m# and B1n#, then

v#A2mF2nB#w ∈ Exp and v#A2mF2nB#w2 is obtained from v#w2 by
adding an edge |Ev#w2 | + 1 which has label F , source node m and target
node n.

A substring #A1n# in a graph expression represents a node with name n and
label A, while a substring #A2mF2nB# stands for an edge with label F , source
node m and target node n. Note that the order of nodes and edges in a graph
expression is arbitrary and that a graph w2 has the node set {1, 2, . . . , |Vw2 |}.
Definition 4 (Representation of abstract graphs). The partial function
gra:Σ∗ → AC is defined as follows:

gra(w) =
{

[w2] if w is a graph expression,
undefined otherwise.

The function gra is surjective since every isomorphism class of graphs contains
a graph represented by a graph expression.

Let now C1 and C2 be any subalphabets of C and define for i = 1, 2, Σi =
CiV ∪ CiE ∪ {1, 2,#}.
Definition 5 (Computable graph function). A partial function f :AC1 →
AC2 on abstract graphs is computable if there exists a computable partial function
f ′:Σ∗

1 → Σ∗
2 on strings such that for every graph expression w,

f(gra(w)) = gra(f ′(w))

and gra(w) 6∈ Dom(f) implies w 6∈ Dom(f ′).2

Thus f is computable if there is a computable function f ′ on strings such
that for every abstract graph G for which f is defined and every graph expression
w denoting G, f ′ is defined for w and yields a graph expression denoting f(G).
This situation is illustrated in Figure 3. Moreover, f ′ is not defined on graph
expressions denoting graphs on which f is not defined.
2 We denote by Dom(f) the domain of a partial function f .
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AC1 AC2

Σ∗
1 Σ∗

2

f

f ′
gra gra

Fig. 3. Computability of a graph function f

5 Simulation of Turing Machines

In the next section we will show that every computable graph function can be
computed by a program. An essential argument will be that every computable
partial function on strings can be computed by a graph transformation program
working on so-called string graphs. The string graph of a string w = a1a2 . . . an

is the abstract graph shown in Figure 4 and is denoted by w•. (It is understood
that w• consists of a single node if w is the empty string.)

. . .
a1 a2 an

Fig. 4. The string graph for a1a2 . . . an

Theorem 1. For every computable partial function f :Σ∗
1 → Σ∗

2 there is a pro-
gram Pf over a label alphabet C with C1, C2 ⊆ C such that for all w in Σ∗

1 and G
in AC,

w• →Pf
G if and only if G = f(w)•.

To prove Theorem 1 we will simulate Turing machines by programs, so we
first recall the definition of Turing machines and their computed functions (using
a version similar to that in [LP98]).

A Turing machine is a system M = 〈Q, Γ, δ, q0,�〉 where Q is a finite set
of states, Γ is a finite set of tape symbols, � ∈ Γ is the blank symbol, δ is a
partial function from Q × Γ to Q × Γ × {r, n, l} called the transition function
and q0 ∈ Q is the start state.

A configuration of M is a string c = uqav such that q ∈ Q, a ∈ Γ and
u, v ∈ Γ ∗. The start configuration of M with respect to a string w in Σ∗ is given
by α(w) = q0w if w is not empty and by q0� otherwise. Given a configuration
c = uqav, we write c `M c′ and call c′ the successor configuration of c if c′ is
given by
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c′ =




ua′q′v if δ(q, a) = (q′, a′, r) and v 6= λ,
ua′q′� if δ(q, a) = (q′, a′, r) and v = λ,
uq′a′v if δ(q, a) = (q′, a′, n),
u′q′ba′v if δ(q, a) = (q′, a′, l) and u = u′b,
q′�a′v if δ(q, a) = (q′, a′, l) and u = λ.

A configuration is final if it has no successor configuration. The result of a
configuration c = uqv is the string ω(uqv) = ūv̄ where ū is the shortest string
with u = � . . .�ū and v̄ is the shortest string with v = v̄� . . .�.

Let Σ1 and Σ2 be subsets of Γ − {�}. The partial function fM :Σ∗
1 → Σ∗

2
computed by M is given by fM (v) = w if there is a final configuration c such
that α(v) `∗

M c, ω(c) = w and w ∈ Σ∗
2 , and undefined otherwise.

Proof of Theorem 1. For every computable partial function f :Σ∗
1 → Σ∗

2 there
exists a Turing machine M that computes f . So we have to show that for every
Turing machine M there exists a program Turing(M) that transforms string
graphs into string graphs such that for all v in Σ∗

1 and w in Σ∗
2 , fM (v) = w if

and only if v• →Turing(M) w•. To this end, let

Turing(M) = 〈Initiate; Simulate↓; Eliminate↓; Finish〉

where Initiate is an elementary program attaching a state node labelled with
the start state to an input string, Simulate ↓ simulates the working of M ,
Eliminate↓ removes all blanks from the final configuration, and Finish deletes
the state node. The rules of Turing(M) are given in Figure 5. ut

6 Computational Completeness

We are now ready to state our main result, namely that every computable partial
function on abstract graphs is computed by a program in the programming
language defined in Section 3.

Theorem 2. For every computable partial function f :AC1 → AC2 there exists
a program that computes f .

Proof. Let f :AC1 → AC2 be computable. Then, by Definition 5, there is a com-
putable partial function f ′:Σ∗

1 → Σ∗
2 such that for every graph expression w,

f(gra(w)) = gra(f ′(w)). Let Pf ′ be the program of Theorem 1 which simulates
f ′, and let Encode and Decode be the programs of Lemmata 1 and 2 below.
Without loss of generality, we may assume that Encode, Pf ′ , and Decode are
programs over a common label alphabet C. We show that for all G in AC1 and
H in AC2 ,

G→〈Encode; Pf′ ; Decode〉 H if and only if f(G) = H.

“Only if”: Let G →〈Encode; Pf′ ; Decode〉 H. Then there are G1 and G2 in AC
such that G→Encode G1 →Pf′ G2 →Decode H. By Lemma 1 we have G1 = w• for
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Initiate




1a

⇒
1

q0

a

∗ for all a ∈ Γ

⇒
q0

�
∗

Simulate




1 2 3

q

a b

∗ ⇒
1 2 3

q′

a′ b

∗ if δ(q, a) = (q′, a′, r)

and b ∈ Γ

1

q

a

∗ ⇒
1

q′

a′ �
∗ if δ(q, a) = (q′, a′, r)

1 2

q

a

∗ ⇒
1 2

q′

a′

∗ if δ(q, a) = (q′, a′, n)

1 2 3

q

b a

∗ ⇒
1 2 3

q

b a′

∗ if δ(q, a) = (q′, a′, l)

and b ∈ Γ

1

q

a

∗ ⇒
1

q′

� a′

∗ if δ(q, a) = (q′, a′, l)

Eliminate




1� ⇒ 1

1 � ⇒ 1

Finish




1

q
∗ ⇒

1

for all q ∈ Q

Fig. 5. The rules of the program Turing(M)
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some graph expression w with gra(w) = G. Then G2 = f ′(w)• by Theorem 1.
Hence w ∈ Dom(f ′) and, by Definition 5, gra(w) ∈ Dom(f) and f(gra(w)) =
gra(f ′(w)). So f ′(w) is a graph expression and hence, by Lemma 2, gra(f ′(w)) =
H. Thus f(G) = f(gra(w)) = gra(f ′(w)) = H.

“If”: Let f(G) = H, and let w be a graph expression with gra(w) = G.
Then, by Lemma 1, G →Encode w•. By the computability of f , f(gra(w)) =
gra(f ′(w)). Thus w ∈ Dom(f ′) and f ′(w) is a graph expression. By Theorem 1,
w• →Pf′ f ′(w)•. By Lemma 2, gra(f ′(w)) = f(gra(w)) = f(G) = H implies
f ′(w)• →Decode H. Thus G→Encode w• →Pf′ f ′(w)• →Decode H. ut

The rest of this section is devoted to Lemmata 1 and 2 which give programs
for encoding abstract graphs as graph expressions, and decoding graph expres-
sions back into abstract graphs. Let C1, C2 and C be any label alphabets such
that C1V ∪ C2V ∪ C1V × {′} ∪ {•, ∗} ⊆ CV and C1E ∪ C2E ∪ C1V ∪ {1, 2, 2′,#,=
, ?, >,1} ⊆ CE , where we assume that the symbols •, ∗, 2′, =, ?, > and 1 do
not occur in CiV and CiE (i = 1, 2).

Lemma 1. There is a program Encode such that for all G in AC1 and H in AC,

G→Encode H if and only if G = gra(w) and H = w• for some graph

expression w.

Proof. The program Encode is given by

Encode = Ite(∅, Encode1, Encode2)

where ∅ is the empty graph and Encode1 and Encode2 encode the empty graph
and non-empty abstract graphs, respectively. While Encode1 just creates a single
node with label •, Encode2 consists of three subprograms:

Encode2 = 〈Prepare; Bundle; Compose〉.
Prepare prepares an abstract graph for encoding by representing node labels as
edge labels and decorating each node by a chain of edges labelled with 1. The
program Bundle transforms an abstract graph into a bundle of string graphs each
of which represents a node or an edge of the original graph. Compose composes
the string graphs in the bundle by connecting them with #-labelled edges and
attaching a #-edge at the begin and the end of the resulting graph.

The program Prepare consists of four subprograms:3

Prepare = 〈Choose; Inc↓; Relabel↓; Stop〉↓ .

Here Choose selects a labelled node, relabels it into •, attaches a 1-labelled edge,
and decorates the source of this edge by a loop with the original node label. The
3 Prepare contains rules that relabel nodes, that is, rules in which the node labelling

function of the interface is partial. These rules can be simulated by programs with
ordinary rules. We omit the details for space reasons; they will be given in a long
version of this paper.
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program Inc ↓ attaches a chain of 1-labelled edges to a loop-marked node and
marks the begin of the chain by a loop. The length of the chain coincides with the
number of not yet relabelled nodes in the current graph. Note that visited nodes
temporarily get auxiliary labels to prevent further visiting. After termination
of Inc ↓ the nodes get their original labels be the subprogram Relabel ↓. The
elementary program Stop replaces a loop by an ordinary edge.

The program Bundle is defined by

Bundle = 〈Separate; Copy↓; Redirect↓〉↓,
where Separate separates an edge from the graph and initiates copying,
Copy ↓ copies the information about the source and the target of an edge, and
Redirect↓ redirects edges such that a bundle of string graphs is obtained.

The program Compose is given by

Compose = 〈〈Initiate; Search↓〉↓; Extend1; Extend2〉.
Here Initiate initiates the connection of two string graphs by connecting the
begin nodes of two different string graphs with a #-labelled edge. The program
Search↓ searches for the end of the first string graph and redirects the source of
the #-labelled edge to the end of it. Finally, Extend1 and Extend2 add a node
and a #-labelled edge at the begin and the end of the string graph.

The rules of Encode2 are given in Figure 6. By inspecting the rules, it is not
difficult to check that Encode behaves as stated in the proposition. ut

Lemma 2. There is a program Decode such that for every graph expression w
in Σ∗ and every abstract graph G in AC2 ,

w• →Decode G if and only if gra(w) = G.

Proof. Let Decode be the program

Decode = Ite(•, Decode1, Decode2)

where • is the abstract graph consisting of a single node labelled with •, and
Decode1 and Decode2 are programs for decoding • and string graphs representing
nonempty graph expressions, respectively. While Decode1 consists of a single rule
deleting •, Decode2 consists of three subprograms:

Decode2 = 〈Decompose; Interweave; MakeNode〉.
Decompose decomposes the string graph of a nonempty graph expression into a
bundle of string graphs representing nodes and edges, Interweave interweaves
this bundle into an edge-labelled graph, and MakeNode transforms this graph
into a graph with node and edge labels and removes auxiliary information.

The program Decompose is given by

Decompose = 〈Cut1; Cut2; Deco↓〉,
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Prepare




Choose: A

1

⇒
1

1 A
for all A ∈ C1V

Inc: B

1
2

A ⇒ B′

1
2

1 A
for all A, B ∈ C1V

Relabel: A′
1

⇒ A
1

for all A ∈ C1V

Stop:
1

A ⇒
1

A
for all A ∈ C1V

Bundle




Separate1:

1 2 3 4

1 a 1 ⇒
1 2 3 4

1 1

2 a 2

= =
for all

a ∈ C1E

Separate2:

1 2 3

1 1
a ⇒

1 2 3

1 1

2 a 2

= =

for all

a ∈ C1E

Copy1:
1 2

3

1
= ⇒

1 2

3

1

2

=

Copy2:
1 2

3

A
= ⇒

1 2

3

A

A

for all A ∈ C1V

Redirect1:
1 2 3

a 2 ⇒
1 2 3

a 2′
for all a ∈ C1E

Redirect2:
1 2 3

2′ 2 ⇒
1 2 3

2 2′

Redirect3:
1 2 3

2′ A ⇒
1 2 3

2 A
for all A ∈ C1V

Compose




Initiate:
1

2

A

B
⇒

1

2

A

B
# for all A, B ∈ C1V

Search:
1 2

3

X

# ⇒
1 2

3

X

#
for all X ∈ {1, 2} ∪ C1E ∪ C1V

Extend1:
1

A ⇒
1

# A
for all A ∈ C1V

Extend2:
1

A ⇒
1

A #

for all A ∈ C1V

Fig. 6. The rules of the program Encode2
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where Cut1 and Cut2 remove the outer #-labelled edges together with the ou-
termost nodes, and Deco↓ removes the inner #-labelled edges. This results in a
bundle of string graphs representing nodes and edges.

The program Interweave is defined as follows:

Interweave = 〈Redirect↓; MarkAll; Checkid↓〉.
Here Redirect ↓ redirects the edges representing the target node of an edge,
MarkAll with

MarkAll = 〈Select; Connect↓; Relabel↓〉↓
marks all pairs of representations which have to be checked with respect to
coincidence, and Checkid with

Checkid = 〈Initiate; Compare↓; Delete↓; 〈Ident; GarColl↓〉↓〉
selects a pair and compares the representations. If the representations do not
coincide, it finishes the comparison by deleting the comparison edge. Otherwise,
it identifies two nodes4 and performs “garbage collection”.

Finally, MakeNode is given by

MakeNode = 〈MakeNode1; MakeNode2 ↓〉↓,
where MakeNode1 transforms edges representing nodes into nodes and removes
auxiliary edges and nodes, and MakeNode2 ↓ removes further auxiliary informa-
tion from the graph.

The rules of Decode2 are given in Figure 7. By inspecting the rules one can see
that Decode transforms graph expressions in form of string graphs into abstract
graphs, and that it is correct in the sense that for every graph expression w in Σ∗

and every abstract graph G in AC2 , w• →Decode G if and only if gra(w) = G. ut

7 Minimality

Our programming language defined in Section 3 is minimal in that omitting
either sequential composition or iteration results in a computationally incomplete
language. For the proof of this fact we call a function f :AC → AC cyclic if there
are some G in AC and n ≥ 2 such that f(G) 6= G and fn(G) = G.

Lemma 3. No cyclic function is computable by a program of the form P ↓.
Proof. Let f :AC → AC be cyclic and consider some G in AC and n ≥ 2 such
that f(G) 6= G and fn(G) = G. Suppose that there is a program P ↓ such that
→P↓= f . Then fn−1(G) →P↓ G and hence G is a normal form with respect to
→P . But G →P↓ f(G) and G 6= f(G) imply G →+

P f(G). Thus G cannot be a
normal form, a contradiction. ut
4 Ident contains a rule 〈L ← K → R〉 where K → R is not injective, but it can be

replaced by a program in which all rules have injective morphisms. We omit this
program for space reasons.
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Decompose




Cut1:
1

# ⇒
1

Cut2:
1

# ⇒
1

Deco:
1 2

# ⇒
1 2

Interweave




Redirect1:
1 2 3

a 2 ⇒
1 2 3

a 2′
for all a ∈ C2E

Redirect2:
1 2 3

2′ 2 ⇒
1 2 3

2 2′

Redirect3:
1 2 3

2′ A ⇒
1 2 3

2 A
for all A ∈ C2V

Select:
1 2

A 2 ⇒
1

∗
2

A 2
for all A ∈ C2V

Connect:

1

∗
2 3

4 5 6

A 2

A 1 ⇒
1

∗
2 3

4
∗
5 6

A 2

A 1
? for all A ∈ C2V

Relabel: ∗
1

⇒
1

Initiate:
1 2

? ⇒
1 2

>

Compare:

1 2

3 4

2

1> ⇒
1 2

3 4

2

1 >

Delete1:
1 2 3

> 1 ⇒
1 2 3

1

Delete2:
1 2 3

2> ⇒
1 2 3

2

Ident:
1 2 3

2 > ⇒
1 2=3

1

GarColl1:
1

2 1 ⇒
1

1

GarColl2:
1 2

? 1 ⇒
1 2

1

GarColl3:
A 1 ⇒ ∅ for all A ∈ C2V

MakeNode




MakeNode1:
A1

1
⇒ A

1

for all A ∈ C2V

MakeNode2:
1

A
1 ⇒ A

1

for all A ∈ C2V

Fig. 7. The rules of the program Decode2
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For example, the function converse:AC → AC discussed in Example 1.2 is
cyclic since converse(converse(G)) = G for every G in AC . Hence a program
computing this function cannot have an outermost iteration construct.

Theorem 3. The set of programs without sequential composition is computa-
tionally incomplete.

Proof. The function converse:AC → AC of Example 1.2 is computable and cyclic.
By Lemma 3, a program P without sequential composition that computes this
function has to be elementary. Let n be the largest number of edges occurring in
the left-hand side of any rule in P . Consider [G] inAC with VG = {0, 1, . . . , n+2},
EG = {1, . . . , n + 2} and for i = 1, . . . , n + 2, sG(i) = 0 and tG(i) = i. Now if
[G]→P [H], then H contains at least two edges with a common source node. So
[H] 6= converse([G]) and hence P does not compute converse. ut

An argument similar to the one in the above proof also shows that programs
without iteration are computationally incomplete. For, it is clear that a program
R1; . . . ; Rn whose component programs are elementary cannot convert graphs
of arbitrary size.

It is worth mentioning that Theorem 3 has an alternative proof showing that
programs without sequential composition cannot compute any function f :AC →
AC satisfying (1) f(∅) 6= ∅ and (2) for every n ≥ 0 there is a graph G such that
size(G) + n < size(f(G)). So the class of functions not computable without
sequential composition does not just contain cyclic functions. The proof of this
fact will be given in a long version of this paper.

8 Conclusion

We have answered the question what programming constructs are needed on
top of (double-pushout) graph transformation rules to obtain a computationally
complete programming language. It turned out that sequential composition and
iteration of programs suffice for this purpose. Moreover, we have shown that
omitting either of these two constructs makes the language incomplete.

These results should help to better understand the semantics and power of
existing programming languages based on graph transformation rules, and they
should also be useful for the design of new languages of this kind. In particular,
due to the simplicity of our language, it should be feasible to prove computa-
tional completeness for a language in question by translating our programs into
semantically equivalent programs of that language.
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